|
[1] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 261-267. [2] S.N. Ghali, H.S. El-Faramawy, M.M. Eissa, Influence of Boron Additions on Mechanical Properties of Carbon Steel, J. of Miner. and Mater. Charact. and Eng. 11 (2012) 995-999. [3] M.C. Gao, P.K. Liaw, J.W. Yeh, Y. Zhang, High-entropy alloys: Fundamentals and applications, Springer, 2016, pp. 8-12. [4] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A-Struct. 375 (2004) 213-218. [5] A.C. Yeh, Y.J. Chang, C.W. Tsai, Y.C. Wang, J.W. Yeh, C.M. Kuo, On the Solidification and Phase Stability of a Co-Cr-Fe-Ni-Ti High-Entropy Alloy, Metall. and Mater. Trans. 45A (2014) 184-190. [6] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater Sci. 61 (2014) 1-93. [7] M.H. Tsai, J.W. Yeh, High-Entropy Alloys: A Critical Review, Mater. Res. Lett. 2 (2014) 107-123. [8] F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Mater. 61 (2013) 2628-2638. [9] C.Y. Cheng, Y.C. Yang, Y.Z. Zhong, Y.Y. Chen, T. Hsu, J.W. Yeh, Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys, Curr. Opin. Solid. St. M. 21 (2017) 299-311. [10] R.A. Swalin, Thermodynamics of Solids, Wiley, 1972, pp. 36-40. [11] A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy, JOM 65 (2013) 1780-1789. [12] M.C. Gao, P. Liaw, J.W. Yeh, Y. Zhang, High-entropy alloys: Fundamentals and applications, Springer, 2016, pp. 8-12. [13] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater. 10 (2008) 534-538. [14] Z.Z. Li, S.T. Zhao, R.O. Ritchie, M.A. Meyers, Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys, Prog. Mater Sci. 102 (2019) 296-345. [15] A.S.M. International, C. Handbook, Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992. [16] H.S. Oh, D. Ma, G.P. Leyson, B. Grabowski, E.S. Park, F. Kormann, D. Raabe, Lattice Distortions in the FeCoNiCrMn High Entropy Alloy Studied by Theory and Experiment, Entropy 18 (2016) 321. [17] R. Wang, W.M. Chen, J. Zhong, L.J. Zhang, Experimental and numerical studies on the sluggish diffusion in face centered cubic Co-Cr-Cu-Fe-Ni high-entropy alloys, J. Mater. Sci. Technol. 34 (2018) 1791-1798. [18] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 312-314. [19] D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, CRC Press, 2009, pp. 115-185. [20] W.C. Leslie, Iron and Its Dilute Substitutional Solid-Solutions, Metal. Trans. 3 (1972) 5-26. [21] D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, CRC Press, 2009, pp. 23-24. [22] R.L. Smialek, T.E. Mitchell, Interstitial Solution Hardening in Tantalum Single Crystals, Philo. Mag. 22 (1970) 1105-&. [23] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 29-62. [24] D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, CRC Press, 2009, pp. 230-234. [25] S.G. Shabestari, M. Malekan, Thermal analysis study of the effect of the cooling rate on the microstructure and solidification parameters of 319 aluminum alloy, Can. Metall. Q. 44 (2005) 305-312. [26] M.H. Ghoncheh, S.G. Shabestari, M.H. Abbasi, Effect of cooling rate on the microstructure and solidification characteristics of Al2024 alloy using computer-aided thermal analysis technique, J. Therm. Anal. Calorim. 117 (2014) 1253-1261. [27] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 439-442. [28] D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, CRC Press, 2009, pp. 205-220. [29] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 443-445. [30] A. Halvaee, A. Talebi, Effect of process variables on microstructure and segregation in centrifugal casting of C92200 alloy, J. Mater. Process. Technol. 118 (2001) 123-127. [31] D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, CRC Press, 2009, p. 250. [32] D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, CRC Press, 2009, pp. 77-78. [33] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 445-450. [34] M. Vaidya, K. Guruvidyathri, B.S. Murty, Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys, J. Alloys Compd. 774 (2019) 856-864. [35] G.R. Purdy, J.S. Kirkaldy, Homogenization by diffusion, Metallur. Trans. 2 (1971) 371-378. [36] G.D. Sathiaraj, P.P. Bhattacharjee, Effect of cold-rolling strain on the evolution of annealing texture of equiatomic CoCrFeMnNi high entropy alloy, Mater. Charact. 109 (2015) 189-197. [37] G.D. Sathiaraj, P.P. Bhattacharjee, Effect of starting grain size on the evolution of microstructure and texture during thermo-mechanical processing of CoCrFeMnNi high entropy alloy, J. Alloys Compd. 647 (2015) 82-96. [38] G.D. Sathiaraj, C. Lee, C.W. Tsai, J.W. Yeh, P.P. Bhattacharjee, Evolution of microstructure and crystallographic texture in severely cold rolled high entropy equiatomic CoCrFeMnNi alloy during annealing, IOP Conf. Ser-Mater. Sci. and Eng. 82 (2015) 012068. [39] G.D. Sathiaraj, P.P. Bhattacharjee, C.W. Tsai, J.W. Yeh, Effect of heavy cryo-rolling on the evolution of microstructure and texture during annealing of equiatomic CoCrFeMnNi high entropy alloy, Intermetallics 69 (2016) 1-9. [40] I.S. Wani, G.D. Sathiaraj, M.Z. Ahmed, S.R. Reddy, P.P. Bhattacharjee, Evolution of microstructure and texture during thermo-mechanical processing of a two phase Al0.5CoCrFeMnNi high entropy alloy, Mater. Charact. 118 (2016) 417-424. [41] W. Wu, S. Ni, Y. Liu, M. Song, Effects of cold rolling and subsequent annealing on the microstructure of a HfNbTaTiZr high-entropy alloy, J. Mater. Res. 31 (2016) 3815-3823. [42] G.C. Soares, B.M. Gonzalez, L.D. Santos, Strain hardening behavior and microstructural evolution during plastic deformation of dual phase, non-grain oriented electrical and AISI 304 steels, Mat. Sci. Eng. A-Struct. 684 (2017) 577-585. [43] L. Zhang, Y. Wang, X. Yang, K. Li, S. Ni, Y. Du, M. Song, Texture, Microstructure and Mechanical Properties of 6111 Aluminum Alloy Subject to Rolling Deformation, Mater. Res. 20 (2017) 1360-1368. [44] R.R. Eleti, V. Raju, M. Veerasham, S.R. Reddy, P.P. Bhattacharjee, Influence of strain on the formation of cold-rolling and grain growth textures of an equiatomic HfZrTiTaNb refractory high entropy alloy, Mater. Charact. 136 (2018) 286-292. [45] C. Haase, L.A. Barrales-Mora, Influence of deformation and annealing twinning on the microstructure and texture evolution of face-centered cubic high-entropy alloys, Acta Mater. 150 (2018) 88-103. [46] O.N. Senkov, A.L. Pilchak, S.L. Semiatin, Effect of Cold Deformation and Annealing on the Microstructure and Tensile Properties of a HfNbTaTiZr Refractory High Entropy Alloy, Metallur. and Mater. Trans. A 49 (2018) 2876-2892. [47] A. Hedayati, A. Najafizadeh, A. Kermanpur, F. Forouzan, The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel, J. Mater. Process. Technol. 210 (2010) 1017-1022. [48] P. Nordala, R. Othman, A.B. Ismail, Effect of Rolling Reduction on Microstructure and Mechanical Properties of Plain Low Carbon Steel, Key Eng. Mater. 701 (2016) 187-194. [49] Z.H. Cai, B. Cai, H. Ding, Y. Chen, R.D.K. Misra, Microstructure and deformation behavior of the hot-rolled medium manganese steels with varying aluminum-content, Mater. Sci. Eng. A-Struct. 676 (2016) 263-270. [50] R. Tao, Y.T. Zhao, X.Z. Kai, Z.H. Zhao, R.F. Ding, L. Liang, W.T. Xu, Effects of hot rolling deformation on the microstructure and tensile properties of an in situ-generated ZrB2 nanoparticle-reinforced AA6111 composite, Mater. Sci. Eng. A-Struct. 732 (2018) 138-147. [51] M.J. Jang, S. Praveen, H.J. Sung, J.W. Bae, J. Moon, H.S. Kim, High-temperature tensile deformation behavior of hot rolled CrMnFeCoNi high-entropy alloy, J. Alloys Compd. 730 (2018) 242-248. [52] F.A. Wei, Z.G. Zhang, B. Shi, C. Yang, J.H. Wang, Effect of rolling deformation on microstructure and mechanical properties of Mg-6Sn-3Al-1Zn alloy, Mater. Res. Exp. 7 (2020). [53] S. Chen, J. Butler, S. Melzer, Effect of asymmetric hot rolling on texture, microstructure and magnetic properties in a non-grain oriented electrical steel, J. Magn. Mater. 368 (2014) 342-352. [54] P. Sengupta, S. Rath, V. Kumar, Evolution of Rolling Parameters for Hot Rolled Non-Oriented Electrical Steel, AIST Proceedings: AISTech, 2007. [55] K. Verbeken, J. Schneider, J. Verstraete, H. Hermann, Y. Houbaert, Effect of Hot and Cold Rolling on Grain Size and Texture in Fe-2.4wt%Si Strips, IEEE Trans. Magn. 44 (2008) 3820-3823. [56] R.E. Stoller, S.J. Zinkle, On the relationship between uniaxial yield strength and resolved shear stress in polycrystalline materials, J. Nucl. Mater. 283 (2000) 349-352. [57] W. Abuzaid, H. Sehitoglu, Critical resolved shear stress for slip and twin nucleation in single crystalline FeNiCoCrMn high entropy alloy, Mater. Charact. 129 (2017) 288-299. [58] Q. Liu, N. Hansen, Deformation microstructure and orientation of f.c.c. crystals, Phy. Status Solid A 149 (1995) 187-199. [59] I. Salehinia, D.F. Bahr, Crystal orientation effect on dislocation nucleation and multiplication in FCC single crystal under uniaxial loading, Int. J. Plast. 52 (2014) 133-146. [60] X.W. Zhou, R.B. Sills, D.K. Ward, R.A. Karnesky, Atomistic calculations of dislocation core energy in aluminium, Phy. Rev. B 95 (2017) 054112. [61] M.C. Gao, P. Liaw, J.-W. Yeh, Y. Zhang, High-entropy alloys: Fundamentals and applications, Springer, 2016, pp. 80-82. [62] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 138-144. [63] K. Youssef, M. Sakaliyska, H. Bahmanpour, R. Scattergood, C. Koch, Effect of stacking fault energy on mechanical behavior of bulk nanocrystalline Cu and Cu alloys, Acta Mater. 59 (2011) 5758-5764. [64] V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation, Nat. Mater. 3 (2004) 43-7. [65] J.K. Kim, M.H. Kwon, B.C. De Cooman, On the deformation twinning mechanisms in twinning-induced plasticity steel, Acta Mater. 141 (2017) 444-455. [66] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 521-535. [67] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Science, 2004, pp. 1-4. [68] F.J. Humphreys, A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—I. The basic model, Acta Mater. 45 (1997) 4231-4240. [69] Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys, Intermetallics 46 (2014) 131-140. [70] F.J. Humphreys, A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—II. The effect of second-phase particles, Acta Mater. 45 (1997) 5031-5039. [71] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 216-229. [72] Y.H. Zhao, J.F. Bingert, T.D. Topping, P.L. Sun, X.Z. Liao, Y.T. Zhu, E.J. Lavernia, Mechanical behavior, deformation mechanism and microstructure evolutions of ultrafine-grained Al during recovery via annealing, Mat. Sci. Eng. A-Struct. 772 (2020) 138706. [73] A. Belyakov, Y. Kimura, K. Tsuzaki, Recovery and recrystallization in ferritic stainless steel after large strain deformation, Mat. Sci. Eng. A-Struct. 403 (2005) 249-259. [74] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 240-243. [75] L. Bracke, K. Verbeken, L. Kestens, J. Penning, Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel, Acta Mater. 57 (2009) 1512-1524. [76] M.R. Drury, J.L. Urai, Deformation-Related Recrystallization Processes, Tectonophysics 172 (1990) 235-253. [77] A. Belyakov, T. Sakai, H. Miura, R. Kaibyshev, K. Tsuzaki, Continuous recrystallization in austenitic stainless steel after large strain deformation, Acta Mater. 50 (2002) 1547-1557. [78] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Science, 2004, pp. 451-461. [79] H. Jazaeri, F.J. Humphreys, The transition from discontinuous to continuous recrystallization in some aluminium alloys, Acta Mater. 52 (2004) 3251-3262. [80] Y.B. Zhang, A. Godfrey, Q. Liu, W. Liu, D.J. Jensen, Analysis of the growth of individual grains during recrystallization in pure nickel, Acta Mater. 57 (2009) 2631-2639. [81] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 180-182. [82] M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, Microhardness measurements and the Hall-Petch relationship in an Al-Mg alloy with submicrometer grain size, Acta Mater. 44 (1996) 4619-4629. [83] W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu, Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy, Scripta Mater. 68 (2013) 526-529. [84] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London, 2014, pp. 1-5. [85] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Science, 2004, pp. 67-68, 379-380. [86] L.A.I. Kestens, H. Pirgazi, Texture formation in metal alloys with cubic crystal structures, Mater. Sci. Technol. 32 (2016) 1303-1315. [87] O. Engler, V. Randle, Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping, Second Edition, Taylor & Francis, 2009, pp. 3-7. [88] G.D. Sathiaraj, A. Pukenas, W. Skrotzki, Texture formation in face-centered cubic high-entropy alloys, J. Alloys Compd. 826 (2020) 154183. [89] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London, 2014, pp. 3-4, 11. [90] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London, 2014, pp. 22-25. [91] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Science, 2004, pp. 529-531. [92] L. Kestens, S. Jacobs, Texture Control During the Manufacturing of Nonoriented Electrical Steels, Texture, Stress, and Microstructure, 2008. [93] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London, 2014, pp. 34-37. [94] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London, 2014, pp. 41-57. [95] O. Engler, V. Randle, Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping, Second Edition, Taylor & Francis, 2009, pp. 79-107. [96] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London, 2014, pp. 58-67. [97] O. Engler, V. Randle, Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping, Second Edition, Taylor & Francis, 2009, pp. 175-231. [98] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 144-148. [99] W. Truszkowski, J. Krol, B. Major, Inhomogeneity of Rolling Texture in Fcc Metals, Metallu. Trans. A-Physical Metallur. and Mater. Sci. 11 (1980) 749-758. [100] H.T. Liu, H.L. Li, H. Wang, Y. Liu, F. Gao, L.Z. An, S.Q. Zhao, Z.Y. Liu, G.-D. Wang, Effects of initial microstructure and texture on microstructure, texture evolution and magnetic properties of non-oriented electrical steel, J. Magn. Magn. Mater. 406 (2016) 149-158. [101] J. Wang, Y. Wang, W. Cai, J. Li, Z. Zhang, S.X. Mao, Discrete shear band plasticity through dislocation activities in body-centered cubic tungsten nanowires, Sci. Rep. 8 (2018) 4574. [102] R.E. Smallman, D. Green, The dependence of rolling texture on stacking fault energy, Acta Metall. 12 (1964) 145-154. [103] Y.R. Liang, H. Tian, H.L. Suo, P. Wang, Y.C. Meng, L. Ma, M. Liu, Recrystallization and cube texture formation in heavily cold-rolled Ni7W alloy substrates for coated conductors, J. Mater. Res. 30 (2015) 1686-1692. [104] X.P. Chen, D. Chen, H.F. Sun, L.X. Wang, D. Shang, Evolution of microstructure and texture during cold rolling and high-temperature annealing in Ni–5 at% W substrate for coated conductor, Rare Metals 39 (2018) 928-935. [105] T. Kamijo, A. Fujiwara, Y. Yoneda, H. Fukutomi, Formation of cube texture in copper single crystals, Acta Metall. et Mater. 39 (1991) 1947-1952. [106] M. Ferry, F.J. Humphreys, Onset of abnormal subgrain growth in cold rolled {110}〈001〉 oriented copper single crystals, Mater. Sci. Eng.: A 435-436 (2006) 447-452. [107] P.P. Bhattacharjee, R.K. Ray, N. Tsuji, Evolution of Deformation and Recrystallization Textures in High-Purity Ni and the Ni-5 at.% W Alloy, Metall. and Mater. Trans. A-Phy. Metall. and Mate. Sci. 41A (2010) 2856-2870. [108] P.P. Bhattacharjee, R.K. Ray, N. Tsuji, Cold rolling and recrystallization textures of a Ni–5at.% W alloy, Acta Mater. 57 (2009) 2166-2179. [109] V.S. Sarma, J. Eickemeyer, C. Mickel, L. Schultz, B. Holzapfel, On the cold rolling textures in some fcc Ni–W alloys, Mater. Sci. Eng.: A 380 (2004) 30-33. [110] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London, 2014, pp. 108-117. [111] R. Madhavan, R. Kalsar, R.K. Ray, S. Suwas, Role of stacking fault energy on texture evolution revisited, IOP Conf. Ser-Mater. Sci. 82 (2015) 012031. [112] J.J. Sidor, L.A.I. Kestens, Analytical description of rolling textures in face-centred-cubic metals, Scripta Mater. 68 (2013) 273-276. [113] R. Madhavan, R. Kalsar, R.K. Ray, S. Suwas, Role of stacking fault energy on texture evolution revisited, IOP Conf. Ser-Mater. Sci. 82 (2015) 012031. [114] T. Leffers, R.K. Ray, The brass-type texture and its deviation from the copper-type texture, Prog. Mater. Sci. 54 (2009) 351-396. [115] D. Barbier, N. Gey, S. Allain, N. Bozzolo, M. Humbert, Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions, Mater. Sci. Eng.: A 500 (2009) 196-206. [116] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London, 2014, pp. 144-147. [117] B. Bhattacharya, K. Kumar, Textural changes during recovery annealing of a heavily cold-rolled Fe–Mn–Al–Si–C alloy, Ironmaking & Steelmaking 45 (2016) 302-308. [118] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London, 2014, pp. 170-171. [119] I.L. Dillamore, C.J.E. Smith, T.W. Watson, Oriented Nucleation in the Formation of Annealing Textures in Iron, Metal Sci. J. 1 (2013) 49-54. [120] R.L. Every, M. Hatherly, Oriented Nucleation in Low-Carbon Steels, Texture 1 (1974) 183-194. [121] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Science, 2004, pp. 393-394. [122] P.P. Bhattacharjee, G.D. Sathiaraj, M. Zaid, J.R. Gatti, C. Lee, C.W. Tsai, J.W. Yeh, Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy, J. Alloys Compd. 587 (2014) 544-552. [123] G.D. Sathiaraj, P.P. Bhattacharjee, Analysis of microstructure and microtexture during grain growth in low stacking fault energy equiatomic CoCrFeMnNi high entropy and Ni–60wt.%Co alloys, J. Alloys Compd. 637 (2015) 267-276. [124] G. Abbruzzese, K. Lücke, A theory of texture controlled grain growth—I. Derivation and general discussion of the model, Acta Metall. 34 (1986) 905-914. [125] J.J. Bhattacharyya, S.R. Agnew, G. Muralidharan, Texture enhancement during grain growth of magnesium alloy AZ31B, Acta Mater. 86 (2015) 80-94. [126] N. Bozzolo, N. Dewobroto, T. Grosdidier, E. Wagner, Texture evolution during grain growth in recrystallized commercially pure titanium, Mat. Sci. Eng. A-Struct. 397 (2005) 346-355. [127] J.T. Park, J.A. Szpunar, Texture development during grain growth in nonoriented electrical steels, ISIJ Int. 45 (2005) 743-749. [128] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London, 2014, pp. 207-223. [129] J.L. Bassani, Yield Characterization of Metals with Transversely Isotropic Plastic Properties, Int. J. of Mech. Sci. 19 (1977) 651-660. [130] J. Hirsch, Texture evolution and earing in aluminium can sheet, Mater. Sci. For., 495 (2005) 1565-1572. [131] S.K. Chang, Texture effects on magnetic properties in high-alloyed non-oriented electrical steels, Metal Sci. and Heat Treat. 49 (2007) 569-573. [132] M. Ghosh, A. Miroux, L.A.I. Kestens, Correlating r-value and through thickness texture in Al–Mg–Si alloy sheets, J. Alloys Compd. 619 (2015) 585-591. [133] O. Engler, S. Kalz, Simulation of earing profiles from texture data by means of a visco-plastic self-consistent polycrystal plasticity approach, Mat. Sci. Eng. A-Struct. 373 (2004) 350-362. [134] I. Scheider, W. Brocks, A. Cornec, Procedure for the determination of true stress-strain curves from tensile tests with rectangular cross-section specimens, J. Eng. Mater-T Asme. 126 (2004) 70-76. [135] Z.L. Zhang, M. Hauge, J. Ødegård, C. Thaulow, Determining material true stress–strain curve from tensile specimens with rectangular cross-section, Int. J. of Solids and Struct. 36 (1999) 3497-3516. [136] H. Mecking, U.F. Kocks, Kinetics of Flow and Strain-Hardening, Acta Metall. 29 (1981) 1865-1875. [137] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London, 2014, pp. 213-215. [138] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Science, 2004, pp. 480-481. [139] S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Friction stress and Hall-Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing, Scripta Mater. 134 (2017) 33-36. [140] C.C. Yen, G.R. Huang, Y.C. Tan, H.W. Yeh, D.J. Luo, K.T. Hsieh, E.W. Huang, J.W. Yeh, S.J. Lin, C.C. Wang, C.L. Kuo, S.Y. Chang, Y.C. Lo, Lattice distortion effect on elastic anisotropy of high entropy alloys, J. Alloys Compd. 818 (2020) 152876. [141] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299-303. [142] F. Cardarelli, Less Common Nonferrous Metals, Materials Handbook: A Concise Desktop Reference, Springer International Publishing, Cham, 2018, pp. 105, 537. [143] R.L. Fleischer, Substitutional Solution Hardening, Acta Metall. 11 (1963) 203-209. [144] L.A. Gypen, A. Deruyttere, Multi-component solid solution hardening, J. of Mater. Sci. 12 (1977) 1028-1033. [145] V. Gerold, H.P. Karnthaler, On the origin of planar slip in f.c.c. alloys, Acta Metall. 37 (1989) 2177-2183. [146] F. Otto, A. Dlouhy, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater. 61 (2013) 5743-5755. [147] J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater. 102 (2016) 187-196. [148] N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki, T. Furuhara, Stress–strain behavior of ferrite and bainite with nano-precipitation in low carbon steels, Acta Mater. 83 (2015) 383-396. [149] N. Ohno, D. Okumura, Higher-order stress and grain size effects due to self-energy of geometrically necessary dislocations, J. of the Mech. and Phy. of Solids 55 (2007) 1879-1898. [150] O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compd. 509 (2011) 6043-6048. [151] H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, M.C. Gao, Mechanical properties of refractory high-entropy alloys: Experiments and modeling, J. Alloys Compd. 696 (2017) 1139-1150. [152] Y.J. Chen, Y. Fang, X.Q. Fu, Y.P. Lu, S.J. Chen, H.B. Bei, Q. Yu, Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy, J. Mater. Sci. Technol. 73 (2021) 101-107. [153] Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Tuning element distribution, structure and properties by composition in high-entropy alloys, Nature 574 (2019) 223-227. [154] C. Keller, E. Hug, Hall–Petch behaviour of Ni polycrystals with a few grains per thickness, Mater. Lett. 62 (2008) 1718-1720. [155] Y.Y. Zhao, T.G. Nieh, Correlation between lattice distortion and friction stress in Ni-based equiatomic alloys, Intermetallics 86 (2017) 45-50. [156] Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater. 81 (2014) 428-441. [157] M.A. Meyers, K.K. Chawla, Mechanical metallurgy: principles and applications, Prentice-Hall, 1984, pp. 499-500. [158] A. Oudriss, J. Creus, J. Bouhattate, E. Conforto, C. Berziou, C. Savall, X. Feaugas, Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel, Acta Mater. 60 (2012) 6814-6828. [159] R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles - SI Version, Cengage Learning, 2009, pp. 150-151. [160] G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Mater. 118 (2016) 152-163. [161] R.K. Ray, J.J. Jonas, R.E. Hook, Cold rolling and annealing textures in low carbon and extra low carbon steels, Int. Mater. Rev. 39 (1994) 129-172. [162] C.N. Tome, R.A. Lebensohn, C.T. Necker, Mechanical anisotropy and grain interaction in recrystallized aluminum, Metall. and Mater. Trans. A-Phy. Metall. and Mater. Sci. 33 (2002) 2635-2648. [163] V. Subramanya Sarma, J. Eickemeyer, L. Schultz, B. Holzapfel, Recrystallisation texture and magnetisation behaviour of some FCC Ni–W alloys, Scripta Mater. 50 (2004) 953-957. [164] Y. Takayama, J.A. Szpunar, Stored Energy and Taylor Factor Relation in an Al-Mg-Mn Alloy Sheet Worked by Continuous Cyclic Bending, Mater. Trans. 45 (2004) 2316-2325. [165] A. Godfrey, O.V. Mishin, T. Yu, Characterization and influence of deformation microstructure heterogeneity on recrystallization, 36th Riso Int. Symp. on Mat. Sci. 89 (2015) 012003. [166] S.H. Joo, H. Kato, M.J. Jang, J. Moon, C.W. Tsai, J.W. Yeh, H.S. Kim, Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy, Mater. Sci. Eng. A-Struct. 689 (2017) 122-133. [167] A.A. Saleh, E.V. Pereloma, A.A. Gazder, Microstructure and texture evolution in a twinning-induced-plasticity steel during uniaxial tension, Acta Mater. 61 (2013) 2671-2691. [168] K.H. Lin, S.Y. Chang, Y.C. Lo, C.C. Wang, S.J. Lin, J.W. Yeh, Differences in texture evolution from low-entropy to high-entropy face-centered cubic alloys during tension test, Intermetallics 118 (2020) 106635. [169] S. Sinha, J.A. Szpunar, N.A.P.K. Kumar, N.P. Gurao, Tensile deformation of 316L austenitic stainless steel using in-situ electron backscatter diffraction and crystal plasticity simulations, Mat. Sci. Eng. A-Struct. 637 (2015) 48-55.
|