帳號:guest(3.140.195.249)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林冠豪
作者(外文):Lin, Kuan-Hao
論文名稱(中文):FCC型低熵至高熵合金之冷軋與退火集合組織演化及機械性質之研究
論文名稱(外文):Investigation of Cold-rolled and Annealed Texture Evolution and Mechanical Properties from FCC-structured Low-entropy to High-entropy Alloys
指導教授(中文):葉均蔚
指導教授(外文):Yeh, Jien-Wei
口試委員(中文):洪健龍
林樹均
李勝隆
蔡哲瑋
楊智超
口試委員(外文):Horng, Jian-Long
Lin, Su-Jien
Lee, Sheng-Long
Tsai, Tse-eiI
Yang, Chih-Chao
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031805
出版年(民國):110
畢業學年度:110
語文別:中文
論文頁數:286
中文關鍵詞:傳統合金高熵合金冷軋退火塑性變形機械性質微結構集合組織極圖背向散射電子繞射
外文關鍵詞:Conventional alloyHigh-entropy alloyCold rollAnnealPlastic deformationMechanical propertyMicrostructureCrystallographic texturePole figureElectron backscatter diffraction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:573
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究旨在探討低熵、中熵及高熵合金之集合組織演化與機械性質異向性,設計了五種單相FCC型金屬,分別為Ni、Ni–2at.% W、Ni–4at.% W、CrFeNi及CoCrFeMnNi。五種金屬的製備係透過真空電弧熔煉後固化成型,隨後經均質化處理24小時使呈現單一相結構。均質化處理後,五種金屬皆施以70%厚度減量之冷軋,並於不同溫度進行1小時之退火處理,經維氏硬度量測得各金屬的退火軟化曲線。
各金屬在不同溫度退火之巨觀集合組織演化係採用X光繞射極圖量測分析。結果顯示,屬於低熵的Ni、Ni–2at.% W及Ni–4at.% W材料具有較高的疊差能,其冷軋集合組織為Copper type,經過退火後,其方位分佈函數顯示再結晶階段具有相對較明顯的再結晶集合組織分佈,但隨著溫度提升,進入晶粒成長階段,便不再具有較明顯的優選方位;而屬於中、高熵的CrFeNi及CoCrFeMnNi合金具有較低的疊差能,冷軋集合組織為Brass type,但其方位分佈函數顯示再結晶與晶粒成長階段不具有明顯優選方位。此外,透過熱場發掃描式電子顯微鏡搭配背向散射電子繞射進行微結構分析,發現Ni、Ni–2at.% W及Ni–4at.% W具有不均勻的冷軋延微結構,大部份的剪移帶分佈於<111>//RD及<112>//RD方位的晶粒內部,故其潛在再結晶核的位置也分佈不均,以致再結晶階段容易具有明顯優選方位;而CrFeNi及CoCrFeMnNi則具有甚均勻的冷軋延微結構,主要原因為大量差排與變形雙晶的交互作用,造成微結構各處的變形程度較均勻,故其潛在再結晶核的位置分佈亦會較均勻,使再結晶階段造成許多不同晶粒方位的晶粒出現,進而抑制了優選方位晶粒的形成,而呈現隨機方位的分佈。
五種金屬的室溫拉伸性質表現明顯不同。其中,材料的降伏強度分別以固溶強化、晶格摩擦力強化及幾何必須差排強化進行探討。理論計算之結果顯示,多元成份合金之CrFeNi及CoCrFeMnNi具有較高的固溶強化及晶格摩擦力強化,主要為因為基地具有嚴重晶格扭曲及較強的鍵結強度所致;Ni–2at.% W及Ni–4at.% W具有相對低的固溶強化及晶格摩擦力強化,主因是其溶質W原子濃度低,晶格扭曲較小。經過理論計算,本研究首先提出了適用於低濃度到高濃度固溶合金的固溶強化通式(universal equation),並與實驗數據吻合。
此外,CrFeNi及CoCrFeMnNi比Ni–2at.% W及Ni–4at.% W具有較高抗拉強度及較大的延伸率,主要是因為其拉伸變形過程中形成大量的變形奈米雙晶,提供較高的應變硬化速率。整體而言,具有高晶格扭曲的高濃度合金比低濃度合金具優越的機械性質組合。
This study is mainly focused on the texture evolution and anisotropy of mechanical properties between low-entropy, medium entropy and high entropy alloys. Five single-phased FCC metals were designed: Ni, Ni–2at.% W, Ni–4at.% W, CrFeNi and CoCrFeMnNi. These five metals were prepared by vacuum arc melting and casting. They were homogenized for 24 h to have a single-phased structure. After homogenization, these five metals were cold-rolled with a thickness reduction of 70%. They were then annealed at different temperatures for 1h. Vickers hardness measurements were performed to obtain annealing softening curves.
The X-ray pole figure measurements were also conducted to characterize the evolutions of macrotexture as a function of annealing temperature. The results showed that the low-entropy Ni, Ni–2at.% W and Ni–4at.% W with higher stacking fault energy exhibited the copper type rolling texture. After annealing, more evident recrystallized textures can be observed during recrystallization by the orientation distribution functions. However, their preferred orientations would become unobvious in the grain growth stages as the annealing temperatures increased. The medium-entropy CrFeNi and high-entropy CoCrFeMnNi with lower stacking fault energy showed the brass type rolling texture. Their orientation distribution functions showed no obvious preferred orientations during recrystallization and grain growth stages. Additionally, the microstructure of each metal was analyzed by thermal field emission scanning eletron microscope equipped with electron backscattering diffraction. It can be found that Ni, Ni–2at.% W and Ni–4at.% W had inhomogeneous cold-rolled grain structures, and most of shear band located in the <111>//RD and <112>//RD grains.This demonstrated that the distributions of their potential recrystallized nuclei would be inhomogeneous. On the other hand, the CrFeNi and CoCrFeMnNi had more homogeneous cold-rolled grain structure. The main reason is that the higher amount accumulated dislocations and earsier formation of deformation nanotwinning in preferentially deformed grains have higher work hardening and easier to activate the deformation of those grains with less-preferential orientation. As a result, more homogeneous deformation level occurred everywhere. This induced many grain nuclei with different orientations during recrystallization stage and thus inhibited the propensity of preferred orientations.
The present five metals performed significantly different room-temperature mechanical properties. The yield strength was contributed by the strengthening of solid solution, lattice friction and geometrically necessary dislocations. The multielement CrFeNi and CoCrFeMnNi had higher strengthening of solid solution and lattice friction. This is mainly because they had more severe lattice distortion and higher bonding strength than those of Ni–2at.% W and Ni–4at.% W with low solute concentration. Furthermore, the CrFeNi and CoCrFeMnNi had larger ultimate strengths and elongations, which is mainly because they were easier to induce deformation twins and thus larger strain hardening rates during tensile doformation. As a whole, we demonstrated the mechanisms why concentrated CrFeNi and CoCrFeMnNi alloys had superior combinations of strength and elongation as compared to dilute Ni–2at.% W and Ni–4at.% W.
一、 前言 1
二、 文獻回顧 4
2.1 合金 4
2.1.1 傳統合金 4
2.1.2 高熵合金 4
2.2 固溶效應 8
2.2.1 置換型固溶 9
2.2.2 填隙型固溶 10
2.3 材料微結構 14
2.4 熔鑄態之微結構 14
2.5 均質化處理及其對微結構之影響 17
2.6 軋延製程及其對微結構之影響 17
2.6.1 冷軋延 18
2.6.2 熱軋延 20
2.7 材料變形機制探討 24
2.7.1 高疊差能材料之變形機制 25
2.7.2 低疊差能材料之變形機制 25
2.7.3 變形雙晶機制 26
2.8 冷軋延後退火製程及其對微結構之影響 29
2.8.1 回復階段之微結構 29
2.8.2 再結晶階段之微結構 30
2.8.3 晶粒成長階段之微結構 32
2.9 材料集合組織原理及定義 38
2.9.1 集合組織成份表示法 39
2.9.2 常見材料之集合組織成份 40
2.9.3 巨觀集合組織及X光繞射極圖量測原理 41
2.9.4 微觀集合組織及背向散射電子繞射原理 42
2.10 冷軋延對晶體方位之影響 48
2.11 冷軋延對FCC材料集合組織之影響 49
2.11.1 高疊差能材料之冷軋集合組織 50
2.11.2 低疊差能材料之冷軋集合組織 50
2.11.3 回復階段之集合組織 51
2.11.4 再結晶階段之集合組織 51
2.11.5 非連續再結晶機制對再結晶集合組織之影響 53
2.11.6 連續再結晶機制對再結晶集合組織之影響 53
2.12 晶粒成長階段之集合組織 59
2.13 集合組織對材料異向性之影響 59
三、 實驗方法與步驟 63
3.1 成份設計 63
3.2 合金熔煉 63
3.3 均質化處理 64
3.4 冷軋延 64
3.5 退火處理 65
3.6 試片表面處理 65
3.6.1 機械式研磨 65
3.6.2 電解拋光 65
3.7 材料成份鑑定 66
3.8 材料相結構鑑定 66
3.9 微硬度分析 66
3.10 拉伸性質分析 67
3.10.1 試片製備 67
3.10.2 實驗過程 67
3.10.3 數據分析 68
3.11 巨觀集合組織分析 69
3.11.1 試片製備 69
3.11.2 實驗過程 70
3.11.3 數據分析 70
3.12 微觀集合組織分析 71
3.12.1 試片製備 71
3.12.2 實驗流程 71
3.12.3 數據分析 72
四、 結果與討論 78
4.1 均質態之成份與微結構 78
4.2 相結構分析 82
4.3 機械性質 84
4.3.1 微硬度 84
4.3.2 拉伸性質 86
4.3.3 拉伸性質之綜合討論 89
4.3.4 機械性質之異向性 105
4.3.5 機械異向性之綜合討論 106
4.4 巨觀集合組織 119
4.4.1 金屬表層之冷軋集合組織分佈 119
4.4.2 金屬中心層之冷軋集合組織分佈 120
4.4.3 1A冷軋後退火之集合組織演化 121
4.4.4 1A2冷軋後退火之集合組織演化 123
4.4.5 1A4冷軋後退火之集合組織演化 124
4.4.6 3A冷軋後退火之集合組織演化 126
4.4.7 5A冷軋後退火之集合組織演化 127
4.4.8 巨觀集合組織綜合討論 128
4.5 微觀結構與微觀集合組織 146
4.5.1 冷軋變形微結構與集合組織 146
4.5.2 1A冷軋後退火微結構與集合組織 149
4.5.3 1A2冷軋後退火微結構與集合組織 153
4.5.4 1A4冷軋後退火微結構與集合組織 156
4.5.5 3A冷軋後退火微結構與集合組織 160
4.5.6 5A冷軋後退火微結構與集合組織 163
4.5.7 微觀結構與微觀集合組織之綜合討論 166
4.6 機械異向性與集合組織之關聯 196
4.7 拉伸變形過程之晶粒方位旋轉 199
4.7.1 1A之晶體旋轉 199
4.7.2 1A2之晶體旋轉 203
4.7.3 1A4之晶體旋轉 206
4.7.4 3A之晶體旋轉 210
4.7.5 5A之晶體旋轉 213
4.7.6 晶粒方位旋轉之綜合討論 217
五、 結論 248
六、 期刊論文發表 252
七、 研究貢獻 253
八、 建議未來研究方向 255
參考文獻 256
附錄:不同退火溫度極圖、不同拉伸應變所得EBSD的KAM圖及EBSD實驗使用的掃描step size。 276
[1] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 261-267.
[2] S.N. Ghali, H.S. El-Faramawy, M.M. Eissa, Influence of Boron Additions on Mechanical Properties of Carbon Steel, J. of Miner. and Mater. Charact. and Eng. 11 (2012) 995-999.
[3] M.C. Gao, P.K. Liaw, J.W. Yeh, Y. Zhang, High-entropy alloys: Fundamentals and applications, Springer, 2016, pp. 8-12.
[4] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A-Struct. 375 (2004) 213-218.
[5] A.C. Yeh, Y.J. Chang, C.W. Tsai, Y.C. Wang, J.W. Yeh, C.M. Kuo, On the Solidification and Phase Stability of a Co-Cr-Fe-Ni-Ti High-Entropy Alloy, Metall. and Mater. Trans. 45A (2014) 184-190.
[6] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater Sci. 61 (2014) 1-93.
[7] M.H. Tsai, J.W. Yeh, High-Entropy Alloys: A Critical Review, Mater. Res. Lett. 2 (2014) 107-123.
[8] F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Mater. 61 (2013) 2628-2638.
[9] C.Y. Cheng, Y.C. Yang, Y.Z. Zhong, Y.Y. Chen, T. Hsu, J.W. Yeh, Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys, Curr. Opin. Solid. St. M. 21 (2017) 299-311.
[10] R.A. Swalin, Thermodynamics of Solids, Wiley, 1972, pp. 36-40.
[11] A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy, JOM 65 (2013) 1780-1789.
[12] M.C. Gao, P. Liaw, J.W. Yeh, Y. Zhang, High-entropy alloys: Fundamentals and applications, Springer, 2016, pp. 8-12.
[13] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater. 10 (2008) 534-538.
[14] Z.Z. Li, S.T. Zhao, R.O. Ritchie, M.A. Meyers, Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys, Prog. Mater Sci. 102 (2019) 296-345.
[15] A.S.M. International, C. Handbook, Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992.
[16] H.S. Oh, D. Ma, G.P. Leyson, B. Grabowski, E.S. Park, F. Kormann, D. Raabe, Lattice Distortions in the FeCoNiCrMn High Entropy Alloy Studied by Theory and Experiment, Entropy 18 (2016) 321.
[17] R. Wang, W.M. Chen, J. Zhong, L.J. Zhang, Experimental and numerical studies on the sluggish diffusion in face centered cubic Co-Cr-Cu-Fe-Ni high-entropy alloys, J. Mater. Sci. Technol. 34 (2018) 1791-1798.
[18] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 312-314.
[19] D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, CRC Press, 2009, pp. 115-185.
[20] W.C. Leslie, Iron and Its Dilute Substitutional Solid-Solutions, Metal. Trans. 3 (1972) 5-26.
[21] D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, CRC Press, 2009, pp. 23-24.
[22] R.L. Smialek, T.E. Mitchell, Interstitial Solution Hardening in Tantalum Single Crystals, Philo. Mag. 22 (1970) 1105-&.
[23] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 29-62.
[24] D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, CRC Press, 2009, pp. 230-234.
[25] S.G. Shabestari, M. Malekan, Thermal analysis study of the effect of the cooling rate on the microstructure and solidification parameters of 319 aluminum alloy, Can. Metall. Q. 44 (2005) 305-312.
[26] M.H. Ghoncheh, S.G. Shabestari, M.H. Abbasi, Effect of cooling rate on the microstructure and solidification characteristics of Al2024 alloy using computer-aided thermal analysis technique, J. Therm. Anal. Calorim. 117 (2014) 1253-1261.
[27] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 439-442.
[28] D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, CRC Press, 2009, pp. 205-220.
[29] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 443-445.
[30] A. Halvaee, A. Talebi, Effect of process variables on microstructure and segregation in centrifugal casting of C92200 alloy, J. Mater. Process. Technol. 118 (2001) 123-127.
[31] D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, CRC Press, 2009, p. 250.
[32] D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, CRC Press, 2009, pp. 77-78.
[33] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 445-450.
[34] M. Vaidya, K. Guruvidyathri, B.S. Murty, Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys, J. Alloys Compd. 774 (2019) 856-864.
[35] G.R. Purdy, J.S. Kirkaldy, Homogenization by diffusion, Metallur. Trans. 2 (1971) 371-378.
[36] G.D. Sathiaraj, P.P. Bhattacharjee, Effect of cold-rolling strain on the evolution of annealing texture of equiatomic CoCrFeMnNi high entropy alloy, Mater. Charact. 109 (2015) 189-197.
[37] G.D. Sathiaraj, P.P. Bhattacharjee, Effect of starting grain size on the evolution of microstructure and texture during thermo-mechanical processing of CoCrFeMnNi high entropy alloy, J. Alloys Compd. 647 (2015) 82-96.
[38] G.D. Sathiaraj, C. Lee, C.W. Tsai, J.W. Yeh, P.P. Bhattacharjee, Evolution of microstructure and crystallographic texture in severely cold rolled high entropy equiatomic CoCrFeMnNi alloy during annealing, IOP Conf. Ser-Mater. Sci. and Eng. 82 (2015) 012068.
[39] G.D. Sathiaraj, P.P. Bhattacharjee, C.W. Tsai, J.W. Yeh, Effect of heavy cryo-rolling on the evolution of microstructure and texture during annealing of equiatomic CoCrFeMnNi high entropy alloy, Intermetallics 69 (2016) 1-9.
[40] I.S. Wani, G.D. Sathiaraj, M.Z. Ahmed, S.R. Reddy, P.P. Bhattacharjee, Evolution of microstructure and texture during thermo-mechanical processing of a two phase Al0.5CoCrFeMnNi high entropy alloy, Mater. Charact. 118 (2016) 417-424.
[41] W. Wu, S. Ni, Y. Liu, M. Song, Effects of cold rolling and subsequent annealing on the microstructure of a HfNbTaTiZr high-entropy alloy, J. Mater. Res. 31 (2016) 3815-3823.
[42] G.C. Soares, B.M. Gonzalez, L.D. Santos, Strain hardening behavior and microstructural evolution during plastic deformation of dual phase, non-grain oriented electrical and AISI 304 steels, Mat. Sci. Eng. A-Struct. 684 (2017) 577-585.
[43] L. Zhang, Y. Wang, X. Yang, K. Li, S. Ni, Y. Du, M. Song, Texture, Microstructure and Mechanical Properties of 6111 Aluminum Alloy Subject to Rolling Deformation, Mater. Res. 20 (2017) 1360-1368.
[44] R.R. Eleti, V. Raju, M. Veerasham, S.R. Reddy, P.P. Bhattacharjee, Influence of strain on the formation of cold-rolling and grain growth textures of an equiatomic HfZrTiTaNb refractory high entropy alloy, Mater. Charact. 136 (2018) 286-292.
[45] C. Haase, L.A. Barrales-Mora, Influence of deformation and annealing twinning on the microstructure and texture evolution of face-centered cubic high-entropy alloys, Acta Mater. 150 (2018) 88-103.
[46] O.N. Senkov, A.L. Pilchak, S.L. Semiatin, Effect of Cold Deformation and Annealing on the Microstructure and Tensile Properties of a HfNbTaTiZr Refractory High Entropy Alloy, Metallur. and Mater. Trans. A 49 (2018) 2876-2892.
[47] A. Hedayati, A. Najafizadeh, A. Kermanpur, F. Forouzan, The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel, J. Mater. Process. Technol. 210 (2010) 1017-1022.
[48] P. Nordala, R. Othman, A.B. Ismail, Effect of Rolling Reduction on Microstructure and Mechanical Properties of Plain Low Carbon Steel, Key Eng. Mater. 701 (2016) 187-194.
[49] Z.H. Cai, B. Cai, H. Ding, Y. Chen, R.D.K. Misra, Microstructure and deformation behavior of the hot-rolled medium manganese steels with varying aluminum-content, Mater. Sci. Eng. A-Struct. 676 (2016) 263-270.
[50] R. Tao, Y.T. Zhao, X.Z. Kai, Z.H. Zhao, R.F. Ding, L. Liang, W.T. Xu, Effects of hot rolling deformation on the microstructure and tensile properties of an in situ-generated ZrB2 nanoparticle-reinforced AA6111 composite, Mater. Sci. Eng. A-Struct. 732 (2018) 138-147.
[51] M.J. Jang, S. Praveen, H.J. Sung, J.W. Bae, J. Moon, H.S. Kim, High-temperature tensile deformation behavior of hot rolled CrMnFeCoNi high-entropy alloy, J. Alloys Compd. 730 (2018) 242-248.
[52] F.A. Wei, Z.G. Zhang, B. Shi, C. Yang, J.H. Wang, Effect of rolling deformation on microstructure and mechanical properties of Mg-6Sn-3Al-1Zn alloy, Mater. Res. Exp. 7 (2020).
[53] S. Chen, J. Butler, S. Melzer, Effect of asymmetric hot rolling on texture, microstructure and magnetic properties in a non-grain oriented electrical steel, J. Magn. Mater. 368 (2014) 342-352.
[54] P. Sengupta, S. Rath, V. Kumar, Evolution of Rolling Parameters for Hot Rolled Non-Oriented Electrical Steel, AIST Proceedings: AISTech, 2007.
[55] K. Verbeken, J. Schneider, J. Verstraete, H. Hermann, Y. Houbaert, Effect of Hot and Cold Rolling on Grain Size and Texture in Fe-2.4wt%Si Strips, IEEE Trans. Magn. 44 (2008) 3820-3823.
[56] R.E. Stoller, S.J. Zinkle, On the relationship between uniaxial yield strength and resolved shear stress in polycrystalline materials, J. Nucl. Mater. 283 (2000) 349-352.
[57] W. Abuzaid, H. Sehitoglu, Critical resolved shear stress for slip and twin nucleation in single crystalline FeNiCoCrMn high entropy alloy, Mater. Charact. 129 (2017) 288-299.
[58] Q. Liu, N. Hansen, Deformation microstructure and orientation of f.c.c. crystals, Phy. Status Solid A 149 (1995) 187-199.
[59] I. Salehinia, D.F. Bahr, Crystal orientation effect on dislocation nucleation and multiplication in FCC single crystal under uniaxial loading, Int. J. Plast. 52 (2014) 133-146.
[60] X.W. Zhou, R.B. Sills, D.K. Ward, R.A. Karnesky, Atomistic calculations of dislocation core energy in aluminium, Phy. Rev. B 95 (2017) 054112.
[61] M.C. Gao, P. Liaw, J.-W. Yeh, Y. Zhang, High-entropy alloys: Fundamentals and applications, Springer, 2016, pp. 80-82.
[62] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 138-144.
[63] K. Youssef, M. Sakaliyska, H. Bahmanpour, R. Scattergood, C. Koch, Effect of stacking fault energy on mechanical behavior of bulk nanocrystalline Cu and Cu alloys, Acta Mater. 59 (2011) 5758-5764.
[64] V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation, Nat. Mater. 3 (2004) 43-7.
[65] J.K. Kim, M.H. Kwon, B.C. De Cooman, On the deformation twinning mechanisms in twinning-induced plasticity steel, Acta Mater. 141 (2017) 444-455.
[66] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 521-535.
[67] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Science, 2004, pp. 1-4.
[68] F.J. Humphreys, A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—I. The basic model, Acta Mater. 45 (1997) 4231-4240.
[69] Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys, Intermetallics 46 (2014) 131-140.
[70] F.J. Humphreys, A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—II. The effect of second-phase particles, Acta Mater. 45 (1997) 5031-5039.
[71] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 216-229.
[72] Y.H. Zhao, J.F. Bingert, T.D. Topping, P.L. Sun, X.Z. Liao, Y.T. Zhu, E.J. Lavernia, Mechanical behavior, deformation mechanism and microstructure evolutions of ultrafine-grained Al during recovery via annealing, Mat. Sci. Eng. A-Struct. 772 (2020) 138706.
[73] A. Belyakov, Y. Kimura, K. Tsuzaki, Recovery and recrystallization in ferritic stainless steel after large strain deformation, Mat. Sci. Eng. A-Struct. 403 (2005) 249-259.
[74] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 240-243.
[75] L. Bracke, K. Verbeken, L. Kestens, J. Penning, Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel, Acta Mater. 57 (2009) 1512-1524.
[76] M.R. Drury, J.L. Urai, Deformation-Related Recrystallization Processes, Tectonophysics 172 (1990) 235-253.
[77] A. Belyakov, T. Sakai, H. Miura, R. Kaibyshev, K. Tsuzaki, Continuous recrystallization in austenitic stainless steel after large strain deformation, Acta Mater. 50 (2002) 1547-1557.
[78] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Science, 2004, pp. 451-461.
[79] H. Jazaeri, F.J. Humphreys, The transition from discontinuous to continuous recrystallization in some aluminium alloys, Acta Mater. 52 (2004) 3251-3262.
[80] Y.B. Zhang, A. Godfrey, Q. Liu, W. Liu, D.J. Jensen, Analysis of the growth of individual grains during recrystallization in pure nickel, Acta Mater. 57 (2009) 2631-2639.
[81] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 180-182.
[82] M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, Microhardness measurements and the Hall-Petch relationship in an Al-Mg alloy with submicrometer grain size, Acta Mater. 44 (1996) 4619-4629.
[83] W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu, Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy, Scripta Mater. 68 (2013) 526-529.
[84] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London, 2014, pp. 1-5.
[85] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Science, 2004, pp. 67-68, 379-380.
[86] L.A.I. Kestens, H. Pirgazi, Texture formation in metal alloys with cubic crystal structures, Mater. Sci. Technol. 32 (2016) 1303-1315.
[87] O. Engler, V. Randle, Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping, Second Edition, Taylor & Francis, 2009, pp. 3-7.
[88] G.D. Sathiaraj, A. Pukenas, W. Skrotzki, Texture formation in face-centered cubic high-entropy alloys, J. Alloys Compd. 826 (2020) 154183.
[89] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London, 2014, pp. 3-4, 11.
[90] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London, 2014, pp. 22-25.
[91] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Science, 2004, pp. 529-531.
[92] L. Kestens, S. Jacobs, Texture Control During the Manufacturing of Nonoriented Electrical Steels, Texture, Stress, and Microstructure, 2008.
[93] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London, 2014, pp. 34-37.
[94] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London, 2014, pp. 41-57.
[95] O. Engler, V. Randle, Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping, Second Edition, Taylor & Francis, 2009, pp. 79-107.
[96] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London, 2014, pp. 58-67.
[97] O. Engler, V. Randle, Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping, Second Edition, Taylor & Francis, 2009, pp. 175-231.
[98] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 144-148.
[99] W. Truszkowski, J. Krol, B. Major, Inhomogeneity of Rolling Texture in Fcc Metals, Metallu. Trans. A-Physical Metallur. and Mater. Sci. 11 (1980) 749-758.
[100] H.T. Liu, H.L. Li, H. Wang, Y. Liu, F. Gao, L.Z. An, S.Q. Zhao, Z.Y. Liu, G.-D. Wang, Effects of initial microstructure and texture on microstructure, texture evolution and magnetic properties of non-oriented electrical steel, J. Magn. Magn. Mater. 406 (2016) 149-158.
[101] J. Wang, Y. Wang, W. Cai, J. Li, Z. Zhang, S.X. Mao, Discrete shear band plasticity through dislocation activities in body-centered cubic tungsten nanowires, Sci. Rep. 8 (2018) 4574.
[102] R.E. Smallman, D. Green, The dependence of rolling texture on stacking fault energy, Acta Metall. 12 (1964) 145-154.
[103] Y.R. Liang, H. Tian, H.L. Suo, P. Wang, Y.C. Meng, L. Ma, M. Liu, Recrystallization and cube texture formation in heavily cold-rolled Ni7W alloy substrates for coated conductors, J. Mater. Res. 30 (2015) 1686-1692.
[104] X.P. Chen, D. Chen, H.F. Sun, L.X. Wang, D. Shang, Evolution of microstructure and texture during cold rolling and high-temperature annealing in Ni–5 at% W substrate for coated conductor, Rare Metals 39 (2018) 928-935.
[105] T. Kamijo, A. Fujiwara, Y. Yoneda, H. Fukutomi, Formation of cube texture in copper single crystals, Acta Metall. et Mater. 39 (1991) 1947-1952.
[106] M. Ferry, F.J. Humphreys, Onset of abnormal subgrain growth in cold rolled {110}〈001〉 oriented copper single crystals, Mater. Sci. Eng.: A 435-436 (2006) 447-452.
[107] P.P. Bhattacharjee, R.K. Ray, N. Tsuji, Evolution of Deformation and Recrystallization Textures in High-Purity Ni and the Ni-5 at.% W Alloy, Metall. and Mater. Trans. A-Phy. Metall. and Mate. Sci. 41A (2010) 2856-2870.
[108] P.P. Bhattacharjee, R.K. Ray, N. Tsuji, Cold rolling and recrystallization textures of a Ni–5at.% W alloy, Acta Mater. 57 (2009) 2166-2179.
[109] V.S. Sarma, J. Eickemeyer, C. Mickel, L. Schultz, B. Holzapfel, On the cold rolling textures in some fcc Ni–W alloys, Mater. Sci. Eng.: A 380 (2004) 30-33.
[110] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London, 2014, pp. 108-117.
[111] R. Madhavan, R. Kalsar, R.K. Ray, S. Suwas, Role of stacking fault energy on texture evolution revisited, IOP Conf. Ser-Mater. Sci. 82 (2015) 012031.
[112] J.J. Sidor, L.A.I. Kestens, Analytical description of rolling textures in face-centred-cubic metals, Scripta Mater. 68 (2013) 273-276.
[113] R. Madhavan, R. Kalsar, R.K. Ray, S. Suwas, Role of stacking fault energy on texture evolution revisited, IOP Conf. Ser-Mater. Sci. 82 (2015) 012031.
[114] T. Leffers, R.K. Ray, The brass-type texture and its deviation from the copper-type texture, Prog. Mater. Sci. 54 (2009) 351-396.
[115] D. Barbier, N. Gey, S. Allain, N. Bozzolo, M. Humbert, Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions, Mater. Sci. Eng.: A 500 (2009) 196-206.
[116] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London, 2014, pp. 144-147.
[117] B. Bhattacharya, K. Kumar, Textural changes during recovery annealing of a heavily cold-rolled Fe–Mn–Al–Si–C alloy, Ironmaking & Steelmaking 45 (2016) 302-308.
[118] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London, 2014, pp. 170-171.
[119] I.L. Dillamore, C.J.E. Smith, T.W. Watson, Oriented Nucleation in the Formation of Annealing Textures in Iron, Metal Sci. J. 1 (2013) 49-54.
[120] R.L. Every, M. Hatherly, Oriented Nucleation in Low-Carbon Steels, Texture 1 (1974) 183-194.
[121] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Science, 2004, pp. 393-394.
[122] P.P. Bhattacharjee, G.D. Sathiaraj, M. Zaid, J.R. Gatti, C. Lee, C.W. Tsai, J.W. Yeh, Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy, J. Alloys Compd. 587 (2014) 544-552.
[123] G.D. Sathiaraj, P.P. Bhattacharjee, Analysis of microstructure and microtexture during grain growth in low stacking fault energy equiatomic CoCrFeMnNi high entropy and Ni–60wt.%Co alloys, J. Alloys Compd. 637 (2015) 267-276.
[124] G. Abbruzzese, K. Lücke, A theory of texture controlled grain growth—I. Derivation and general discussion of the model, Acta Metall. 34 (1986) 905-914.
[125] J.J. Bhattacharyya, S.R. Agnew, G. Muralidharan, Texture enhancement during grain growth of magnesium alloy AZ31B, Acta Mater. 86 (2015) 80-94.
[126] N. Bozzolo, N. Dewobroto, T. Grosdidier, E. Wagner, Texture evolution during grain growth in recrystallized commercially pure titanium, Mat. Sci. Eng. A-Struct. 397 (2005) 346-355.
[127] J.T. Park, J.A. Szpunar, Texture development during grain growth in nonoriented electrical steels, ISIJ Int. 45 (2005) 743-749.
[128] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London, 2014, pp. 207-223.
[129] J.L. Bassani, Yield Characterization of Metals with Transversely Isotropic Plastic Properties, Int. J. of Mech. Sci. 19 (1977) 651-660.
[130] J. Hirsch, Texture evolution and earing in aluminium can sheet, Mater. Sci. For., 495 (2005) 1565-1572.
[131] S.K. Chang, Texture effects on magnetic properties in high-alloyed non-oriented electrical steels, Metal Sci. and Heat Treat. 49 (2007) 569-573.
[132] M. Ghosh, A. Miroux, L.A.I. Kestens, Correlating r-value and through thickness texture in Al–Mg–Si alloy sheets, J. Alloys Compd. 619 (2015) 585-591.
[133] O. Engler, S. Kalz, Simulation of earing profiles from texture data by means of a visco-plastic self-consistent polycrystal plasticity approach, Mat. Sci. Eng. A-Struct. 373 (2004) 350-362.
[134] I. Scheider, W. Brocks, A. Cornec, Procedure for the determination of true stress-strain curves from tensile tests with rectangular cross-section specimens, J. Eng. Mater-T Asme. 126 (2004) 70-76.
[135] Z.L. Zhang, M. Hauge, J. Ødegård, C. Thaulow, Determining material true stress–strain curve from tensile specimens with rectangular cross-section, Int. J. of Solids and Struct. 36 (1999) 3497-3516.
[136] H. Mecking, U.F. Kocks, Kinetics of Flow and Strain-Hardening, Acta Metall. 29 (1981) 1865-1875.
[137] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London, 2014, pp. 213-215.
[138] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Science, 2004, pp. 480-481.
[139] S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Friction stress and Hall-Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing, Scripta Mater. 134 (2017) 33-36.
[140] C.C. Yen, G.R. Huang, Y.C. Tan, H.W. Yeh, D.J. Luo, K.T. Hsieh, E.W. Huang, J.W. Yeh, S.J. Lin, C.C. Wang, C.L. Kuo, S.Y. Chang, Y.C. Lo, Lattice distortion effect on elastic anisotropy of high entropy alloys, J. Alloys Compd. 818 (2020) 152876.
[141] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299-303.
[142] F. Cardarelli, Less Common Nonferrous Metals, Materials Handbook: A Concise Desktop Reference, Springer International Publishing, Cham, 2018, pp. 105, 537.
[143] R.L. Fleischer, Substitutional Solution Hardening, Acta Metall. 11 (1963) 203-209.
[144] L.A. Gypen, A. Deruyttere, Multi-component solid solution hardening, J. of Mater. Sci. 12 (1977) 1028-1033.
[145] V. Gerold, H.P. Karnthaler, On the origin of planar slip in f.c.c. alloys, Acta Metall. 37 (1989) 2177-2183.
[146] F. Otto, A. Dlouhy, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater. 61 (2013) 5743-5755.
[147] J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater. 102 (2016) 187-196.
[148] N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki, T. Furuhara, Stress–strain behavior of ferrite and bainite with nano-precipitation in low carbon steels, Acta Mater. 83 (2015) 383-396.
[149] N. Ohno, D. Okumura, Higher-order stress and grain size effects due to self-energy of geometrically necessary dislocations, J. of the Mech. and Phy. of Solids 55 (2007) 1879-1898.
[150] O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compd. 509 (2011) 6043-6048.
[151] H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, M.C. Gao, Mechanical properties of refractory high-entropy alloys: Experiments and modeling, J. Alloys Compd. 696 (2017) 1139-1150.
[152] Y.J. Chen, Y. Fang, X.Q. Fu, Y.P. Lu, S.J. Chen, H.B. Bei, Q. Yu, Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy, J. Mater. Sci. Technol. 73 (2021) 101-107.
[153] Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Tuning element distribution, structure and properties by composition in high-entropy alloys, Nature 574 (2019) 223-227.
[154] C. Keller, E. Hug, Hall–Petch behaviour of Ni polycrystals with a few grains per thickness, Mater. Lett. 62 (2008) 1718-1720.
[155] Y.Y. Zhao, T.G. Nieh, Correlation between lattice distortion and friction stress in Ni-based equiatomic alloys, Intermetallics 86 (2017) 45-50.
[156] Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater. 81 (2014) 428-441.
[157] M.A. Meyers, K.K. Chawla, Mechanical metallurgy: principles and applications, Prentice-Hall, 1984, pp. 499-500.
[158] A. Oudriss, J. Creus, J. Bouhattate, E. Conforto, C. Berziou, C. Savall, X. Feaugas, Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel, Acta Mater. 60 (2012) 6814-6828.
[159] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 150-151.
[160] G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Mater. 118 (2016) 152-163.
[161] R.K. Ray, J.J. Jonas, R.E. Hook, Cold rolling and annealing textures in low carbon and extra low carbon steels, Int. Mater. Rev. 39 (1994) 129-172.
[162] C.N. Tome, R.A. Lebensohn, C.T. Necker, Mechanical anisotropy and grain interaction in recrystallized aluminum, Metall. and Mater. Trans. A-Phy. Metall. and Mater. Sci. 33 (2002) 2635-2648.
[163] V. Subramanya Sarma, J. Eickemeyer, L. Schultz, B. Holzapfel, Recrystallisation texture and magnetisation behaviour of some FCC Ni–W alloys, Scripta Mater. 50 (2004) 953-957.
[164] Y. Takayama, J.A. Szpunar, Stored Energy and Taylor Factor Relation in an Al-Mg-Mn Alloy Sheet Worked by Continuous Cyclic Bending, Mater. Trans. 45 (2004) 2316-2325.
[165] A. Godfrey, O.V. Mishin, T. Yu, Characterization and influence of deformation microstructure heterogeneity on recrystallization, 36th Riso Int. Symp. on Mat. Sci. 89 (2015) 012003.
[166] S.H. Joo, H. Kato, M.J. Jang, J. Moon, C.W. Tsai, J.W. Yeh, H.S. Kim, Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy, Mater. Sci. Eng. A-Struct. 689 (2017) 122-133.
[167] A.A. Saleh, E.V. Pereloma, A.A. Gazder, Microstructure and texture evolution in a twinning-induced-plasticity steel during uniaxial tension, Acta Mater. 61 (2013) 2671-2691.
[168] K.H. Lin, S.Y. Chang, Y.C. Lo, C.C. Wang, S.J. Lin, J.W. Yeh, Differences in texture evolution from low-entropy to high-entropy face-centered cubic alloys during tension test, Intermetallics 118 (2020) 106635.
[169] S. Sinha, J.A. Szpunar, N.A.P.K. Kumar, N.P. Gurao, Tensile deformation of 316L austenitic stainless steel using in-situ electron backscatter diffraction and crystal plasticity simulations, Mat. Sci. Eng. A-Struct. 637 (2015) 48-55.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *