帳號:guest(3.12.34.148)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱倉禾
作者(外文):Jhu, Cang-He
論文名稱(中文):可交聯電洞傳導高分子的合成及檢測
論文名稱(外文):Synthesis and characterization of crosslinkable hole-transport polymers
指導教授(中文):堀江正樹
指導教授(外文):Horie, Masaki
口試委員(中文):周鶴修
游進陽
口試委員(外文):Chou, Ho-Hsiu
Yu, Chin-Yang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032501
出版年(民國):109
畢業學年度:107
語文別:英文
論文頁數:159
中文關鍵詞:可交聯電洞傳導高分子鈣鈦礦太陽能電池咔唑-噻吩芴-苯胺熱交聯
外文關鍵詞:thermally crosslinkablecarbazole-thiophenefluorene-anilinePTAAperovskite solar cells
相關次數:
  • 推薦推薦:0
  • 點閱點閱:203
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
共軛導電高分子應用於有機電子元件時,常因其不穩定性導致元件壽命大幅下降。本研究致力於含咔唑-噻吩及含芴-苯胺的新型可交聯電洞傳導高分子,並藉由其可熱交聯的特性,達到提升鈣鈦礦太陽能電池的效能及穩定性。
第一章講述有關共軛導電高分子的基本知識、其在電子設備,例如:有機場效電晶體及太陽能電池的應用以及相關的合成方法機構。另外本研究的核心:熱交聯機制和本研究的材料:含咔唑-噻吩及含芴-苯胺高分子在此章均有詳細的介紹。
第二章講述含咔唑-噻吩及含芴-苯胺的可交聯高分子的合成方式。實驗證實兩類高分子在熱交聯後對有機溶劑的溶解度大幅下降,亦即高分子在交聯後穩定度大幅提升。此外高分子的可見光吸收光譜、螢光吸收光譜及光子激發光譜等光學性質亦完成量測。氫原子核磁共振光譜亦被應用於檢驗高分子上可交聯之官能基的存在與否。
第三章講述本研究的結論以及未來發展規劃。含芴-苯胺高分子將在鈣鈦礦太陽能電池上測試。第四章包含詳細的合成步驟及光譜資訊。

Conjugated polymers have been applied to various electronic devices. However, they encounter the problems of instability and short lifetime. In this work, novel crosslinkable-hole-transporting polymers comprising carbazole-thiophene and fluorene-aniline have been synthesized via direct arylation polymerization (DAP) and Buchwald polymerization, respectively, in order to improve the stability and lifetime of perovskite solar cells by thermal crosslink of the polymers.
In Chapter 1, the conjugated polymers and their applications on electric devices such as organic thin film transistors and photovoltaics are introduced, followed by elaboration for the mechanism of synthesis methods such as DAP. Also, the core of this work, thermally crosslinkable strategy, polycarbazole, PTAA and the aim for this work are described.
In Chapter 2, the synthesis of carbazole-thiophene based polymers and fluorene-aniline based polymers are described. The retention rate of the crosslinkable end-vinyl groups on fluorene group was tailored by polymerization conditions. The monomers and polymers are characterized by 1H NMR spectroscopy to estimate the presence of desirable functional group such as the crosslinkable vinyl group. Capability of crosslinking of the polymers are examined by solubility test after thermal crosslink of the polymers. As-synthesized polymers are soluble in common organic solvents such as chloroform, whereas the crosslinked polymers films are insoluble in solvents. This test is an evidence for enhancement of stability through the crosslink strategy. UV-visible, photoluminescence, and photoelectron spectra are measured for selected products.
In Chapter 3, conclusion and future projects are described. Fluorene-aniline based polymer will be tested for perovskite solar cell. Finally, in Chapter 4, detailed synthesis procedures, 1H NMR spectra, and GPC data of the products are shown.
Table of content
Chapter 1 Introduction 1
1.1 Introduction to conjugated polymers 1
1.1.1 Conjugated polymers 1
1.2 Introduction to synthesis methods 4
1.2.1 Suzuki-Miyaura coupling 4
1.2.2 Buchwald-Hartwig reaction 6
1.2.3 Direct arylation polymerization 8
1.2.4 Wittig reaction 10
1.3 Application of conjugated polymers on organic electronics 12
1.3.1 Organic field-effect transistors based on conjugated polymers 12
1.3.2 Photovoltaics 16
1.3.3 Organic photovoltaics based on conjugated polymers 18
1.3.4 Perovskite solar cells 23
1.3.5 Organic hole transporting materials (HTMs) 27
1.4 Polycarbazoles 30
1.4.1 Introduction to polycarbazoles 30
1.4.2 Applications of polycarbazoles 32
1.5 Polyfluorenes 33
1.5.1 Introduction to polyfluorenes 33
1.5.2 Applications of polyfluorenes 35
1.6 Poly(triarylamine) 36
1.7 Thermal crosslink for improving stability of organic electronics 39
1.8 Aim of this work 43
Chapter 2 Synthesis of monomers and polymers 47
2.1 Synthesis of carbazole-thiophene based crosslinkable polymers 47
2.1.1 Introduction 47
2.1.2 Synthesis of poly-2,7-thiophenevinylcarbazole (P27TVCz)(P2) 48
2.1.3 Synthesis of poly-3,6-thiophenevinylcarbazole (P36TVCz) 54
2.2 Synthesis of fluorene-based crosslinkable PTAA 60
2.2.1 Introduction 60
2.2.2 Synthesis of crosslinkable PTAA, P5 series 62
2.2.3 Synthesis of crosslinkable PTAA, P6 series 66
2.2.4 Synthesis of crosslinkable PTAA, P7 series 70
2.2.5 Synthesis of crosslinkable PTAA, P8 series 74
2.2.6 Synthesis of crosslinkable PTAA, P9 series 77
2.3 Crosslinking of the polymers 80
2.3.1 Crosslinking of the model compound 80
2.3.2 Solubility test for crosslinkable polymers, P2 and P4 82
2.3.3 Solubility test for crosslinkable PTAAs, P5-P9 series 85
2.4 Characterization of polymers with optical properties 90
2.4.1 Photoelectron spectra 90
2.4.2 UV-vis spectra 91
2.4.3 Photoluminescence spectra and quantum yields 93
2.5 PV tests 98
2.5.1 Perovskite solar cell in planar structure 98
2.5.2 Perovskite solar cell in inverted structure 100
2.5.3 Summary of the PV tests 101
Chapter 3 Conclusions and suggestions for future work 102
Chapter 4 Experimental section 104
4.1 General methods 104
4.2 Synthesis of monomers 105
4.2.1 Synthesis of 4-(2,7-bis(3-(2-ethylhexyl)thiophen-2-yl)-9H-carbazol-9-yl)benzaldehyde (M2) 105
4.2.2 Synthesis of 4-(3,6-bis(3-(2-ethylhexyl)thiophen-2-yl)-9H-carbazol-9-yl)benzaldehyde (M5) 109
4.2.3 Synthesis of 3,6-dibromo-9-(4-vinylphenyl)-9H-carbazole (M8) 111
4.2.4 Synthesis of 2,7-dibromo-9,9’-di(hex-5-en-1-yl)-9H-fluorene (M9) 114
4.2.5 Synthesis of 2,7-dibromo-9,9’-bis(4-vinylbenzyl)-9H-fluorene (M10) 115
4.3 Synthesis of polymers 116
4.3.1 Synthesis of poly-2,7-thiophenevinylcarbazole (P2) 116
4.3.2 Synthesis of poly-3,6-thiophenevinylcarbazole (P4) 118
4.3.3 Synthesis of crosslinkable PTAA (P5 series) 120
4.3.4 Synthesis of crosslinkable PTAA (P6 series) 122
4.3.5 Synthesis of crosslinkable PTAA (P7 series) 125
4.3.6 Synthesis of crosslinkable PTAA (P8 series) 128
4.3.7 Synthesis of crosslinkable PTAA (P9) 130
4.4 NMR and mass spectra 132
4.4.1 Carbazole and thiophene related compound 132
4.4.2 Fluorene and aniline related compound 140
4.5 GPC 147
4.6 Standard solution of quinine hemisulfate salt monohydrate 155
References 156

1. C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau and A. G. Macdiarmid, Phys Rev Lett, 1977, 39, 1098-1101.
2. A. Heeger, Angew. Chem. Int. Ed., 2001, 40, 2591-2611.
3. R. Søndergaard, M. Hösel, D. Angmo, T. T. Larsen-Olsen and F. C. Krebs, Mater. Today, 2012, 15, 36-49.
4. R. R. Søndergaard, M. Hösel and F. C. Krebs, J. Polym. Sci., Part B: Polym. Phys., 2013, 51, 16-34.
5. S. Liu, P. He, S. Hussain, H. Lu, X. Zhou, F. Lv, L. Liu, Z. Dai and S. Wang, ACS Appl. Mater. Interfaces, 2018, 10, 6618-6623.
6. Y. Xu, X. Wang, J. Zhou, B. Song, Z. Jiang, E. M. Lee, S. Huberman, K. K. Gleason and G. Chen, Sci. Adv., 2018, 4, eaar3031.
7. A. Suzuki, Chem. Commun., 2005, 4759-4763.
8. H. Bohra and M. Wang, J. Mater. Chem. A, 2017, 5, 11550-11571.
9. I. Hussain, J. Capricho and M. A. Yawer, Adv. Synth. Catal. , 2016, 358, 3320-3349.
10. M. Kosugi, M. Kameyama and T. Migita, Chem. Lett., 1983, 12, 927-928.
11. B. H. Yang and S. L. Buchwald, J. Organomet. Chem., 1999, 576, 125-146.
12. C. A. Fleckenstein and H. Plenio, Chem. Soc. Rev., 2010, 39, 694-711.
13. H. Li, C. C. Johansson Seechurn and T. J. Colacot, ACS Catal., 2012, 2, 1147-1164.
14. P. Ruiz-Castillo and S. L. Buchwald, Chem. Rev., 2016, 116, 12564-12649.
15. Y. Sunesson, E. Lime, S. O. Nilsson Lill, R. E. Meadows and P. O. Norrby, J. Org. Chem., 2014, 79, 11961-11969.
16. A. Kiriy, V. Senkovskyy and M. Sommer, Macromol. Rapid Commun., 2011, 32, 1503-1517.
17. R. Yuan, D. Zhao, L.-Y. Zhang, X. Pan, Y. Yang, P. Wang, H.-F. Li and C.-S. Da, Org. Biomol. Chem., 2016, 14, 724-728.
18. B. Carsten, F. He, H. J. Son, T. Xu and L. Yu, Chem. Rev., 2011, 111, 1493-1528.
19. P. A. Byrne and D. G. Gilheany, Chem. Soc. Rev., 2013, 42, 6670-6696.
20. W. PK, Proc IRE, 1962, 50:1462, 16.
21. L. Torsi, M. Magliulo, K. Manoli and G. Palazzo, Chem. Soc. Rev., 2013, 42, 8612-8628.
22. A. Dodabalapur, Mater. Today, 2006, 9, 24-30.
23. J. Zaumseil and H. Sirringhaus, Chem. Rev., 2007, 107, 1296-1323.
24. S. G. Bailey and D. J. Flood, Prog. Photovoltaics Res. Appl., 1998, 6, 1-14.
25. C. J. Brabec, Sol. Energy Mater. Sol. Cells, 2004, 83, 273-292.
26. M. I. H. Ansari, A. Qurashi, M. K. J. J. o. P. Nazeeruddin and P. C. P. Reviews, J. Photochem. Photobiol., C, 2018, 35, 1-24.
27. C. W. Tang, Appl. Phys. Lett., 1986, 48, 183-185.
28. K. M. Coakley and M. D. McGehee, Chem. Mater., 2004, 16, 4533-4542.
29. Y.-J. Cheng, S.-H. Yang and C.-S. Hsu, Chem. Rev., 2009, 109, 5868-5923.
30. M. Y. Jo, S. J. Park, T. Park, Y. S. Won and J. H. Kim, Org. Electron, 2012, 13, 2185-2191.
31. B. Qi and J. Wang, Phys. Chem. Chem. Phys., 2013, 15, 8972-8982.
32. M. C. Scharber and N. S. Sariciftci, Prog. Polym. Sci., 2013, 38, 1929-1940.
33. C. Eames, J. M. Frost, P. R. Barnes, B. C. O’regan, A. Walsh and M. S. Islam, Nat. Commun., 2015, 6, 7497.
34. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc., 2009, 131, 6050-6051.
35. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum and J. E. Moser, Sci. Rep., 2012, 2, 591.
36. J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park and N.-G. Park, Nanoscale, 2011, 3, 4088-4093.
37. M. Liu, M. B. Johnston and H. J. Snaith, Nature, 2013, 501, 395.
38. M. Jung, T. J. Shin, J. Seo, G. Kim and S. I. Seok, Energy Environ. Sci., 2018, 2188-2197.
39. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, Science, 2013, 342, 341-344.
40. M. R. Leyden, L. K. Ono, S. R. Raga, Y. Kato, S. Wang and Y. Qi, J. Mater. Chem. A, 2014, 2, 18742-18745.
41. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Science, 2012, 1228604.
42. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Grätzel, Nature, 2013, 499, 316.
43. Q. Chen, N. De Marco, Y. M. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou and Y. Yang, Nano Today, 2015, 10, 355-396.
44. H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, Science, 2014, 345, 542-546.
45. N. J. Jeon, H. G. Lee, Y. C. Kim, J. Seo, J. H. Noh, J. Lee and S. I. Seok, J. Am. Chem. Soc., 2014, 136, 7837-7840.
46. Z. Yu and L. Sun, Adv. Energy Mater., 2015, 5, 1500213.
47. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-j. Kim, A. Sarkar and M. K. Nazeeruddin, Nat. Photonics, 2013, 7, 486.
48. A. Abrusci, S. D. Stranks, P. Docampo, H.-L. Yip, A. K.-Y. Jen and H. J. Snaith, Nano Lett., 2013, 13, 3124-3128.
49. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Science, 2015, 348, 1234-1237.
50. C. V. Kumar, G. Sfyri, D. Raptis, E. Stathatos and P. Lianos, RSC Adv., 2015, 5, 3786-3791.
51. Y. Sato, Catal. Today, 1997, 39, 89-98.
52. C. Tang, R. Bi, Y. Tao, F. Wang, X. Cao, S. Wang, T. Jiang, C. Zhong, H. Zhang and W. Huang, Chem. Commun., 2015, 51, 1650-1653.
53. K. Shibasaki, T. Yasuda, Y. Yamamoto and M. Kijima, Polymer, 2017, 108, 305-312.
54. M. Cai, T. Xiao, Y. Chen, E. Hellerich, R. Liu, R. Shinar and J. Shinar, Appl. Phys. Lett., 2011, 99, 254.
55. A. G. Grigoras, Int. J. Polym. Mater., 2016, 65, 888-900.
56. M. Baibarac and e. al., Compos. Sci. Technol., 2007, 67, 2556-2563.
57. G. Sathiyan, E. Sivakumar, R. Ganesamoorthy, R. Thangamuthu and P. Sakthivel, Tetrahedron Lett., 2016, 57, 243-252.
58. S. Kato, S. Shimizu, A. Kobayashi, T. Yoshihara, S. Tobita and Y. Nakamura, J. Org. Chem., 2014, 79, 618-629.
59. A. Siove and D. Ades, Polymer, 2004, 45, 4045-4049.
60. R. Schroot, U. S. Schubert and M. Jäger, Macromolecules, 2016, 49, 8801-8811.
61. A. Facchetti, L. Vaccaro and A. Marrocchi, Angew. Chem. Int. Ed., 2012, 51, 3520-3523.
62. A. Al Mousawi, F. Dumur, P. Garra, J. Toufaily, T. Hamieh, B. Graff, D. Gigmes, J. P. Fouassier and J. Lalevée, Macromolecules, 2017, 50, 2747-2758.
63. G. Rieveschl and F. E. Ray, Chem. Rev., 1938, 23, 287-389.
64. M. Inbasekaran, E. Woo, W. Wu, M. Bernius and L. Wujkowski, Synth. Met., 2000, 111, 397-401.
65. M. Ranger, D. Rondeau and M. Leclerc, Macromolecules, 1997, 30, 7686-7691.
66. K. R. Carter, Macromolecules, 2002, 35, 6757-6759.
67. W. Lu, J. Kuwabara and T. Kanbara, Macromol. Rapid Commun., 2013, 34, 1151-1156.
68. A. Alvarez, J. M. Costa-Fernandez, R. Pereiro, A. Sanz-Medel and A. Salinas-Castillo, Trends Anal. Chem., 2011, 30, 1513-1525.
69. Y. Wang, B. Liu, A. Mikhailovsky and G. C. Bazan, Adv. Mater., 2010, 22, 656-659.
70. C. Sekine, Y. Tsubata, T. Yamada, M. Kitano and S. Doi, Sci. Technol. Adv. Mater., 2014, 15, 034203.
71. A. Das, R. Dost, T. Richardson, M. Grell, J. J. Morrison and M. L. Turner, Adv. Mater., 2007, 19, 4018-4023.
72. M. Horie, Y. Luo, J. J. Morrison, L. A. Majewski, A. Song, B. R. Saunders and M. L. Turner, J. Mater. Chem., 2008, 18, 5230-5236.
73. Y. Kim, E. H. Jung, G. Kim, D. Kim, B. J. Kim and J. Seo, Adv. Energy Mater., 2018, 8, 1801668.
74. R. S. Sprick, M. Hoyos, O. Navarro and M. L. Turner, React. Funct. Polym., 2012, 72, 337-340.
75. R. S. Sprick, M. Hoyos, J. J. Morrison, I. M. Grace, C. Lambert, O. Navarro and M. L. Turner, J. Mater. Chem. C, 2013, 1, 3327-3336.
76. R. S. Sprick, M. Hoyos, M. S. Wrackmeyer, A. V. S. Parry, I. M. Grace, C. Lambert, O. Navarro and M. L. Turner, J. Mater. Chem. C, 2014, 2, 6520-6528.
77. Q. Zhao, R. Wu, Z. Zhang, J. Xiong, Z. He, B. Fan, Z. Dai, B. Yang, X. Xue and P. Cai, Org. Electron., 2019, 71, 106-112.
78. Q. Wang, C. Bi and J. Huang, Nano Energy, 2015, 15, 275-280.
79. J. Ahmad, K. Bazaka, L. J. Anderson, R. D. White and M. V. Jacob, Renewable Sustainable Energy Rev., 2013, 27, 104-117.
80. J. W. Rumer and I. McCulloch, Mater. Today, 2015, 18, 425-435.
81. C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang and C.-S. Hsu, J. Am. Chem. Soc., 2010, 132, 4887-4893.
82. Y.-J. Cheng, C.-H. Hsieh, P.-J. Li and C.-S. Hsu, Adv. Funct. Mater., 2011, 21, 1723-1732.
83. M. Li, Z.-K. Wang, T. Kang, Y. Yang, X. Gao, C.-S. Hsu, Y. Li and L.-S. Liao, Nano Energy, 2018, 43, 47-54.
84. C.-C. Chang, J.-H. Tao, C.-E. Tsai, Y.-J. Cheng and C.-S. Hsu, ACS Appl. Mater. Interfaces, 2018, 10, 21466-21471.
85. H. Waters, J. Kettle, S.-W. Chang, C.-J. Su, W.-R. Wu, U. S. Jeng, Y.-C. Tsai and M. Horie, J. Mater. Chem. A, 2013, 1.
86. S. Miyanishi, K. Tajima and K. Hashimoto, Macromolecules, 2009, 42, 1610-1618.
87. T. Mahata, A. Kanungo, S. Ganguly, E. K. Modugula, S. Choudhury, S. K. Pal, G. Basu and S. Dutta, Angew. Chem. Int. Ed., 2016, 55, 7733-7736.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *