帳號:guest(3.147.55.155)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):阿肖克
作者(外文):Ashok Ranjan
論文名稱(中文):鈦酸鉍鈉基壓電催化材料在染料降解和產氫之研究
論文名稱(外文):BNT (Bi1/2Na1/2TiO3) Based Piezocatalysts for Dye Degradation and Hydrogen Production
指導教授(中文):呂明諺
指導教授(外文):Lu, Ming-Yen
口試委員(中文):闕郁倫
吳志明
郭春紅
林彥谷
口試委員(外文):Chueh, Yu-Lun
Wu, Jyh-Ming
Kuo, Chun-Hong
Lin, Yan-Gu
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031891
出版年(民國):111
畢業學年度:111
語文別:英文
論文頁數:127
中文關鍵詞:有限元素法產氫反應氧空缺水分解壓電催化劑鈦酸鉍鈉染料降解鐵酸鉍多鐵性
外文關鍵詞:finite element methodpiezocatalysthydrogen evolutionoxygen vacancywater splittingBi1/2Na1/2TiO3dye degradationBiFeO3multiferroics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:236
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
壓電材料在乾淨能源和環境廢水處理的應用中都已展現了充分的催化能力。本研究中,我們使用溶膠-凝膠法合成各種尺寸的菱形晶系 R3c 無鉛鈦酸鉍鈉 (BNT) 顆粒。當我們將BNT用作水分解產氫的壓電催化劑時,BNT 材料能夠達到相當高的產氫效率(高達 506.70 µmol g–1 h–1);這些壓電催化劑也能有效地降解亞甲藍有機汙染物(MB, k = 0.039 min-1),這表明了它們在污染水處理的應用上具有相當的潛力。
接著,我們摻雜了鐵酸鉍 (BiFeO3) 磁性材料在BNT 基材中,並利用其多鐵特性進一步增益 BNT 基壓電催化劑的壓電催化活性。而BFO的摻雜並不會影響BNT基材本身的結構。其中,BNT-BF 0.4在所有的BNT-BF組成中表現出了最高的產率(高達 1451.74 µmol g-1h-1)。

最後,我們發現壓電場會導致半導體中的能帶傾斜並輔助電荷的轉移,進而抑制載子複合以增加產氫效率。因此,材料的氧空缺、顆粒尺寸和促使電子-電洞對分離的內部電場在壓電催化效率的增益機制上都扮演了重要的角色。
Piezoelectric materials have demonstrated applicability in clean energy production and environmental wastewater remediation through their ability to initiate a number of catalytic reactions. In this study, we used a sol–gel method to synthesize lead-free rhombohedral R3c bismuth sodium titanate (BNT) particles with different sizes. When used as a piezocatalyst to generate H2 through water splitting, the BNT samples provided high production rates of up to 506.70 µmol g–1 h–1; These piezocatalysts also degraded the organic pollutant, methylene blue (MB) with high efficiency (up to k = 0.039 min–1), suggesting their potential to treat polluted water.
Next, we introduced bismuth ferrite (BiFeO3, BFO), the magnetic material, into BNT matrix to further enhance the piezocatalytic activities of the BNT-based piezocatalyst by the assistance of multiferroic nature of the catalyst. The 0.4 BFO-BNT provided highest H2 production rate of up to 1451.74 µmol g-1h-1 among the BFO-BNT with other doping concentrations. Importantly, we found that the piezopotential causes band bending in the semiconductor and aids charge transfer, such that recombination of carriers is suppressed and the rate of H2 production increases. The mechanism of piezoelectric catalysis involved oxygen vacancies, the size of the catalyst, and the internal electric field playing important roles to enhance electron–hole separation which further enhanced the catalysis reactions.
摘要 i
Abstract ii
Table of Contents iii
List of Figures v
List of Tables xi
Acknowledgements xii
Chapter 1 1
Introduction and Literature review 1
1.1 Background 2
1.2 Piezoelectricity 3
1.3 Piezocatalysis 4
1.4 Types of Mechanical Energy in Piezocatalysis: 7
1.4.1 Ultrasonic Cavitation 9
1.4.2 Vortex-induced Shearing force 10
1.4.3 Physical bending 12
1.5 Ferroelectricity 13
1.5.1 Origin of Ferroelectricity 14
1.5.2 Crystallographic Consideration of Ferroelectrics 15
1.5.3 Some Important Ferroelectric Materials 16
1.5.4 Barium Titanate 17
1.5.5 Lead Zirconate Titanate 17
1.5.6 Bismuth layer Structured Ferroelectrics 18
1.6 Relaxor ferroelectrics 18
1.7 Relaxor versus normal ferroelectric 19
1.8 Literature Review 19
Chapter 2 44
Motivation & Objective 44
2.1 (Bi1/2Na1/2)TiO3 System 45
2.2 The objective of proposed work 48
2.3 Synopsis of thesis 49
Chapter-3 50
Experimental Methods, Characterizations Tools and their Principles 50
3.1 Synthesis of Piezoelectric Catalyst 51
3.1.1 Sol-Gel Synthesis of Bi1/2Na1/2TiO3 51
3.1.2 Sol-Gel Synthesis of Bi1/2Na1/2TiO3-BiFeO3 52
3.2 Characterization of Piezoelectric Catalyst 53
3.2.1 Structural and morphology characterization 53
3.2.1.1 X-Ray Diffractometer (XRD) 53
3.2.1.2 Scanning Electron Microscopy (SEM) 54
3.2.1.3 Raman Spectroscopy 55
3.2.1.5 X-ray Photoelectron Spectroscopy 57
3.2.1.6 Transmission Electron Microscopy 58
3.2.1.7 The Brunauer-Emmett-Teller Measurement 59
3.2.1.8 UV-Visible Spectroscopy 60
3.2.1.9 Fluorescence Spectroscopy 61
3.2.1.10 Gas Chromatography 62
3.2.1.11 EPR Spectroscopy 63
3.3 Hydrogen Production Experiments 64
3.3.1 Piezo-catalytic Hydrogen Production of Bi1/2Na1/2TiO3 64
3.3.2 Piezo-catalytic Dye Degradation of Methylene Blue 64
3.4 Theoretical Simulation using Finite Element Method 64
Chapter 4 68
Enhanced Piezocatalytic Activity in Bi1/2Na1/2TiO3 for Water Splitting by Oxygen Vacancy Engineering 68
4.1 Introduction 69
4.2 Results and Discussion 71
4.3 Conclusions 90
Chapter 5 91
Enhancement of Piezocatalytic activity in lead-free multiferroic multicatalytic BNT perovskite for water splitting by bismuth ferrite doping 91
5.1 Introduction 92
5.2 Results and Discussion: 94
5.3 Conclusion 110
Chapter 6 111
Future Perspective 111
Chapter 7 114
References 114
Publications 125
Publications in Progress 126
International Conferences 127
(1) Jona, F.; Shirane, G. Ferroelectric Crystals; Dover books on engineering; Dover Publications, 1993.
(2) Kim, H.-P.; Kang, W.-S.; Hong, C.-H.; Lee, G.-J.; Choi, G.; Ryu, J.; Jo, W. Piezoelectrics. In Advanced Ceramics for Energy Conversion and Storage; Elsevier, 2020; pp 157–206.
(3) Hong, K.-S.; Xu, H.; Konishi, H.; Li, X. Direct Water Splitting Through Vibrating Piezoelectric Microfibers in Water. J. Phys. Chem. Lett. 2010, 1, 997–1002.
(4) Economou, E. N. The Physics of Solids; 2014; Vol. 58.
(5) Gao, Y.; Wang, Z. L. Electrostatic Potential in a Bent Piezoelectric Nanowire. The Fundamental Theory of Nanogenerator and Nanopiezotronics. Nano Lett. 2007, 7, 2499–2505.
(6) Starr, M. B.; Wang, X. Coupling of Piezoelectric Effect with Electrochemical Processes. Nano Energy 2015, 14, 296–311.
(7) German, L. N.; Starr, M. B.; Wang, X. Computation of Electronic Energy Band Diagrams for Piezotronic Semiconductor and Electrochemical Systems. Adv. Electron. Mater. 2018, 4, 1700395.
(8) Gao, Y.; Wang, Z. L. Equilibrium Potential of Free Charge Carriers in a Bent Piezoelectric Semiconductive Nanowire. Nano Lett. 2009, 9, 1103–1110.
(9) Tiersten, H. F. Linear Piezoelectric Plate Vibrations; Springer US: Boston, MA, 1969.
(10) Wang, Y.; Wen, X.; Jia, Y.; Huang, M.; Wang, F.; Zhang, X.; Bai, Y.; Yuan, G.; Wang, Y. Piezo-Catalysis for Nondestructive Tooth Whitening. Nat. Commun. 2020, 11, 1328.
(11) Flint, E. B.; Suslick, K. S. The Temperature of Cavitation. Science 1991, 253 (5026), 1397–1399.
(12) Wu, J.; Xu, Q.; Lin, E.; Yuan, B.; Qin, N.; Thatikonda, S. K.; Bao, D. Insights into the Role of Ferroelectric Polarization in Piezocatalysis of Nanocrystalline BaTiO 3. ACS Appl. Mater. Interfaces 2018, 10, 17842–17849.
(13) Junger, M. C.; Feit, D. Sound, Structures, and Their Interaction; MIT Press, 1986.
(14) Wang, Z. L. Catch Wave Power in Floating Nets. Nature 2017, 542 (7640), 159–160.
(15) Massey, B. S.; Ward-Smith, J. Mechanics of Fluids; CRC Press, 2018.
(16) Feng, Y.; Li, H.; Ling, L.; Yan, S.; Pan, D.; Ge, H.; Li, H.; Bian, Z. Enhanced Photocatalytic Degradation Performance by Fluid-Induced Piezoelectric Field. Environ. Sci. Technol. 2018, 52 , 7842–7848.
(17) Zhang, L.; Zhu, D.; He, H.; Wang, Q.; Xing, L.; Xue, X. Enhanced Piezo/Solar-Photocatalytic Activity of Ag/ZnO Nanotetrapods Arising from the Coupling of Surface Plasmon Resonance and Piezophototronic Effect. J. Phys. Chem. Solids 2017, 102 , 27–33.
(18) Pletcher, D. A First Course in Electrode Processes; The Royal Society of Chemistry, 2009.
(19) Guo, L.; Zhong, C.; Cao, J.; Hao, Y.; Lei, M.; Bi, K.; Sun, Q.; Wang, Z. L. Enhanced Photocatalytic H2 Evolution by Plasmonic and Piezotronic Effects Based on Periodic Al/BaTiO3 Heterostructures. Nano Energy 2019, 62, 513–520.
(20) Covaci, C.; Gontean, A. Piezoelectric Energy Harvesting Solutions: A Review. Sensors 2020, 20, 3512.
(21) Panda, P. K. Review: Environmental Friendly Lead-Free Piezoelectric Materials. J. Mater. Sci. 2009, 44, 5049–5062.
(22) Cohen, R. E. Origin of Ferroelectricity in Perovskite Oxides. Nature 1992, 358, 136–138.
(23) Damjanovic, D. Ferroelectric, Dielectric and Piezoelectric Properties of Ferroelectric Thin Films and Ceramics. Reports Prog. Phys. 1998, 61, 1267–1324.
(24) Shirane, G.; Jona, F.; Pepinsky, R. Some Aspects of Ferroelectricity. Proc. IRE 1955, 43, 1738–1793.
(25) Topolov, V. Y.; Turik, A. V. Crystallographic Aspects of Interfaces in Ferroelectrics. Defect Diffus. Forum 1995, 123–124, 31–50.
(26) Zheludev, I. S. Ferroelectricity and Symmetry. In Solid State Physics; Ehrenreich, H., Seitz, F., Turnbull, D., Eds.; Solid State Physics; Academic Press, 1971; Vol. 26, pp 429–464.
(27) Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G. A.; Rödel, J. BaTiO 3 -Based Piezoelectrics: Fundamentals, Current Status, and Perspectives. Appl. Phys. Rev. 2017, 4, 041305.
(28) Hao, X.; Zhai, J.; Kong, L. B.; Xu, Z. A Comprehensive Review on the Progress of Lead Zirconate-Based Antiferroelectric Materials. Prog. Mater. Sci. 2014, 63, 1–57.
(29) Takenaka, T.; Gotoh, T.; Mutoh, S.; Sasaki, T. A New Series of Bismuth Layer-Structured Ferroelectrics. Jpn. J. Appl. Phys. 1995, 34 (Part 1, No. 9B), 5384–5388.
(30) Uchino, K. Relaxor Ferroelectric-Based Ceramics. In Advanced Piezoelectric Materials; Elsevier, 2010; pp 111–129.
(31) Zhang, L.-L.; Huang, Y.-N. Theory of Relaxor-Ferroelectricity. Sci. Rep. 2020, 10, 5060.
(32) Ahn, C. W.; Hong, C.-H.; Choi, B.-Y.; Kim, H.-P.; Han, H.-S.; Hwang, Y.; Jo, W.; Wang, K.; Li, J.-F.; Lee, J.-S.; et al. A Brief Review on Relaxor Ferroelectrics and Selected Issues in Lead-Free Relaxors. J. Korean Phys. Soc. 2016, 68, 1481–1494.
(33) Zhou, X.; Xue, G.; Luo, H.; Bowen, C. R.; Zhang, D. Phase Structure and Properties of Sodium Bismuth Titanate Lead-Free Piezoelectric Ceramics. Prog. Mater. Sci. 2021, 122, 100836.
(34) Yu, C.; Tan, M.; Li, Y.; Liu, C.; Yin, R.; Meng, H.; Su, Y.; Qiao, L.; Bai, Y. Ultrahigh Piezocatalytic Capability in Eco-Friendly BaTiO3 Nanosheets Promoted by 2D Morphology Engineering. J. Colloid Interface Sci. 2021, 596, 288–296.
(35) Nie, Q.; Xie, Y.; Ma, J.; Wang, J.; Zhang, G. High Piezo–Catalytic Activity of ZnO/Al2O3 Nanosheets Utilizing Ultrasonic Energy for Wastewater Treatment. J. Clean. Prod. 2020, 242, 118532.
(36) Lun, M.; Zhou, X.; Hu, S.; Hong, Y.; Wang, B.; Yao, A.; Li, W.; Chu, B.; He, Q.; Cheng, J.; et al. Ferroelectric K0.5Na0.5NbO3 Catalysts for Dye Wastewater Degradation. Ceram. Int. 2021, 47, 28797–28805.
(37) Xu, X.; Wu, Z.; Xiao, L.; Jia, Y.; Ma, J.; Wang, F.; Wang, L.; Wang, M.; Huang, H. Strong Piezo-Electro-Chemical Effect of Piezoelectric BaTiO3 Nanofibers for Vibration-Catalysis. J. Alloys Compd. 2018, 762, 915–921.
(38) Wu, J.; Qin, N.; Bao, D. Effective Enhancement of Piezocatalytic Activity of BaTiO3 Nanowires under Ultrasonic Vibration. Nano Energy 2018, 45, 44–51.
(39) Jin, C.; Liu, D.; Hu, J.; Wang, Y.; Zhang, Q.; Lv, L.; Zhuge, F. The Role of Microstructure in Piezocatalytic Degradation of Organic Dye Pollutants in Wastewater. Nano Energy 2019, 59, 372–379.
(40) Liu, D.; Song, Y.; Xin, Z.; Liu, G.; Jin, C.; Shan, F. High-Piezocatalytic Performance of Eco-Friendly (Bi1/2Na1/2)TiO3-Based Nanofibers by Electrospinning. Nano Energy 2019, 65, 104024.
(41) Zhou, X.; Sun, Q.; Zhai, D.; Xue, G.; Luo, H.; Zhang, D. Excellent Catalytic Performance of Molten-Salt-Synthesized Bi0.5Na0.5TiO3 Nanorods by the Piezo-Phototronic Coupling Effect. Nano Energy 2021, 84, 105936.
(42) Zhu, M.; Li, S.; Zhang, H.; Gao, J.; Kwok, K. W.; Jia, Y.; Kong, L.-B.; Zhou, W.; Peng, B. Diffused Phase Transition Boosted Dye Degradation with Ba (ZrxTi1−x)O3 Solid Solutions through Piezoelectric Effect. Nano Energy 2021, 89, 106474.
(43) Xu, X.; Lin, X.; Yang, F.; Huang, S.; Cheng, X. Piezo-Photocatalytic Activity of Bi 0.5 Na 0.5 TiO 3 @TiO 2 Composite Catalyst with Heterojunction for Degradation of Organic Dye Molecule. J. Phys. Chem. C 2020, 124, 24126–24134.
(44) Lan, S.; Feng, J.; Xiong, Y.; Tian, S.; Liu, S.; Kong, L. Performance and Mechanism of Piezo-Catalytic Degradation of 4-Chlorophenol: Finding of Effective Piezo-Dechlorination. Environ. Sci. Technol. 2017, 51, 6560–6569.
(45) Yuan, B.; Wu, J.; Qin, N.; Lin, E.; Bao, D. Enhanced Piezocatalytic Performance of (Ba,Sr)TiO 3 Nanowires to Degrade Organic Pollutants. ACS Appl. Nano Mater. 2018, 1, 5119–5127.
(46) Jiang, X.; Wang, H.; Wang, X.; Yuan, G. Synergetic Effect of Piezoelectricity and Ag Deposition on Photocatalytic Performance of Barium Titanate Perovskite. Sol. Energy 2021, 224, 455–461.
(47) Chen, L.; Jia, Y.; Zhao, J.; Ma, J.; Wu, Z.; Yuan, G.; Cui, X. Strong Piezocatalysis in Barium Titanate/Carbon Hybrid Nanocomposites for Dye Wastewater Decomposition. J. Colloid Interface Sci. 2021, 586, 758–765.
(48) Wu, J.; Wang, W.; Tian, Y.; Song, C.; Qiu, H.; Xue, H. Piezotronic Effect Boosted Photocatalytic Performance of Heterostructured BaTiO3/TiO2 Nanofibers for Degradation of Organic Pollutants. Nano Energy 2020, 77, 105122.
(49) Zhang, A.; Liu, Z.; Xie, B.; Lu, J.; Guo, K.; Ke, S.; Shu, L.; Fan, H. Vibration Catalysis of Eco-Friendly Na0.5K0.5NbO3-Based Piezoelectric: An Efficient Phase Boundary Catalyst. Appl. Catal. B Environ. 2020, 279, 119353.
(50) Dai, J.; Shao, N.; Zhang, S.; Zhao, Z.; Long, Y.; Zhao, S.; Li, S.; Zhao, C.; Zhang, Z.; Liu, W. Enhanced Piezocatalytic Activity of Sr 0.5 Ba 0.5 Nb 2 O 6 Nanostructures by Engineering Surface Oxygen Vacancies and Self-Generated Heterojunctions. ACS Appl. Mater. Interfaces 2021, 13, 7259–7267.
(51) Yu, D.; Liu, Z.; Zhang, J.; Li, S.; Zhao, Z.; Zhu, L.; Liu, W.; Lin, Y.; Liu, H.; Zhang, Z. Enhanced Catalytic Performance by Multi-Field Coupling in KNbO3 Nanostructures: Piezo-Photocatalytic and Ferro-Photoelectrochemical Effects. Nano Energy 2019, 58, 695–705.
(52) Liu, D.; Song, Y.; Xin, Z.; Liu, G.; Jin, C.; Shan, F. High-Piezocatalytic Performance of Eco-Friendly (Bi1/2Na1/2)TiO3-Based Nanofibers by Electrospinning. Nano Energy 2019, 65, 104024.
(53) Zhao, Z.; Wei, L.; Li, S.; Zhu, L.; Su, Y.; Liu, Y.; Bu, Y.; Lin, Y.; Liu, W.; Zhang, Z. Exclusive Enhancement of Catalytic Activity in Bi 0.5 Na 0.5 TiO 3 Nanostructures: New Insights into the Design of Efficient Piezocatalysts and Piezo-Photocatalysts. J. Mater. Chem. A 2020, 8, 16238–16245.
(54) Zhou, X.; Sun, Q.; Zhai, D.; Xue, G.; Luo, H.; Zhang, D. Excellent Catalytic Performance of Molten-Salt-Synthesized Bi0.5Na0.5TiO3 Nanorods by the Piezo-Phototronic Coupling Effect. Nano Energy 2021, 84, 105936.
(55) Jia, S.; Su, Y.; Zhang, B.; Zhao, Z.; Li, S.; Zhang, Y.; Li, P.; Xu, M.; Ren, R. Few-Layer MoS 2 Nanosheet-Coated KNbO 3 Nanowire Heterostructures: Piezo-Photocatalytic Effect Enhanced Hydrogen Production and Organic Pollutant Degradation. Nanoscale 2019, 11, 7690–7700.
(56) You, H.; Wu, Z.; Zhang, L.; Ying, Y.; Liu, Y.; Fei, L.; Chen, X.; Jia, Y.; Wang, Y.; Wang, F.; et al. Harvesting the Vibration Energy of BiFeO 3 Nanosheets for Hydrogen Evolution. Angew. Chemie Int. Ed. 2019, 58, 11779–11784.
(57) Xu, X.; Xiao, L.; Wu, Z.; Jia, Y.; Ye, X.; Wang, F.; Yuan, B.; Yu, Y.; Huang, H.; Zou, G. Harvesting Vibration Energy to Piezo-Catalytically Generate Hydrogen through Bi2WO6 Layered-Perovskite. Nano Energy 2020, 78, 105351.
(58) Su, R.; Hsain, H. A.; Wu, M.; Zhang, D.; Hu, X.; Wang, Z.; Wang, X.; Li, F.; Chen, X.; Zhu, L.; et al. Nano‐Ferroelectric for High Efficiency Overall Water Splitting under Ultrasonic Vibration. Angew. Chemie Int. Ed. 2019, 58, 15076–15081.
(59) Sun, Y.; Li, X.; Vijayakumar, A.; Liu, H.; Wang, C.; Zhang, S.; Fu, Z.; Lu, Y.; Cheng, Z. Hydrogen Generation and Degradation of Organic Dyes by New Piezocatalytic 0.7BiFeO 3 –0.3BaTiO 3 Nanoparticles with Proper Band Alignment. ACS Appl. Mater. Interfaces 2021, 13, 11050–11057.
(60) Li, S.; Zhao, Z.; Yu, D.; Zhao, J.-Z.; Su, Y.; Liu, Y.; Lin, Y.; Liu, W.; Xu, H.; Zhang, Z. Few-Layer Transition Metal Dichalcogenides (MoS2, WS2, and WSe2) for Water Splitting and Degradation of Organic Pollutants: Understanding the Piezocatalytic Effect. Nano Energy 2019, 66, 104083.
(61) Smolensky, G. A. New Ferroelectrics of Complex Composition. Sov Phys Solid State 1961, 2, 2651–2654.
(62) Alexe, M.; Gruverman, A. Nanoscale Characterisation of Ferroelectric Materials: Scanning Probe Microscopy Approach; NanoScience and Technology; Springer Berlin Heidelberg, 2013.
(63) Alexe, M.; Harnagea, C.; Hesse, D. Non-Conventional Micro- and Nanopatterning Techniques for Electroceramics. J. Electroceramics 2004, 12, 69–88.
(64) Beccat, P.; Da Silva, P.; Huiban, Y.; Kasztelan, S. Quantitative Surface Analysis by Xps (X-Ray Photoelectron Spectroscopy): Application to Hydrotreating Catalysts. Oil Gas Sci. Technol. 1999, 54, 487–496.
(65) Qian, W.; Yang, W.; Zhang, Y.; Bowen, C. R.; Yang, Y. Piezoelectric Materials for Controlling Electro-Chemical Processes. Nano-Micro Lett. 2020, 12, 149.
(66) Sirohi, J.; Chopra, I. Fundamental Understanding of Piezoelectric Strain Sensors. J. Intell. Mater. Syst. Struct. 2000, 11, 246–257.
(67) Fenu, N. G.; Giles-Donovan, N.; Sadiq, M. R.; Cochran, S. Full Set of Material Properties of Lead-Free PIC 700 for Transducer Designers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 1797–1807.
(68) Pardo, L.; García, Á.; Schubert, F.; Kynast, A.; Scholehwar, T.; Jacas, A.; Bartolomé, J. F. Determination of the PIC700 Ceramic’s Complex Piezo-Dielectric and Elastic Matrices from Manageable Aspect Ratio Resonators. Materials. 2021, 14, 4076.
(69) Lo, V. C.; Chen, Z. J. Numerical Simulation of the Effects of Space Charge and Schottky Barrier on Ferroelectric Thin Films. In ISAF 2000. Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics. IEEE, 2001; Vol. 2, pp 687–690.
(70) Lu, S.; Zhang, X.; Xue, Y. Application of Calcium Peroxide in Water and Soil Treatment: A Review. J. Hazard. Mater. 2017, 337, 163–177.
(71) Duarte, F.; Maldonado-Hódar, F. J.; Madeira, L. M. New Insight about Orange II Elimination by Characterization of Spent Activated Carbon/Fe Fenton-like Catalysts. Appl. Catal. B Environ. 2013, 129, 264–272.
(72) Warang, T.; Patel, N.; Fernandes, R.; Bazzanella, N.; Miotello, A. Co3O4 Nanoparticles Assembled Coatings Synthesized by Different Techniques for Photo-Degradation of Methylene Blue Dye. Appl. Catal. B Environ. 2013, 132–133, 204–211.
(73) Lin, J.-H.; Tsao, Y.-H.; Wu, M.-H.; Chou, T.-M.; Lin, Z.-H.; Wu, J. M. Single- and Few-Layers MoS 2 Nanocomposite as Piezo-Catalyst in Dark and Self-Powered Active Sensor. Nano Energy 2017, 31, 575–581.
(74) Li, J.; Cai, L.; Shang, J.; Yu, Y.; Zhang, L. Giant Enhancement of Internal Electric Field Boosting Bulk Charge Separation for Photocatalysis. Adv. Mater. 2016, 28, 4059–4064.
(75) Li, H.; Sang, Y.; Chang, S.; Huang, X.; Zhang, Y.; Yang, R.; Jiang, H.; Liu, H.; Wang, Z. L. Enhanced Ferroelectric-Nanocrystal-Based Hybrid Photocatalysis by Ultrasonic-Wave-Generated Piezophototronic Effect. Nano Lett. 2015, 15, 2372–2379.
(76) Xue, X.; Zang, W.; Deng, P.; Wang, Q.; Xing, L.; Zhang, Y.; Wang, Z. L. Piezo-Potential Enhanced Photocatalytic Degradation of Organic Dye Using ZnO Nanowires. Nano Energy 2015, 13, 414–422.
(77) Starr, M. B.; Shi, J.; Wang, X. Piezopotential-Driven Redox Reactions at the Surface of Piezoelectric Materials. Angew. Chemie Int. Ed. 2012, 51, 5962–5966.
(78) Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Nano-Photocatalytic Materials: Possibilities and Challenges. Adv. Mater. 2012, 24, 229–251.
(79) Lin, Y.; Lai, S.; Wu, J. M. Simultaneous Piezoelectrocatalytic Hydrogen‐Evolution and Degradation of Water Pollutants by Quartz Microrods@Few‐Layered MoS 2 Hierarchical Heterostructures. Adv. Mater. 2020, 32, 2002875.
(80) Fuso Nerini, F.; Tomei, J.; To, L. S.; Bisaga, I.; Parikh, P.; Black, M.; Borrion, A.; Spataru, C.; Castán Broto, V.; Anandarajah, G.; et al. Mapping Synergies and Trade-Offs between Energy and the Sustainable Development Goals. Nat. Energy 2018, 3, 10–15.
(81) Tee, S. Y.; Win, K. Y.; Teo, W. S.; Koh, L.-D.; Liu, S.; Teng, C. P.; Han, M.-Y. Recent Progress in Energy-Driven Water Splitting. Adv. Sci. 2017, 4, 1600337.
(82) Chen, J.; Wu, X.-J.; Yin, L.; Li, B.; Hong, X.; Fan, Z.; Chen, B.; Xue, C.; Zhang, H. One-Pot Synthesis of CdS Nanocrystals Hybridized with Single-Layer Transition-Metal Dichalcogenide Nanosheets for Efficient Photocatalytic Hydrogen Evolution. Angew. Chemie 2015, 127, 1226–1230.
(83) Zong, X.; Han, J.; Ma, G.; Yan, H.; Wu, G.; Li, C. Photocatalytic H 2 Evolution on CdS Loaded with WS 2 as Cocatalyst under Visible Light Irradiation. J. Phys. Chem. C 2011, 115, 12202–12208.
(84) Liu, Y.; Yu, G.; Li, G.-D.; Sun, Y.; Asefa, T.; Chen, W.; Zou, X. Coupling Mo 2 C with Nitrogen-Rich Nanocarbon Leads to Efficient Hydrogen-Evolution Electrocatalytic Sites. Angew. Chemie 2015, 127, 10902–10907.
(85) Liao, L.; Wang, S.; Xiao, J.; Bian, X.; Zhang, Y.; Scanlon, M. D.; Hu, X.; Tang, Y.; Liu, B.; Girault, H. H. A Nanoporous Molybdenum Carbide Nanowire as an Electrocatalyst for Hydrogen Evolution Reaction. Energy Environ. Sci. 2014, 7, 387–392.
(86) Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-Metal Nanostructures for Efficient Conversion of Solar to Chemical Energy. Nat. Mater. 2011, 10, 911–921.
(87) Wu, J. M.; Chen, Y.-R.; Kao, W. T. Ultrafine ZnO Nanoparticles/Nanowires Synthesized on a Flexible and Transparent Substrate: Formation, Water Molecules, and Surface Defect Effects. ACS Appl. Mater. Interfaces 2014, 6, 487–494.
(88) Chai, Z.; Zeng, T.-T.; Li, Q.; Lu, L.-Q.; Xiao, W.-J.; Xu, D. Efficient Visible Light-Driven Splitting of Alcohols into Hydrogen and Corresponding Carbonyl Compounds over a Ni-Modified CdS Photocatalyst. J. Am. Chem. Soc. 2016, 138, 10128–10131.
(89) He, H.; Lin, J.; Fu, W.; Wang, X.; Wang, H.; Zeng, Q.; Gu, Q.; Li, Y.; Yan, C.; Tay, B. K.; et al. MoS 2 /TiO 2 Edge-On Heterostructure for Efficient Photocatalytic Hydrogen Evolution. Adv. Energy Mater. 2016, 6, 1600464.
(90) Yilmaz, G.; Yang, T.; Du, Y.; Yu, X.; Feng, Y. P.; Shen, L.; Ho, G. W. Stimulated Electrocatalytic Hydrogen Evolution Activity of MOF‐Derived MoS 2 Basal Domains via Charge Injection through Surface Functionalization and Heteroatom Doping. Adv. Sci. 2019, 6, 1900140.
(91) Yang, M.-Q.; Gao, M.; Hong, M.; Ho, G. W. Visible-to-NIR Photon Harvesting: Progressive Engineering of Catalysts for Solar-Powered Environmental Purification and Fuel Production. Adv. Mater. 2018, 30, 1802894.
(92) Lee, G.-C.; Lyu, L.-M.; Hsiao, K.-Y.; Huang, Y.-S.; Perng, T.-P.; Lu, M.-Y.; Chen, L.-J. Induction of a Piezo-Potential Improves Photocatalytic Hydrogen Production over ZnO/ZnS/MoS2 Heterostructures. Nano Energy 2022, 93, 106867.
(93) Huang, Y.-J.; Lyu, L.-M.; Lin, C.-Y.; Lee, G.-C.; Hsiao, K.-Y.; Lu, M.-Y. Improved Mass-Transfer Enhances Photo-Driven Dye Degradation and H 2 Evolution over a Few-Layer WS 2 /ZnO Heterostructure. ACS Omega 2022, 7, 2217–2223.
(94) Lee, Y.; Lyu, L.; Lu, M. In‐Situ Observation of the Formation of NiSi/Ni 2 Si Heterojunction in SiGe Nanowire with Al 2 O 3 Diffusion Barrier Layer. Adv. Mater. Interfaces 2021, 8, 2100422.
(95) Zhu, L.; Ding, T.; Gao, M.; Peh, C. K. N.; Ho, G. W. Shape Conformal and Thermal Insulative Organic Solar Absorber Sponge for Photothermal Water Evaporation and Thermoelectric Power Generation. Adv. Energy Mater. 2019, 9, 1900250.
(96) Hu, C.; Huang, H.; Chen, F.; Zhang, Y.; Yu, H.; Ma, T. Coupling Piezocatalysis and Photocatalysis in Bi 4 NbO 8 X (X = Cl, Br) Polar Single Crystals. Adv. Funct. Mater. 2020, 30, 1908168.
(97) Meng, F. L.; Yilmaz, G.; Ding, T. P.; Gao, M.; Ho, G. W. A Hybrid Solar Absorber–Electrocatalytic N‐Doped Carbon/Alloy/Semiconductor Electrode for Localized Photothermic Electrocatalysis. Adv. Mater. 2019, 31, 1903605.
(98) Hong, D.; Zang, W.; Guo, X.; Fu, Y.; He, H.; Sun, J.; Xing, L.; Liu, B.; Xue, X. High Piezo-Photocatalytic Efficiency of CuS/ZnO Nanowires Using Both Solar and Mechanical Energy for Degrading Organic Dye. ACS Appl. Mater. Interfaces 2016, 8, 21302–21314.
(99) Chen, F.; Huang, H.; Guo, L.; Zhang, Y.; Ma, T. The Role of Polarization in Photocatalysis. Angew. Chemie Int. Ed. 2019, 58, 10061–10073.
(100) Liu, H.; Ren, W.; Zhao, J.; Zhao, H.; Wu, X.; Shi, P.; Zhou, Q.; Shung, K. K. Design and Fabrication of High Frequency BNT Film Based Linear Array Transducer. Ceram. Int. 2015, 41, S631–S637.
(101) Zhang, S.; Sahin, H.; Torun, E.; Peeters, F.; Martien, D.; DaPron, T.; Dilley, N.; Newman, N. Fundamental Mechanisms Responsible for the Temperature Coefficient of Resonant Frequency in Microwave Dielectric Ceramics. J. Am. Ceram. Soc. 2017, 100, 1508–1516.
(102) Kreisel, J.; Glazer, A. M.; Bouvier, P.; Lucazeau, G. High-Pressure Raman Study of a Relaxor Ferroelectric: The Na1/2Bi1/2TiO3 perovskite. Phys. Rev. B 2001, 63, 174106.
(103) Mudinepalli, V. R.; Feng, L.; Lin, W.-C.; Murty, B. S. Effect of Grain Size on Dielectric and Ferroelectric Properties of Nanostructured Ba0.8Sr0.2TiO3 Ceramics. J. Adv. Ceram. 2015, 4, 46–53.
(104) D. E., J. R.; Rahman, R. A. U.; B., S.; Ramaswamy, M. Room Temperature Multiferroicity and Magnetoelectric Coupling in Na-Deficient Sodium Bismuth Titanate. Appl. Phys. Lett. 2019, 114, 062902.
(105) Wang, P.; Li, X.; Fan, S.; Chen, X.; Qin, M.; Long, D.; Tadé, M. O.; Liu, S. Impact of Oxygen Vacancy Occupancy on Piezo-Catalytic Activity of BaTiO3 Nanobelt. Appl. Catal. B Environ. 2020, 279, 119340.
(106) Bai, Y.; Zhao, J.; Lv, Z.; Lu, K. Enhanced Piezocatalytic Performance of ZnO Nanosheet Microspheres by Enriching the Surface Oxygen Vacancies. J. Mater. Sci. 2020, 55, 14112–14124.
(107) Yu, X.; Hu, C.; Ji, P.; Ren, Y.; Zhao, H.; Liu, G.; Xu, R.; Zhu, X.; Li, Z.; Ma, Y.; et al. Optically Transparent Ultrathin NiCo Alloy Oxide Film: Precise Oxygen Vacancy Modulation and Control for Enhanced Electrocatalysis of Water Oxidation. Appl. Catal. B Environ. 2022, 310, 121301.
(108) Hong, K.-S.; Xu, H.; Konishi, H.; Li, X. Piezoelectrochemical Effect: A New Mechanism for Azo Dye Decolorization in Aqueous Solution through Vibrating Piezoelectric Microfibers. J. Phys. Chem. C 2012, 116, 13045–13051.
(109) Liu, D.; Jin, C.; Shan, F.; He, J.; Wang, F. Synthesizing BaTiO 3 Nanostructures to Explore Morphological Influence, Kinetics, and Mechanism of Piezocatalytic Dye Degradation. ACS Appl. Mater. Interfaces 2020, 12, 17443–17451.
(110) Ma, J.; Ren, J.; Jia, Y.; Wu, Z.; Chen, L.; Haugen, N. O.; Huang, H.; Liu, Y. High Efficiency Bi-Harvesting Light/Vibration Energy Using Piezoelectric Zinc Oxide Nanorods for Dye Decomposition. Nano Energy 2019, 62, 376–383.
(111) Lin, E.; Wu, J.; Qin, N.; Yuan, B.; Bao, D. Silver Modified Barium Titanate as a Highly Efficient Piezocatalyst. Catal. Sci. Technol. 2018, 8, 4788–4796.
(112) Wang, Z. L. Piezopotential Gated Nanowire Devices: Piezotronics and Piezo-Phototronics. Nano Today 2010, 5, 540–552.
(113) Ji, J.; Pu, Y.; Chang, L.; Ouyang, T.; Wang, P.; He, C.; Zhou, S. Boosting the Separation of Bulk Charge in Na0.5Bi0.5TiO3 by the Synergetic Effect of Ferroelectric Polarization and Thin-Sheet Shape. Ceram. Int. 2021, 47, 27650–27659.
(114) Lin, Y.-J.; Khan, I.; Saha, S.; Wu, C.-C.; Barman, S. R.; Kao, F.-C.; Lin, Z.-H. Thermocatalytic Hydrogen Peroxide Generation and Environmental Disinfection by Bi2Te3 Nanoplates. Nat. Commun. 2021, 12, 180.
(115) Schütz, D.; Deluca, M.; Krauss, W.; Feteira, A.; Jackson, T.; Reichmann, K. Lone-Pair-Induced Covalency as the Cause of Temperature- and Field-Induced Instabilities in Bismuth Sodium Titanate. Adv. Funct. Mater. 2012, 22, 2285–2294.
(116) Wu, F.; Yu, Y.; Yang, H.; German, L. N.; Li, Z.; Chen, J.; Yang, W.; Huang, L.; Shi, W.; Wang, L.; et al. Simultaneous Enhancement of Charge Separation and Hole Transportation in a TiO 2 –SrTiO 3 Core–Shell Nanowire Photoelectrochemical System. Adv. Mater. 2017, 29, 1701432.
(117) Liao, W.-Q.; Zhao, D.; Tang, Y.-Y.; Zhang, Y.; Li, P.-F.; Shi, P.-P.; Chen, X.-G.; You, Y.-M.; Xiong, R.-G. A Molecular Perovskite Solid Solution with Piezoelectricity Stronger than Lead Zirconate Titanate. Science. 2019, 363, 1206–1210.
(118) Wu, J.; Xiao, D.; Zhu, J. Potassium–Sodium Niobate Lead-Free Piezoelectric Materials: Past, Present, and Future of Phase Boundaries. Chem. Rev. 2015, 115, 2559–2595.
(119) Ahart, M.; Somayazulu, M.; Cohen, R. E.; Ganesh, P.; Dera, P.; Mao, H.; Hemley, R. J.; Ren, Y.; Liermann, P.; Wu, Z. Origin of Morphotropic Phase Boundaries in Ferroelectrics. Nature 2008, 451, 545–548.
(120) Bartel, C. J.; Sutton, C.; Goldsmith, B. R.; Ouyang, R.; Musgrave, C. B.; Ghiringhelli, L. M.; Scheffler, M. New Tolerance Factor to Predict the Stability of Perovskite Oxides and Halides. Sci. Adv. 2019, 5, 1–10.
(121) Damjanovic, D. A Morphotropic Phase Boundary System Based on Polarization Rotation and Polarization Extension. Appl. Phys. Lett. 2010, 97, 062906.
(122) Xue, D.; Balachandran, P. V.; Wu, H.; Yuan, R.; Zhou, Y.; Ding, X.; Sun, J.; Lookman, T. Material Descriptors for Morphotropic Phase Boundary Curvature in Lead-Free Piezoelectrics. Appl. Phys. Lett. 2017, 111, 032907.
(123) Fu, H.; Cohen, R. E. Polarization Rotation Mechanism for Ultrahigh Electromechanical Response. Nature 2000, 403, 281–283.
(124) Wu, H.; Murti, B. T.; Singh, J.; Yang, P.; Tsai, M. Prospects of Metal‐Free Perovskites for Piezoelectric Applications. Adv. Sci. 2022, 9, 2104703.
(125) Wang, R.; Wang, K.; Yao, F.; Li, J.-F.; Schader, F. H.; Webber, K. G.; Jo, W.; Rödel, J. Temperature Stability of Lead-Free Niobate Piezoceramics with Engineered Morphotropic Phase Boundary. J. Am. Ceram. Soc. 2015, 98, 2177–2182.
(126) Tu, S.; Guo, Y.; Zhang, Y.; Hu, C.; Zhang, T.; Ma, T.; Huang, H. Piezocatalysis and Piezo‐Photocatalysis: Catalysts Classification and Modification Strategy, Reaction Mechanism, and Practical Application. Adv. Funct. Mater. 2020, 30, 2005158.
(127) Ji, J.; Zhou, H.; Eom, Y. K.; Kim, C. H.; Kim, H. K. 14.2% Efficiency Dye‐Sensitized Solar Cells by Co‐sensitizing Novel Thieno[3,2‐ b ]Indole‐Based Organic Dyes with a Promising Porphyrin Sensitizer. Adv. Energy Mater. 2020, 10, 2000124. https://doi.org/10.1002/aenm.202000124.
(128) Bößl, F.; Tudela, I. Piezocatalysis: Can Catalysts Really Dance? Curr. Opin. Green Sustain. Chem. 2021, 32, 100537.
(129) Wang, Y.; Wu, J. M. Effect of Controlled Oxygen Vacancy on H 2 ‐Production through the Piezocatalysis and Piezophototronics of Ferroelectric R3C ZnSnO 3 Nanowires. Adv. Funct. Mater. 2020, 30, 1907619.
(130) Hawkins, C. L.; Davies, M. J. Detection and Characterisation of Radicals in Biological Materials Using EPR Methodology. Biochim. Biophys. Acta - Gen. Subj. 2014, 1840, 708–721.
(131) Nguyen, V.-H.; Smith, S. M.; Wantala, K.; Kajitvichyanukul, P. Photocatalytic Remediation of Persistent Organic Pollutants (POPs): A Review. Arab. J. Chem. 2020, 13, 8309–8337.
(132) Dvoranová, D.; Barbieriková, Z.; Brezová, V. Radical Intermediates in Photoinduced Reactions on TiO2 (An EPR Spin Trapping Study). Molecules 2014, 19, 17279–17304.
(133) Grela, M. A.; Coronel, M. E. J.; Colussi, A. J. Quantitative Spin-Trapping Studies of Weakly Illuminated Titanium Dioxide Sols. Implications for the Mechanism of Photocatalysis. J. Phys. Chem. 1996, 100, 16940–16946.
(134) Mercera, P. D. L.; Van Ommen, J. G.; Doesburg, E. B. M.; Burggraaf, A. J.; Ross, J. R. H. Zirconia as a Support for Catalysts. Appl. Catal. 1990, 57, 127–148.
(135) Lund, A.; Shiotani, M.; Shimada, S. Principles and Applications of ESR Spectroscopy; Springer Netherlands: Dordrecht, 2011.
(136) Yu, J.; Chen, J.; Li, C.; Wang, X.; Zhang, B.; Ding, H. ESR Signal of Superoxide Radical Anion Adsorbed on TiO 2 Generated at Room Temperature. J. Phys. Chem. B 2004, 108, 2781–2783.
(137) Xu, Y.; Zhou, Z.; Zou, M.; Liu, Y.; Zheng, Y.; Yang, Y.; Lan, S.; Lan, J.; Nan, C.-W.; Lin, Y.-H. Multi-Field Driven Hybrid Catalysts for CO2 Reduction: Progress, Mechanism and Perspective. Mater. Today 2022, 54, 225–246.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 氧空缺效應調控鐵電錫酸鋅奈米線之材料特性暨其壓光電子學之水分解應用
2. 奈米紅磷與銻化鉑奈米粒子的合成應用於高效能電催化電解水觸媒
3. 高熵氧化物之柔電觸媒誘導水分解之研究
4. 鐵酸鉍與二氧化鈦核殼奈米結構之壓電觸媒活性在有機染料分子之研究
5. 過氧化氫輔助高活性少數層二碲化鎢微米球之壓電產氫與有機染料降解研究
6. 透過機械力壓電催化驅使少數層二硫化鉬/石英微米柱之多層次異質結構在產氫反應及水汙染降解之研究
7. 石英/二氧化鈦異質結構於壓光電催化有機污染物分解及產氫之研究
8. 偕同壓電與熱電催化效應驅使二硫化鉬/碲化鉍之S-型異質接面在產氫反應之研究
9. 尖晶石氧化物奈米顆粒氧空缺效應在撓曲電催化產氫之研究
10. 利用奈米球微影術製備鉭基蜂窩狀結構並藉表面電漿效應及Z-scheme異質結構提升其光催化水解產氫
11. 線性共軛高分子PF3T與奈米金團簇修飾二氧化鈦奈米顆粒之核殼複合材料應用於可見光下裂解水產氫之研究
12. 設計與合成具磺醯基之共軛高分子光催化劑及其在光催化產氫系統之應用
13. 偕同光壓電效應鐵電觸媒在有機汙染物分解與產氫之研究
14. 二氧化錫/三氧化二銦異質結構氧缺陷調控及光催化性質之研究
15. 臨場觀察鎳金屬與矽鍺奈米線之反應暨 利用氧化層調變擴散機制之研究
 
* *