|
[1] P. G. de Gennes, “Soft matter,” Rev. Mod. Phys., vol. 64, pp. 645–648, Jul 1992. [2] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E. P. George, “The influences of temperature and microstructure on the tensile properties of a cocrfemnni high-entropy alloy,” Acta Mater., vol. 61, no. 15, pp. 5743–5755, 2013. [3] Z. Zhang, M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S. X. Mao, E. P. George, Q. Yu, and R. O. Ritchie, “Nanoscale origins of the damage tolerance of the high-entropy alloy crmnfeconi,” Nat. Commun., vol. 6, no. 1, pp. 1–6, 2015. [4] C. Varvenne, G. P. M. Leyson, M. Ghazisaeidi, and W. A. Curtin, “Solute strengthening in random alloys,” Acta Mater., vol. 124, pp. 660–683, 2017. [5] S. I. Rao, C. Woodward, T. A. Parthasarathy, and O. Senkov, “Atomistic simulations of dislocation behavior in a model fcc multicomponent concentrated solid solution alloy,” Acta Mater., vol. 134, pp. 188–194, 2017. [6] Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, and Y. Gao, “Tuning element distribution, structure and properties by composition in high-entropy alloys,” Nature, vol. 574, no. 7777, pp. 223–227, 2019. [7] L. Li, Q. Fang, J. Li, B. Liu, Y. Liu, and P. K. Liaw, “Lattice-distortion dependent yield strength in high entropy alloys,” Mater. Sci. Eng., A, p. 139323, 2020. [8] S.-H. Chen, “Small angle neutron scattering studies of the structure and interaction in micellar and microemulsion systems,” Annual Review of Physical Chemistry, vol. 37, no. 1, pp. 351–399, 1986. [9] R. Henderson, “A uniqueness theorem for fluid pair correlation functions,” Physics Letters A, vol. 49, no. 3, pp. 197–198, 1974. [10] H. Wang, F. H. Stillinger, and S. Torquato, “Sensitivity of pair statistics on pair potentials in many-body systems,” The Journal of Chemical Physics, vol. 153, no. 12, p. 124106, 2020. [11] K. S. Schmitz, Macroions in solution and colloidal suspension. Wiley-VCH Verlag GmbH, 1993. [12] T. Zemb and P. Charpin, “Micellar structure from comparison of x-ray and neutron small-angle scattering,” Journal de Physique, vol. 46, no. 2, pp. 249–256, 1985. [13] A. Tardieu, A. Le Verge, M. Malfois, F. Bonnete, S. Finet, M. Ries-Kautt, and L. Belloni,“Proteins in solution: from x-ray scattering intensities to interaction potentials,” Journal of Crystal Growth, vol. 196, no. 2-4, pp. 193–203, 1999. [14] J.-P. Hansen and I. R. McDonald, Theory of simple liquids: with applications to soft matter. Academic press, 2013. [15] J. Lebowitz and J. Percus, “Mean spherical model for lattice gases with extended hard cores and continuum fluids,” Physical Review, vol. 144, no. 1, p. 251, 1966. [16] J. A. Barker and D. Henderson, “What is” liquid”? understanding the states of matter,” Reviews of Modern Physics, vol. 48, no. 4, p. 587, 1976. [17] E. Waisman, “The radial distribution function for a fluid of hard spheres at high densities: mean spherical integral equation approach,” Molecular Physics, vol. 25, no. 1, pp. 45–48, 1973. [18] W. R. Smith, D. Henderson, and Y. Tago, “Mean spherical approximation and optimized cluster theory for the square-well fluid,” The Journal of Chemical Physics, vol. 67, no. 11, pp. 5308–5316, 1977. [19] M. Heinen, P. Holmqvist, A. J. Banchio, and G. Nägele, “Pair structure of the hard-sphere yukawa fluid: An improved analytic method versus simulations, rogers-young scheme, and experiment,” The Journal of chemical physics, vol. 134, no. 4, p. 044532, 2011. [20] J.-P. Hansen and J. B. Hayter, “A rescaled msa structure factor for dilute charged colloidal dispersions,” Molecular Physics, vol. 46, no. 3, pp. 651–656, 1982. [21] J. Van Leeuwen, J. Groeneveld, and J. De Boer, “New method for the calculation of the pair correlation function. i,” Physica, vol. 25, no. 7-12, pp. 792–808, 1959. [22] J. K. Percus and G. J. Yevick, “Analysis of classical statistical mechanics by means of collective coordinates,” Physical Review, vol. 110, no. 1, p. 1, 1958. [23] P.-J. Derian, L. Belloni, and M. Drifford, “Contribution of small ions to the scattered intensity in the hypernetted chain approximation: Application to micellar solutions,” The Journal of chemical physics, vol. 86, no. 10, pp. 5708–5715, 1987. [24] M. Wertheim, “Exact solution of the percus-yevick integral equation for hard spheres,” Physical Review Letters, vol. 10, no. 8, p. 321, 1963. [25] J. Méndez-Alcaraz, B. D’Aguanno, and R. Klein, “Structure of binary colloidal mixtures of charged and uncharged spherical particles,” Langmuir, vol. 8, no. 12, pp. 2913–2920, 1992. [26] F. J. Rogers and D. A. Young, “New, thermodynamically consistent, integral equation for simple fluids,” Physical Review A, vol. 30, no. 2, p. 999, 1984. [27] M. Huš, M. Zalar, and T. Urbic, “Correctness of certain integral equation theories for core-softened fluids,” The Journal of Chemical Physics, vol. 138, no. 22, p. 224508, 2013. [28] L. Belloni, “Inability of the hypernetted chain integral equation to exhibit a spinodal line,” J. Chem. Phys., vol. 98, p. 8080, 1983. [29] B. Beresford-Smith, D. Y. C. Chan, and D. J. Mitchell, “The electrostatic interaction in colloidal systems with low added electrolyte,” J. Colloid Interface Sci., vol. 105, p. 216, 1985. [30] L. Belloni, “Attraction of electrostatic origin between colloids,” Chem. Phys., vol. 99, p. 43, 1985. [31] L. Belloni, Neutron, X-Ray and Light Scattering: Introduction to an Investigative Tool for Colloidal and Polymetric Systems. edited by Th. Zemb and P. Lindner, North-Holland, Amsterdam, 1991. [32] G. Fritz, A. Bergmann, and O. Glatter, “Evaluation of small-angle scattering data of charged particles using the generalized indirect fourier transformation technique,” J. Chem. Phys., vol. 113, p. 9733, 2000. [33] P.-G. De Gennes and P.-G. Gennes, Scaling concepts in polymer physics. Cornell university press, 1979. [34] A. Guinier, G. Fournet, and K. L. Yudowitch, Small-angle scattering of X-rays. Wiley New York, 1955. [35] G. Strang, Linear algebra and learning from data, vol. 4. Wellesley-Cambridge Press Cambridge, 2019. [36] L. D. Landau and E. M. Lifshitz, Statistical Physics. Reading, MA: Addison-Wesley, 1958. [37] J. A. Schellman, “Flexibility of dna,” Biopolymers: Original Research on Biomolecules, vol. 13, no. 1, pp. 217–226, 1974. [38] W. Kuhn and H. Kuhn, “Die frage nach der aufrollung von fadenmolekeln in strömenden lösungen,” Helvetica Chimica Acta, vol. 26, no. 5, pp. 1394–1465, 1943. [39] A. Y. Grosberg, A. R. Khokhlov, H. E. Stanley, A. J. Mallinckrodt, and S. McKay, “Statistical physics of macromolecules,” Computers in Physics, vol. 9, no. 2, pp. 171–172, 1995. [40] H.-P. Hsu, W. Paul, and K. Binder, “Estimation of persistence lengths of semiflexible polymers: Insight from simulations,” Polymer Science Series C, vol. 55, no. 1, pp. 39–59, 2013. [41] P. J. Flory, Principles of polymer chemistry. Cornell university press, 1953. [42] J. S. Pedersen and P. Schurtenberger, “Scattering functions of semiflexible polymers with and without excluded volume effects,” Macromolecules, vol. 29, no. 23, pp. 7602–7612, 1996. [43] K. Binder, Monte Carlo and molecular dynamics simulations in polymer science. Oxford University Press, 1995. [44] J. M. Ziman, Models of disorder: the theoretical physics of homogeneously disordered systems. Cambridge: Cambridge University Express, 1979. [45] Z. Wang and W.-H. Wang, “Flow units as dynamic defects in metallic glassy materials,” Natl. Sci. Rev., vol. 6, no. 2, pp. 304–323, 2019. [46] J. Yeh, S. Chen, S. Lin, J. Gan, T. Chin, T. Shun, C. Tsau, and S. Chang, “Nanostructured high entropy alloys with multiple principal elements: novel alloy design concepts and outcomes,” Adv. Eng. Mater., vol. 6, no. 5, pp. 299–303, 2004. [47] B. Cantor, I. Chang, P. Knight, and A. Vincent, “Microstructural development in equiatomic multicomponent alloys,” Mater. Sci. Eng., A, vol. 375, pp. 213–218, 2004. [48] P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, “Icosahedral bond orientational order in supercooled liquids,” Phys. Rev. Lett., vol. 47, no. 18, p. 1297, 1981. [49] T. Ninomiya, “Topological disorder in condensed matter,” in Topological Disorder in Condensed Matter (F. Yonezawa and T. Ninomiya, eds.), Berlin: Springer, 1983. [50] E. A. Lazar, J. Lu, and C. H. Rycroft, “Voronoi cell analysis: The shapes of particle systems,” American Journal of Physics, vol. 90, no. 6, pp. 469–480, 2022. [51] H. Peng, M. Li, and W. Wang, “Structural signature of plastic deformation in metallic glasses,” Phys. Rev. Lett., vol. 106, no. 13, p. 135503, 2011. [52] J. Ding, S. Patinet, M. L. Falk, Y. Cheng, and E. Ma, “Soft spots and their structural signature in a metallic glass,” Proc. Natl. Acad. Sci. U.S.A., vol. 111, no. 39, pp. 14052– 14056, 2014. [53] X. Yang, R. Liu, M. Yang, W.-H. Wang, and K. Chen, “Structures of local rearrangements in soft colloidal glasses,” Phys. Rev. Lett., vol. 116, no. 23, p. 238003, 2016. [54] K. Šolc and W. H. Stockmayer, “Shape of a random flight chain,” J. Chem. Phys., vol. 54, no. 1, p. 2756, 1971. [55] D. N. Theodorou and U. W. Suter, “Shape of unperturbed linear polymers: polypropylene,” Macromolecules, vol. 18, no. 6, pp. 1206–1214, 1985. [56] K. P. Murphy, Machine learning: a probabilistic perspective. Cambridge: MIT press, 2012. [57] R. B. Cattell, “The scree test for the number of factors,” Multivariate behavioral research, vol. 1, no. 2, pp. 245–276, 1966. [58] M. Zhu and A. Ghodsi, “Automatic dimensionality selection from the scree plot via the use of profile likelihood,” Computational Statistics & Data Analysis, vol. 51, no. 2, pp. 918–930, 2006. [59] W. Schommers, “Pair potentials in disordered many-particle systems: A study for liquid gallium,” Physical Review A, vol. 28, no. 6, p. 3599, 1983. [60] A. P. Lyubartsev and A. Laaksonen, “Calculation of effective interaction potentials from radial distribution functions: A reverse monte carlo approach,” Physical Review E, vol. 52, no. 4, p. 3730, 1995. [61] W. G. Noid, J.-W. Chu, G. S. Ayton, V. Krishna, S. Izvekov, G. A. Voth, A. Das, and H. C. Andersen, “The multiscale coarse-graining method. i. a rigorous bridge between atomistic and coarse-grained models,” The Journal of chemical physics, vol. 128, no. 24, p. 244114, 2008. [62] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. The MIT Press, Cambridge, 2006. [63] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, New York, 2006. [64] G.-R. Huang, C.-H. Tung, D. Chang, C. N. Lam, C. Do, Y. Shinohara, S.-Y. Chang, Y. Wang, K. Hong, and W.-R. Chen, “Determining population densities in bimodal micellar solutions using contrast-variation small angle neutron scattering,” The Journal of Chemical Physics, vol. 153, no. 18, p. 184902, 2020. [65] C.-H. Tung, G.-R. Huang, S.-Y. Chang, Y. Han, W.-R. Chen, and C. Do, “Revealing the influence of salts on the hydration structure of ionic sds micelles by contrast-variation small-angle neutron scattering,” The Journal of Physical Chemistry Letters, vol. 11, no. 17, pp. 7334–7341, 2020. [66] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization,” ACM Transactions on mathematical software (TOMS), vol. 23, no. 4, pp. 550–560, 1997. [67] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014. [68] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013. [69] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998. [70] R. G. Horn and J. N. Israelachvili, “Direct measurement of structural forces between two surfaces in a nonpolar liquid,” The Journal of Chemical Physics, vol. 75, no. 3, pp. 1400–1411, 1981. [71] W. Poon, “Colloids as big atoms,” Science, vol. 304, no. 5672, pp. 830–831, 2004. [72] V. N. Manoharan, “Colloidal matter: Packing, geometry, and entropy,” Science, vol. 349, no. 6251, p. 1253751, 2015. [73] M. Girard, S. Wang, J. S. Du, A. Das, Z. Huang, V. P. Dravid, B. Lee, C. A. Mirkin, and M. Olvera de la Cruz, “Particle analogs of electrons in colloidal crystals,” Science, vol. 364, no. 6446, pp. 1174–1178, 2019. [74] W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions. Cambridge University Press, Cambridge, 1992. [75] K. S. Schmitz, Macroions in Solution and Colloidal Suspension. Wiley-VCH, New York, 1992. [76] L. Belloni, “Electrostatic interactions in colloidal solutions: Comparison between primitive and one-component models,” The Journal of Chemical Physics, vol. 85, no. 1, pp. 519–526, 1986. [77] S.-H. Chen and E. Y. Sheu, Micellar Solutions and Microemulsions: Structure, Dynamics, and Statistical Thermodynamics. edited by S.-H. Chen and R. Rajagopalan, Springer-Verlag, New York, 1990. [78] L. Belloni, “Colloidal interactions,” Journal of Physics: Condensed Matter, vol. 12, no. 46, p. R549, 2000. [79] R. Klein, Neutron, X-rays and Light. Scattering Methods Applied to Soft Condensed Matter. edited by Th. Zemb and P. Lindner, North Holland, Amsterdam, 2002. [80] K. S. Schmitz, Introduction to Dynamic Light Scattering by Macromolecules. Academic Press, San Diego, 1990. [81] C. Caccamo, “Integral equation theory description of phase equilibria in classical fluids,” Physics reports, vol. 274, no. 1-2, pp. 1–105, 1996. [82] B. W. van de Waal, “On the origin of second-peak splitting in the static structure factor of metallic glasses,” Journal of non-crystalline solids, vol. 189, no. 1-2, pp. 118–128, 1995. [83] S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods,” The Journal of chemical physics, vol. 81, no. 1, pp. 511–519, 1984. [84] W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Physical review A, vol. 31, no. 3, p. 1695, 1985. [85] L. Verlet, “Computer” experiments” on classical fluids. i. thermodynamical properties of lennard-jones molecules,” Physical review, vol. 159, no. 1, p. 98, 1967. [86] J.-M. Y. Carrillo and A. V. Dobrynin, “Polyelectrolytes in salt solutions: Molecular dynamics simulations,” Macromolecules, vol. 44, no. 14, pp. 5798–5816, 2011. [87] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” Journal of computational physics, vol. 117, no. 1, pp. 1–19, 1995. [88] G. Nägele, “On the dynamics and structure of charge-stabilized suspensions,” Physics Reports, vol. 272, no. 5-6, pp. 215–372, 1996. [89] F. Pedregosa and et al., “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. [90] O. Glatter, Neutron, X-Ray and Light Scattering: Introduction to an Investigative Tool for Colloidal and Polymetric Systems. edited by Th. Zemb and P. Lindner, North Holland, Amsterdam, 1991. [91] O. Glatter, Neutron, X-rays and Light. Scattering Methods Applied to Soft Condensed Matter. edited by Th. Zemb and P. Lindner, North Holland, Amsterdam, 2002. [92] J. A. Anta and S. Lago, “Self-consistent effective interactions in charged colloidal suspensions,” The Journal of chemical physics, vol. 116, no. 23, pp. 10514–10522, 2002. [93] F. Chollet et al., “Keras,” 2015. [94] P. Alexandridis, “Amphiphilic copolymers and their applications,” Current Opinion in Colloid & Interface Science, vol. 1, no. 4, pp. 490–501, 1996. [95] T. P. Lodge, “Block copolymers: past successes and future challenges,” Macromolecular chemistry and physics, vol. 204, no. 2, pp. 265–273, 2003. [96] K. Binder, “Phase transitions in polymer blends and block copolymer melts: Some recent developments,” Adv. Polym. Sci., vol. 112, pp. 181–299, 1994. [97] K. E. Doncom, L. D. Blackman, D. B. Wright, M. I. Gibson, and R. K. O'Reilly, “Dispersity effects in polymer self-assemblies: a matter of hierarchical control,” Chemical Society Reviews, vol. 46, no. 14, pp. 4119–4134, 2017. [98] T. Zemb and P. Lindner, Neutron, X-rays and light. Scattering methods applied to soft condensed matter. North Holland, 2002. [99] H.-P. Hsu, W. Paul, and K. Binder, “Scattering function of semiflexible polymer chains under good solvent conditions,” The Journal of Chemical Physics, vol. 137, no. 17, p. 174902, 2012. [100] G. Porod, “X-ray and light scattering by chain molecules in solution,” Journal of Polymer Science, vol. 10, no. 2, pp. 157–166, 1953. [101] P. Sharp and V. A. Bloomfield, “Light scattering from wormlike chains with excluded volume effects,” Biopolymers: Original Research on Biomolecules, vol. 6, no. 8, pp. 1201–1211, 1968. [102] M. Bawendi and K. F. Freed, “A wiener integral model for stiff polymer chains,” The Journal of chemical physics, vol. 83, no. 5, pp. 2491–2496, 1985. [103] M. Rawiso, R. Duplessix, and C. Picot, “Scattering function of polystyrene,” Macromolecules, vol. 20, no. 3, pp. 630–648, 1987. [104] A. Kholodenko, “Persistence length and related conformational properties of semiflexible polymers from dirac propagator,” The Journal of chemical physics, vol. 96, no. 1, pp. 700–713, 1992. [105] S. Stepanow, “Statistical mechanics of semiflexible polymers,” The European Physical Journal B-Condensed Matter and Complex Systems, vol. 39, no. 4, pp. 499–512, 2004. [106] W.-R. Chen, P. D. Butler, and L. J. Magid, “Incorporating intermicellar interactions in the fitting of sans data from cationic wormlike micelles,” Langmuir, vol. 22, no. 15, pp. 6539–6548, 2006. [107] O. Kratky and G. Porod, “Röntgenuntersuchung gelöster fadenmoleküle,” Recueil des Travaux Chimiques des Pays-Bas, vol. 68, no. 12, pp. 1106–1122, 1949. [108] C. Svaneborg and J. S. Pedersen, “A formalism for scattering of complex composite structures. i. applications to branched structures of asymmetric sub-units,” The Journal of Chemical Physics, vol. 136, no. 10, p. 104105, 2012. [109] A. De Myttenaere, B. Golden, B. Le Grand, and F. Rossi, “Mean absolute percentage error for regression models,” Neurocomputing, vol. 192, pp. 38–48, 2016. [110] W. Marshall and S. Lovesey, Theory of Thermal Neutron Scattering: The Use of Neutrons for the Investigation of Condensed Matter. Clarendon Press, Oxford, 1971. [111] E. P. George, W. Curtin, and C. C. Tasan, “High entropy alloys: A focused review of mechanical properties and deformation mechanisms,” Acta Mater., vol. 188, pp. 435–474, 2020. [112] E. P. George, D. Raabe, and R. O. Ritchie, “High-entropy alloys,” Nat. Rev. Mater., vol. 4, no. 8, pp. 515–534, 2019. [113] C. Varvenne, A. Luque, and W. A. Curtin, “Theory of strengthening in fcc high entropy alloys,” Acta Mater., vol. 118, pp. 164–176, 2016. [114] J. Li, Q. Fang, B. Liu, and Y. Liu, “Transformation induced softening and plasticity in high entropy alloys,” Acta Mater., vol. 147, pp. 35–41, 2018. [115] L. Zhang, Y. Xiang, J. Han, and D. J. Srolovitz, “The effect of randomness on the strength of high-entropy alloys,” Acta Mater., vol. 166, pp. 424–434, 2019. [116] F. G. Coury, M. Kaufman, and A. J. Clarke, “Solid-solution strengthening in refractory high entropy alloys,” Acta Mater., vol. 175, pp. 66–81, 2019. [117] C.-H. Tung, G.-R. Huang, Z. Bai, Y. Fan, W.-R. Chen, and S.-Y. Chang, “Structural origin of plasticity in strained high-entropy alloy,” arXiv, vol. 2005.07088, 2020. [118] R. Mari, F. Krzakala, and J. Kurchan, “Jamming versus glass transitions,” Physical review letters, vol. 103, no. 2, p. 025701, 2009. [119] G. Barkema and N. Mousseau, “Event-based relaxation of continuous disordered systems,” Physical review letters, vol. 77, no. 21, p. 4358, 1996. [120] D. Rodney and C. Schuh, “Distribution of thermally activated plastic events in a flowing glass,” Physical review letters, vol. 102, no. 23, p. 235503, 2009. [121] C. Liu, P. Guan, and Y. Fan, “Correlating defects density in metallic glasses with the distribution of inherent structures in potential energy landscape,” Acta Materialia, vol. 161, pp. 295–301, 2018. [122] A. Cottrell, “The nabarro equation for thermally activated plastic glide,” Philosophical Magazine, vol. 86, no. 25-26, pp. 3811–3817, 2006. [123] W.-M. Choi, Y. H. Jo, S. S. Sohn, S. Lee, and B.-J. Lee, “Understanding the physical metallurgy of the cocrfemnni high-entropy alloy: an atomistic simulation study,” Npj Comput. Mater., vol. 4, no. 1, pp. 1–9, 2018. [124] B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie, “A fracture-resistant high-entropy alloy for cryogenic applications,” Science, vol. 345, no. 6201, pp. 1153–1158, 2014. [125] M. L. Falk and J. S. Langer, “Dynamics of viscoplastic deformation in amorphous solids,” Phys. Rev. E, vol. 57, no. 6, p. 7192, 1998. [126] R. Balluffi, “Structure and properties of point defects in grain boundaries in metals,” Le Journal de Physique Colloques, vol. 43, no. C6, pp. C6–71, 1982. [127] J. P. Snyder and P. M. Voxland, An album of map projections. US Government Printing Office, 1989. [128] G. Marsaglia, “Choosing a point from the surface of a sphere,” Ann. Math. Stat., vol. 43, no. 2, pp. 645–646, 1972. [129] M. J. Buerger, Elementary Crystallography: An Introduction to the Fundamental Geo-metric Features of Crystals. Cambridge: The MIT Press, 1978. [130] T. Ogawa, “Problems in a digital description of a configuration of atoms and some other geometrical topics in physics,” in Topological Disorder in Condensed Matter (F. Yonezawa and T. Ninomiya, eds.), Berlin: Springer, 1983. [131] G.-R. Huang, Y. Wang, C. Do, L. Porcar, Y. Shinohara, T. Egami, and W.-R. Chen, “Determining gyration tensor of orienting macromolecules through their scattering signature,” J. Phys. Chem. Lett., vol. 10, no. 14, pp. 3978–3984, 2019.
|