帳號:guest(18.218.8.152)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張敬
作者(外文):Chang, Ching
論文名稱(中文):含氮超奈米晶鑽石膜之合成與其在生物感測器上之應用
論文名稱(外文):The Synthesis of Nitrogen-incorporated Ultrananocrystalline Diamond Films and their Application in Biosensors
指導教授(中文):戴念華
指導教授(外文):Tai, Nyan-Hwa
口試委員(中文):金重勳
李紫原
萬德輝
劉偉仁
口試委員(外文):Chin, Tsung-Shune
Lee, Chi-Young
Wan, De-Hui
Liu, Wei-Ren
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031804
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:130
中文關鍵詞:含氮超奈米晶鑽石膜氧化鋅二茂鐵慢性阻塞性肺病二氧化碳感測器唾液葡萄糖葡萄糖感測器
外文關鍵詞:Nitrogen-incorporated ultrananocrystalline diamond filmsZinc oxideFerroceneChronic obstructive pulmonary disease (COPD)Carbon dioxide sensorSalivary glucose sensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:34
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
含氮超奈米晶鑽石膜在感測生物檢體應用上擁有極優異的靈敏度,本篇論文聚焦於利用含氮超奈米晶鑽石膜的成長機制研究,並探討其在各種生物感測器應用之設計。研究中建立了一高可靠度的含氮超奈米晶鑽石膜製程手法,此手法是建立於對其成長機制的深度了解,並藉此為基礎,分別將含氮超奈米晶鑽石膜應用於能檢測慢性阻塞性肺病之二氧化碳感測器設計,及開發可用於檢測高干擾性之低葡萄糖濃度範圍的唾液感測器,藉由以上研究之探討,進一步了解含氮超奈米晶鑽石膜在實際應用上之可行性。
在第一部分的研究中,主要針對含氮超奈米晶鑽石膜的成核成長方式進行深入探討研究。製程上,首先將矽基板浸泡在含有奈米鑽石及鈦顆粒的懸浮溶液中進行超音波聲震處理,藉由此方法在矽基板上產生出成核點後,接著利用微波電漿輔助化學汽相沉積法在特定分壓及能量條件下合成出含氮超奈米晶鑽石膜。在含氮超奈米晶鑽石膜之成核初期會形成一層氮化矽薄膜作為中間緩衝層,氮化矽薄膜中之氮原子在超奈米晶鑽石膜成核初期會擴散進入形成摻雜結構,以產生含氮超奈米晶鑽石膜。此外,將此薄膜進行圖案化製程後,其感測效能相較於平面結構來說,可以產生額外34%的訊號面積,顯示出含氮超奈米晶鑽石膜在生物檢體上之感測潛力。
在第二部分的研究中,將已成長完之含氮超奈米晶鑽石膜藉由化學浴共沉積法將氧化鋅成長於其上用於設計出檢測慢性阻塞性肺病之二氧化碳感測器。利用含氮超奈米晶鑽石膜多晶結構除了可以用作氧化鋅之成核點外,所提供成核點之位置亦可同時讓氧化鋅形成緻密且如花狀之形貌。研究中亦發現當氧化鋅成長於含氮超奈米晶鑽石膜上時,形成之薄膜性質會以類似兩半導體材料相接後所產生之異質接面結構呈現。結果顯示,本研究所開發之二氧化碳感測電極針對在4-15%的二氧化碳濃度區間擁有優秀的線性關係,其R2值高達0.9903,顯示其應用於感測二氧化碳之能力。
在最後一部分的研究中,沿用氧化鋅成長於含氮超奈米晶鑽石膜上之優異異質接面結構,再結合二茂鐵作為輔助訊號增強之中介體來製備成電極,以開發出可用於檢測高干擾性之低葡萄糖濃度範圍的唾液感測器。從研究結果顯示,電極在搭配液態葡萄糖氧化酶的條件下可以在20-600 μM的葡萄糖濃度區間展現出804.11 μA/mMcm2的優異靈敏度,且其R2 值為0.9926,而在含有干擾物的人工唾液測試條件下,於50-400 μM的葡萄糖濃度範圍中表現出高達1012.35 μA/mMcm2的靈敏度,其R2 值為 0.9912。此唾液葡萄糖感測電極所呈現之結果再次驗證了含氮超奈米晶鑽石膜在生物檢體感測上的應用潛力。
This dissertation explores the effective methods for developing high performance biosensors using nitrogen-incorporated ultrananocrystalline diamond (NUNCD) films. In this study, we focus on the growth evolution of NUNCD and discuss the design in various applications of biosensors. Herein, we can further understand the feasibility of the practical application of NUNCD films.
In the first part of the study, the nucleation and growth methods of NUNCD films are mainly discussed in-depth. In the process, the silicon substrate is first ultrasonicated in a suspension solution containing nano-diamond and titanium particles. Subsequently, NUNCD films were synthesized by microwave plasma enhanced chemical vapor deposition (MPECVD) under specific partial pressure and energy conditions. At the initial nucleation stage of the NUNCD films, a silicon nitride (Si3N4) film was formed as an intermediate buffer layer to provide the nitrogen doping in the UNCD films, creating the NUNCD films. In addition, the sensing performance of patterned NUNCD (P-NUNCD) films is higher than the pristine NUNCD films for dopamine (DA) detection. The sensing performance of P-NUNCD can generate an additional 34% signal area compared with the pristine NUNCD, indicating the potential of the NUNCD films on biological samples.
In the second part of the study, bidens-like zinc oxide (b-ZnO) was grown on the pristine NUNCD films by coprecipitation method, which was designed to detect chronic obstructive pulmonary disease (COPD). The NUNCD films act as nucleation sites for the growth of b-ZnO and induce a dense morphology with bidens-like structure. Additionally, the heterojunction structure of b-ZnO and NUNCD layers can improve the CO2 sensing performance, resulting in the purpose of COPD detection. The results show that the CO2 sensor developed in this study has an excellent linear relationship in the range of 4-15% CO2 concentration, and its R2 value is as high as 0.9903, which shows its ability to be used for CO2 detection.
In the final part, the extraordinary heterojunction structure of b-ZnO/NUNCD films was used as an easily oxidized layer. The ferrocene (FC) was then coated on the b-ZnO/NUNCD and performed as a mediator for auxiliary signal enhancement. Moreover, a liquid enzyme (glucose oxidase, GOx(l)) was introduced into the detection system, providing specificity. The results show that the salivary glucose sensors can exhibit an excellent sensitivity of 804.11 μA/mMcm2 in the glucose concentration range of 20-600 μM with the GOx(l), and its R2 value is 0.9926. The sensors also exhibit a high sensitivity with 1012.35 μA/mMcm2 in the 50-400 μM under artificial saliva and interferences, and its R2 value is 0.9912. The results presented by the salivary glucose sensing electrode once again verified the application potential of the NUNCD in the sensing of biological samples.
摘要 ii
Abstract iv
Acknowledgment vi
Table of contents vii
List of tables xii
List of figures xiii
Chapter 1. Overview 1
1.1 Introduction of biomarker for specific diseases 1
1.1.1 Parkinson's disease 1
1.1.2 Chronic obstructive pulmonary disease 3
1.1.3 Diabetes mellitus 5
1.2 Introduction of recently detecting methods for specific diseases 7
1.2.1 Parkinson's disease – Dopamine 7
1.2.2 Chronic obstructive pulmonary disease – CO2 9
1.2.3 Diabetes mellitus – Salivary glucose 13
1.3 Introduction of biosensor materials for specific diseases 17
1.3.1 Detection of dopamine 17
1.3.2 Detection of CO2 18
1.3.3 Detection of salivary glucose 20
1.3.4 Introduction of lab studies 21
1.3.5 Main purpose of this study 26
Chapter 2. Experiments and characterizations 29
2.1 Fabrication of electrode 29
2.1.1 Pretreatment of substrate 29
2.1.2 Synthesis of NUNCD film 29
2.1.3 Synthesis of b-ZnO film 30
2.1.4 Preparation of PEI-PEG layer 30
2.1.5 Synthesis of ferrocene nanoparticles 31
2.2 Characterization techniques 31
2.2.1 Raman spectroscopy 31
2.2.2 X-ray diffraction analysis 31
2.2.3 X-ray photoelectron spectroscopy 32
2.2.4 Fiels emission scanning electron microscopy 32
2.2.5 Spherical-aberration corrected field emission transmission electron microscope 32
2.2.6 Electrochemical workstation 33
Chapter 3. Nitrogen-Incorporated Acicular-Shaped Nanodiamond Films for Dopamine Detection 35
3.1 Research background 35
3.2 Results and discussion 37
3.2.1 Characterizations of bonding and crystallinity 37
3.2.3 Analyses of depth distribution by XPS 43
3.2.4 Characterization cross sectional view by STEM 46
3.2.5 Analyses of detection performance for dopamine sensing 48
3.2.6 The growth evolution of NUNCD films 51
3.2.7 Comparison of the present work with other reports on dopamine detection 54
3.3 Summary 55
Chapter 4. Human Exhalation CO2 Sensor Based on the PEI-PEG/b-ZnO/NUNCD/Si Heterojunction Electrode 56
4.1 Research background 56
4.2 Results and discussion 59
4.2.1 Characterizations of crystallinity by XRD pattern 59
4.2.2 Characterizations of the morphology and conductivity 60
4.2.3 Characterizations of cross sectional view by FESEM and STEM 64
4.2.4 Analyses of detection performance for CO2 sensing 67
4.2.5 Pathway of CO2 detection by PEI-PEG/b-ZnO/NUNCD/Si 72
4.2.6 Comparison of the present work with commercial products on COPD detection 75
4.3 Summary 76
Chapter 5. A Noninvasive Salivary Sensor Based on Ferrocene/b-ZnO/NUNCD/Si Heterojunction Nanostructures for Glucose Sensing in Neutral Condition 77
5.1 Research background 77
5.2 Results and discussion 80
5.2.1 Characterizations of crystallinity by XRD patterns 80
5.2.2 Characterization of the morphology by FESEM images 82
5.2.3 Characterization of the cross sectional view by TEM 85
5.2.4 Analyses of electrochemical performance for glucose sensing 87
5.2.5 Analyses of bonding and stability by XPS 97
5.2.6 Pathway of glucose detection by FC/b-ZnO/NUNCD/Si 100
5.2.7 Comparison of the present work with other reports on salivary glucose detection 101
5.3 Summary 102
Chapter 6. Conclusions 103
References 105
Publications and conference award 126

1. Raza, C.; Anjum, R., Parkinson's disease: Mechanisms, translational models and management strategies. Life sciences 2019, 226, 77-90.
2. Barnes, P. J.; Burney, P. G. J.; Silverman, E. K.; Celli, B. R.; Vestbo, J.; Wedzicha, J. A.; Wouters, E. F. M., Chronic obstructive pulmonary disease. Nature Reviews Disease Primers 2015, 1 (1), 15076.
3. Taylor, R.; Ramachandran, A.; Yancy, W. S.; Forouhi, N. G., Nutritional basis of type 2 diabetes remission. bmj 2021, 374.
4. Patella, B.; Sortino, A.; Mazzara, F.; Aiello, G.; Drago, G.; Torino, C.; Vilasi, A.; O'Riordan, A.; Inguanta, R., Electrochemical detection of dopamine with negligible interference from ascorbic and uric acid by means of reduced graphene oxide and metals-NPs based electrodes. Analytica Chimica Acta 2021, 1187, 339124.
5. Su, X.; Wu, W.; Zhu, Z.; Lin, X.; Zeng, Y., The effects of epithelial–mesenchymal transitions in COPD induced by cigarette smoke: an update. Respiratory Research 2022, 23 (1), 225.
6. Cui, Y.; Zhang, H.; Zhu, J.; Liao, Z.; Wang, S.; Liu, W., Correlations of Salivary and Blood Glucose Levels among Six Saliva Collection Methods. International Journal of Environmental Research and Public Health 2022, 19 (7), 4122.
7. Dincer, C.; Ktaich, R.; Laubender, E.; Hees, J. J.; Kieninger, J.; Nebel, C. E.; Heinze, J.; Urban, G. A., Nanocrystalline boron-doped diamond nanoelectrode arrays for ultrasensitive dopamine detection. Electrochimica Acta 2015, 185, 101-106.
8. Lotharius, J.; Brundin, P., Pathogenesis of Parkinson's disease: dopamine, vesicles and α-synuclein. Nature Reviews Neuroscience 2002, 3 (12), 932-942.
9. Liu, X.; Zhang, L.; Wei, S.; Chen, S.; Ou, X.; Lu, Q., Overoxidized polyimidazole/graphene oxide copolymer modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid, guanine and adenine. Biosensors and Bioelectronics 2014, 57, 232-238.
10. Mao, H.; Liang, J.; Zhang, H.; Pei, Q.; Liu, D.; Wu, S.; Zhang, Y.; Song, X.-M., Poly (ionic liquids) functionalized polypyrrole/graphene oxide nanosheets for electrochemical sensor to detect dopamine in the presence of ascorbic acid. Biosensors and Bioelectronics 2015, 70, 289-298.
11. Zhang, W.; Zheng, J.; Shi, J.; Lin, Z.; Huang, Q.; Zhang, H.; Wei, C.; Chen, J.; Hu, S.; Hao, A., Nafion covered core–shell structured Fe3O4@graphene nanospheres modified electrode for highly selective detection of dopamine. Analytica Chimica Acta 2015, 853, 285-290.
12. Jiang, P. L.; Hsieh, P. Y.; Chen, Y. C.; Lee, C. Y.; Chang, H. Y.; Tai, N. H., Nitrogen-Incorporated Ultrananocrystalline Diamond Electrodes for Dopamine Determination. Journal of Biomedical Nanotechnology 2018, 14 (9), 1627-1634.
13. Tsai, T. C.; Huang, F. H.; Chen, J. J. J., Selective detection of dopamine in urine with electrodes modified by gold nanodendrite and anionic self-assembled monolayer. Sensors and Actuators B: Chemical 2013, 181, 179-186.
14. Chang, C.; Lee, C. Y.; Tai, N. H., Nitrogen-Incorporated Ovoid-Shaped Nanodiamond Films for Dopamine Detection. ACS Applied Nano Materials 2020, 3 (12), 11970-11978.
15. Shebl, E.; Mirabile, V. S.; Sankari, A.; Burns, B., Respiratory failure. In StatPearls [Internet], StatPearls publishing: 2022.
16. Sood, P.; Paul, G.; Puri, S., Interpretation of arterial blood gas. Indian journal of critical care medicine: peer-reviewed, official publication of Indian Society of Critical Care Medicine 2010, 14 (2), 57.
17. Castro, D.; Patil, S. M.; Keenaghan, M., Arterial Blood Gas. StatPearls Publishing, Treasure Island (FL): 2022.
18. Lam, T.; Nagappa, M.; Wong, J.; Singh, M.; Wong, D.; Chung, F., Continuous pulse oximetry and capnography monitoring for postoperative respiratory depression and adverse events: a systematic review and meta-analysis. Anesthesia & Analgesia 2017, 125 (6), 2019-2029.
19. Cho, N. H.; Shaw, J.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.; Ohlrogge, A.; Malanda, B., IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes research and clinical practice 2018, 138, 271-281.
20. Amer, S.; Yousuf, M.; Siddqiui, P.; Alam, J., Salivary glucose concentrations in patients with diabetes mellitus–a minimally invasive technique for monitoring blood glucose levels. Pak J Pharm Sci 2001, 14 (1), 33-37.
21. Kumar, S.; Padmashree, S.; Jayalekshmi, R., Correlation of salivary glucose, blood glucose and oral candidal carriage in the saliva of type 2 diabetics: A case-control study. Contemporary clinical dentistry 2014, 5 (3), 312.
22. Satish, B.; Srikala, P.; Maharudrappa, B.; Awanti, S. M.; Kumar, P.; Hugar, D., Saliva: A tool in assessing glucose levels in Diabetes Mellitus. Journal of international oral health: JIOH 2014, 6 (2), 114.
23. Dhanya, M.; Hegde, S., Salivary glucose as a diagnostic tool in Type II diabetes mellitus: A case-control study. Nigerian journal of clinical practice 2016, 19 (4), 486-490.
24. Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D.; Lien, D. H.; Brooks, G. A.; Davis, R. W.; Javey, A., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529 (7587), 509-514.
25. Nyein, H. Y. Y.; Gao, W.; Shahpar, Z.; Emaminejad, S.; Challa, S.; Chen, K.; Fahad, H. M.; Tai, L. C.; Ota, H.; Davis, R. W.; Javey, A., A Wearable Electrochemical Platform for Noninvasive Simultaneous Monitoring of Ca2+ and pH. ACS Nano 2016, 10 (7), 7216-7224.
26. Chen, Y.; Lu, S.; Zhang, S.; Li, Y.; Qu, Z.; Chen, Y.; Lu, B.; Wang, X.; Feng, X., Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Science Advances 2017, 3 (12).
27. Lin, Y.; Bariya, M.; Nyein, H. Y. Y.; Kivimäki, L.; Uusitalo, S.; Jansson, E.; Ji, W.; Yuan, Z.; Happonen, T.; Liedert, C.; Hiltunen, J.; Fan, Z.; Javey, A., Porous Enzymatic Membrane for Nanotextured Glucose Sweat Sensors with High Stability toward Reliable Noninvasive Health Monitoring. Advanced Functional Materials 2019, 29 (33), 1902521.
28. Lin, Y.; Chen, J.; Tavakoli, M. M.; Gao, Y.; Zhu, Y.; Zhang, D.; Kam, M.; He, Z.; Fan, Z., Printable Fabrication of a Fully Integrated and Self-Powered Sensor System on Plastic Substrates. Advanced Materials 2019, 31 (5), 1804285.
29. Wei, X.; Zhu, M.; Li, J.; Liu, L.; Yu, J.; Li, Z.; Ding, B., Wearable biosensor for sensitive detection of uric acid in artificial sweat enabled by a fiber structured sensing interface. Nano Energy 2021, 85, 106031.
30. Vashist, S. K., Non-invasive glucose monitoring technology in diabetes management: A review. Analytica Chimica Acta 2012, 750, 16-27.
31. Kim, J.; Campbell, A. S.; Wang, J., Wearable non-invasive epidermal glucose sensors: A review. Talanta 2018, 177, 163-170.
32. Larin, K. V.; Eledrisi, M. S.; Motamedi, M.; Esenaliev, R. O., Noninvasive Blood Glucose Monitoring With Optical Coherence Tomography: A pilot study in human subjects. Diabetes Care 2002, 25 (12), 2263-2267.
33. Ghosn, M. G.; Sudheendran, N.; Wendt, M.; Glasser, A.; Tuchin, V. V.; Larin, K. V., Monitoring of glucose permeability in monkey skin in vivo using Optical Coherence Tomography. Journal of Biophotonics 2010, 3 (1-2), 25-33.
34. Shibata, H.; Heo, Y. J.; Okitsu, T.; Matsunaga, Y.; Kawanishi, T.; Takeuchi, S., Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring. Proceedings of the National Academy of Sciences 2010, 107 (42), 17894-17898.
35. Cho, O. K.; Kim, Y. O.; Mitsumaki, H.; Kuwa, K. In Noninvasive measurement of glucose by metabolic heat conformation method, Clinical Chemistry, 2004; pp 1894-1898.
36. Shervedani, R. K.; Mehrjardi, A. H.; Zamiri, N., A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor. Bioelectrochemistry 2006, 69 (2), 201-208.
37. Yang, X.; Zhang, A. Y.; Wheeler, D. A.; Bond, T. C.; Gu, C.; Li, Y., Direct molecule-specific glucose detection by Raman spectroscopy based on photonic crystal fiber. Analytical and Bioanalytical Chemistry 2012, 402 (2), 687-691.
38. Potts, R. O.; Tamada, J. A.; Tierney, M. J., Glucose monitoring by reverse iontophoresis. Diabetes/Metabolism Research and Reviews 2002, 18 (SUPPL. 1), S49-S53.
39. Iguchi, S.; Kudo, H.; Saito, T.; Ogawa, M.; Saito, H.; Otsuka, K.; Funakubo, A.; Mitsubayashi, K., A flexible and wearable biosensor for tear glucose measurement. Biomedical Microdevices 2007, 9 (4), 603-609.
40. Soni, A.; Jha, S. K., A paper strip based non-invasive glucose biosensor for salivary analysis. Biosensors and Bioelectronics 2015, 67, 763-768.
41. Heikenfeld, J., Non-invasive Analyte Access and Sensing through Eccrine Sweat: Challenges and Outlook circa 2016. Electroanalysis 2016, 28 (6), 1242-1249.
42. Koh, A.; Kang, D.; Xue, Y.; Lee, S.; Pielak, R. M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P.; Manco, M. C.; Wang, L.; Ammann, K. R.; Jang, K.-I.; Won, P.; Han, S.; Ghaffari, R.; Paik, U.; Slepian, M. J.; Balooch, G.; Huang, Y.; Rogers, J. A., A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Science Translational Medicine 2016, 8 (366), 366ra165-366ra165.
43. Lee, H.; Song, C.; Hong, Y. S.; Kim, M. S.; Cho, H. R.; Kang, T.; Shin, K.; Choi, S. H.; Hyeon, T.; Kim, D. H., Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Science Advances 2017, 3 (3).
44. Lee, H.; Hong, Y. J.; Baik, S.; Hyeon, T.; Kim, D. H., Enzyme-Based Glucose Sensor: From Invasive to Wearable Device. Advanced Healthcare Materials 2018, 7 (8), 1701150.
45. Cai, S.; Xu, C.; Jiang, D.; Yuan, M.; Zhang, Q.; Li, Z.; Wang, Y., Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics. Nano Energy 2022, 93, 106904.
46. Olesberg, J. T.; Arnold, M. A.; Mermelstein, C.; Schmitz, J.; Wagner, J., Tunable laser diode system for noninvasive blood glucose measurements. Applied Spectroscopy 2005, 59 (12), 1480-1484.
47. Tang, L.; Chang, S. J.; Chen, C.-J.; Liu, J. T., Non-invasive blood glucose monitoring technology: a review. Sensors 2020, 20 (23), 6925.
48. Sajid, M.; Nazal, M. K.; Mansha, M.; Alsharaa, A.; Jillani, S. M. S.; Basheer, C., Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review. TrAC Trends in Analytical Chemistry 2016, 76, 15-29.
49. Sajid, M.; Baig, N.; Alhooshani, K., Chemically modified electrodes for electrochemical detection of dopamine: Challenges and opportunities. TrAC Trends in Analytical Chemistry 2019, 118, 368-385.
50. Seiyama, T.; Kagawa, S., Study on a Detector for Gaseous Components Using Semiconductive Thin Films. Analytical Chemistry 1966, 38 (8), 1069-1073.
51. Llobet, E., Gas sensors using carbon nanomaterials: A review. Sensors and Actuators B: Chemical 2013, 179, 32-45.
52. Modi, A.; Koratkar, N.; Lass, E.; Wei, B.; Ajayan, P. M., Miniaturized gas ionization sensors using carbon nanotubes. Nature 2003, 424 (6945), 171-174.
53. Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H., Nanotube molecular wires as chemical sensors. Science 2000, 287 (5453), 622-625.
54. Lin, Y.; Fan, Z., Compositing strategies to enhance the performance of chemiresistive CO2 gas sensors. Materials Science in Semiconductor Processing 2020, 107, 104820.
55. Rauti, R.; Musto, M.; Bosi, S.; Prato, M.; Ballerini, L., Properties and behavior of carbon nanomaterials when interfacing neuronal cells: How far have we come? Carbon 2019, 143, 430-446.
56. Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T. M., Carbon Nanotube Chemical Sensors. Chemical Reviews 2019, 119 (1), 599-663.
57. Yang, N.; Chen, X.; Ren, T.; Zhang, P.; Yang, D., Carbon nanotube based biosensors. Sensors and Actuators B: Chemical 2015, 207, 690-715.
58. Ehtesabi, H., Carbon nanomaterials for salivary-based biosensors: a review. Materials Today Chemistry 2020, 17, 100342.
59. Chen, Y.; Tai, N.; Lin, I., Substrate temperature effects on the electron field emission properties of nitrogen doped ultra-nanocrystalline diamond. Diamond and related materials 2008, 17 (4-5), 457-461.
60. Sankaran, K. J.; Huang, B. R.; Saravanan, A.; Manoharan, D.; Tai, N. H.; Lin, I. N., Nitrogen Incorporated Ultrananocrystalline Diamond Microstructures From Bias‐Enhanced Microwave N2/CH4‐Plasma Chemical Vapor Deposition. Plasma Processes and Polymers 2016, 13 (4), 419-428.
61. Lin, C. C.; Gupta, S.; Chang, C.; Lee, C.-Y.; Tai, N. H., Polyethylenimine-polyethylene glycol/multi-walled carbon nanotubes bilayer structure for carbon dioxide gas sensing at room temperature. Materials Letters 2021, 297, 129941.
62. Huang, G. K.; Gupta, S.; Lee, C. Y.; Tai, N. H., Acid-treated carbon nanotubes/polypyrrole/fluorine-doped tin oxide electrodes with high sensitivity for saliva glucose sensing. Diamond and Related Materials 2022, 129, 109385.
63. Lin, M. H.; Gupta, S.; Chang, C.; Lee, C. Y.; Tai, N. H., Carbon nanotubes/polyethylenimine/glucose oxidase as a non-invasive electrochemical biosensor performs high sensitivity for detecting glucose in saliva. Microchemical Journal 2022, 180, 107547.
64. Chen, Q.; Gruen, D. M.; Krauss, A. R.; Corrigan, T. D.; Witek, M.; Swain, G. M., The structure and electrochemical behavior of nitrogen-containing nanocrystalline diamond films deposited from CH4/N2/Ar mixtures. Journal of The Electrochemical Society 2001, 148 (1), E44.
65. Iwaki, M.; Sato, S.; Takahashi, K.; Sakairi, H., Electrical conductivity of nitrogen and argon implanted diamond. Nuclear Instruments and Methods In Physics Research 1983, 209, 1129-1133.
66. Pelskov, Y. V.; Sakharova, A. Y.; Krotova, M.; Bouilov, L.; Spitsyn, B., Photoelectrochemical properties of semiconductor diamond. Journal of electroanalytical chemistry and interfacial electrochemistry 1987, 228 (1-2), 19-27.
67. Hu, S.; Huang, Q.; Lin, Y.; Wei, C.; Zhang, H.; Zhang, W.; Guo, Z.; Bao, X.; Shi, J.; Hao, A., Reduced graphene oxide-carbon dots composite as an enhanced material for electrochemical determination of dopamine. Electrochimica Acta 2014, 130, 805-809.
68. Pruneanu, S.; Biris, A. R.; Pogacean, F.; Socaci, C.; Coros, M.; Rosu, M. C.; Watanabe, F.; Biris, A. S., The influence of uric and ascorbic acid on the electrochemical detection of dopamine using graphene-modified electrodes. Electrochimica Acta 2015, 154, 197-204.
69. Zhou, S.; Shi, H.; Feng, X.; Xue, K.; Song, W., Design of templated nanoporous carbon electrode materials with substantial high specific surface area for simultaneous determination ofbiomolecules. Biosensors and Bioelectronics 2013, 42, 163-169.
70. Zhang, X.; Ma, L. X.; Zhang, Y. C., Electrodeposition of platinum nanosheets on C60 decorated glassy carbon electrode as a stable electrochemical biosensor for simultaneous detection of ascorbic acid, dopamine and uric acid. Electrochimica Acta 2015, 177, 118-127.
71. Li, H.; Zhou, K.; Cao, J.; Wei, Q.; Lin, C. T.; Pei, S. E.; Ma, L.; Hu, N.; Guo, Y.; Deng, Z.; Yu, Z.; Zeng, S.; Yang, W.; Meng, L., A novel modification to boron-doped diamond electrode for enhanced, selective detection of dopamine in human serum. Carbon 2021, 171, 16-28.
72. Garrett, D. J.; Ganesan, K.; Stacey, A.; Fox, K.; Meffin, H.; Prawer, S., Ultra-nanocrystalline diamond electrodes: optimization towards neural stimulation applications. Journal of Neural Engineering 2012, 9 (1), 016002.
73. Skoog, S. A.; Miller, P. R.; Boehm, R. D.; Sumant, A. V.; Polsky, R.; Narayan, R. J., Nitrogen-incorporated ultrananocrystalline diamond microneedle arrays for electrochemical biosensing. Diamond and Related Materials 2015, 54, 39-46.
74. Wang, Y.; Jaiswal, M.; Lin, M.; Saha, S.; Özyilmaz, B.; Loh, K. P., Electronic Properties of Nanodiamond Decorated Graphene. ACS Nano 2012, 6 (2), 1018-1025.
75. Sankaran, K. J.; Huang, B. R.; Saravanan, A.; Manoharan, D.; Tai, N. H.; Lin, I. N., Nitrogen Incorporated Ultrananocrystalline Diamond Microstructures From Bias-Enhanced Microwave N2/CH4-Plasma Chemical Vapor Deposition. Plasma Processes and Polymers 2016, 13 (4), 419-428.
76. Kajihara, S. A.; Antonelli, A.; Bernholc, J.; Car, R., Nitrogen and potential n-type dopants in diamond. Physical Review Letters 1991, 66 (15), 2010-2013.
77. Sankaran, K. J.; Kurian, J.; Chen, H. C.; Dong, C. L.; Lee, C. Y.; Tai, N. H.; Lin, I. N., Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma. Journal of Physics D: Applied Physics 2012, 45 (36), 365303.
78. Peng, X.; Yuan, W.; Zou, J.; Wang, B.; Hu, W.; Xiong, Y., Nitrogen-incorporated ultrananocrystalline diamond/multilayer graphene composite carbon films: Synthesis and electrochemical performances. Electrochimica Acta 2017, 257, 504-509.
79. Kuzmany, H.; Pfeiffer, R.; Salk, N.; Günther, B., The mystery of the 1140 cm−1 Raman line in nanocrystalline diamond films. Carbon 2004, 42 (5), 911-917.
80. Pfeiffer, R.; Kuzmany, H.; Salk, N.; Günther, B., Evidence for trans-polyacetylene in nanocrystalline diamond films from H–D isotropic substitution experiments. Applied Physics Letters 2003, 82 (23), 4149-4150.
81. Ferrari, A. C.; Robertson, J., Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review B 2001, 64 (7), 075414.
82. Dresselhaus, M. S.; Jorio, A.; R.Saito, Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy. Annual Review of Condensed Matter Physics 2010, 1 (1), 89-108.
83. Jiang, J. Z.; Ståhl, K.; Berg, R. W.; Frost, D. J.; Zhou, T. J.; Shi, P. X., Structural characterization of cubic silicon nitride. Europhysics Letters 2000, 51 (1), 62.
84. Degenhardt, U.; Stegner, F.; Liebscher, C.; Glatzel, U.; Berroth, K.; Krenkel, W.; Motz, G., Sintered silicon nitride/nano-silicon carbide materials based on preceramic polymers and ceramic powder. Journal of the European Ceramic Society 2012, 32 (9), 1893-1899.
85. Yu, C. H.; Chiu, K. A.; Do, T. H.; Chang, L., Oriented Si3N4 crystallites formed by plasma nitriding of SiO2/Si (111) substrate. Surface and Coatings Technology 2020, 395, 125877.
86. Raina, S.; Kang, W. P.; Davidson, J. L., Optimizing nitrogen incorporation in nanodiamond film for bio-analyte sensing. Diamond and Related Materials 2009, 18 (5), 718-721.
87. Singhal, S. C., Thermodynamic analysis of the high-temperature stability of silicon nitride and silicon carbide. Ceramurgia International 1976, 2 (3), 123-130.
88. Chen, H. G.; Chang, L., Structural investigation of diamond nanoplatelets grown by microwave plasma-enhanced chemical vapor deposition. Journal of Materials Research 2005, 20 (3), 703-711.
89. Chen, H. G.; Chang, L., Growth of diamond nanoplatelets on nanocrystalline diamond substrates. Diamond and Related Materials 2009, 18 (2), 141-145.
90. Kim, Y. R.; Bong, S.; Kang, Y. J.; Yang, Y.; Mahajan, R. K.; Kim, J. S.; Kim, H., Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosensors and Bioelectronics 2010, 25 (10), 2366-2369.
91. Zhu, Z.; Qu, L.; Guo, Y.; Zeng, Y.; Sun, W.; Huang, X., Electrochemical detection of dopamine on a Ni/Al layered double hydroxide modified carbon ionic liquid electrode. Sensors and Actuators B: Chemical 2010, 151 (1), 146-152.
92. Gangwar, R. K.; Dhumale, V. A.; Date, K. S.; Alegaonkar, P.; Sharma, R. B.; Datar, S., Decoration of gold nanoparticles on thin multiwall carbon nanotubes and their use as a glucose sensor. Materials Research Express 2016, 3 (3), 035008.
93. Chinke, S. L.; Berhe, S.; Alegaonkar, P. S., High Speed Projectile Sensor: Design, Development and System Engineering. IEEE Sensors Journal 2021, 21 (23), 27062-27068.
94. Godbole, R. V.; Rao, P.; Alegaonkar, P. S.; Bhagwat, S., Influence of fuel to oxidizer ratio on LPG sensing performance of MgFe2O4 nanoparticles. Materials Chemistry and Physics 2015, 161, 135-141.
95. Gautam, S.; Kumar, D.; Alegaonkar, P. S.; Jha, P.; Jain, N.; Rawat, J. S., Enhanced response and improved selectivity for toxic gases with functionalized CNT thin film resistors. Integrated Ferroelectrics 2018, 186 (1), 65-70.
96. Ugale, A. D.; Jagtap, R. V.; Pawar, D.; Datar, S.; Kale, S. N.; Alegaonkar, P. S., Nano-carbon: preparation, assessment, and applications for NH3 gas sensor and electromagnetic interference shielding. RSC Advances 2016, 6 (99), 97266-97275.
97. Rabe, K. F.; Hurd, S.; Anzueto, A.; Barnes, P. J.; Buist, S. A.; Calverley, P.; Fukuchi, Y.; Jenkins, C.; Rodriguez-Roisin, R.; Van Weel, C., Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. American journal of respiratory and critical care medicine 2007, 176 (6), 532-555.
98. Nathell, L.; Nathell, M.; Malmberg, P.; Larsson, K., COPD diagnosis related to different guidelines and spirometry techniques. Respiratory Research 2007, 8 (1), 89.
99. Rovina, N.; Koutsoukou, A.; Koulouris, N. G., Inflammation and Immune Response in COPD: Where Do We Stand? Mediators of Inflammation 2013, 2013, 413735.
100. Su, Y.; Chen, G.; Chen, C.; Gong, Q.; Xie, G.; Yao, M.; Tai, H.; Jiang, Y.; Chen, J., Self-Powered Respiration Monitoring Enabled By a Triboelectric Nanogenerator. Advanced Materials 2021, 33 (35), 2101262.
101. Bongard, F.; Wu, Y.; Lee, T. S.; Klein, S., Capnographic Monitoring of Extubated Postoperative Patients. Journal of Investigative Surgery 1994, 7 (3), 259-264.
102. Lenz, G.; Heipertz, W.; Epple, E., Capnometry for continuous postoperative monitoring of nonintubated, spontaneously breathing patients. Journal of Clinical Monitoring 1991, 7 (3), 245-248.
103. Liu, S. Y.; Lee, T. S.; Bongard, F., Accuracy of Capnography in Nonintubated Surgical Patients. Chest 1992, 102 (5), 1512-1515.
104. Mehta, J. H.; Williams, G. W.; Harvey, B. C.; Grewal, N. K.; George, E. E., The relationship between minute ventilation and end tidal CO2 in intubated and spontaneously breathing patients undergoing procedural sedation. PLoS One 2017, 12 (6), e0180187.
105. Ellis, J. E.; Star, A., Carbon Nanotube Based Gas Sensors toward Breath Analysis. ChemPlusChem 2016, 81 (12), 1248-1265.
106. Liao, B.; Wei, Q.; Wang, K.; Liu, Y., Study on CuO–BaTiO3 semiconductor CO2 sensor. Sensors and Actuators B: Chemical 2001, 80 (3), 208-214.
107. Jinesh, K. B.; Dam, V. A. T.; Swerts, J.; de Nooijer, C.; van Elshocht, S.; Brongersma, S. H.; Crego-Calama, M., Room-temperature CO2 sensing using metal–insulator–semiconductor capacitors comprising atomic-layer-deposited La2O3 thin films. Sensors and Actuators B: Chemical 2011, 156 (1), 276-282.
108. Chen, X.; Zhu, H.; Cai, J.; Wu, Z., High-performance 4H-SiC-based ultraviolet p-i-n photodetector. Journal of Applied Physics 2007, 102 (2), 024505.
109. Al-Hardan, N. H.; Jalar, A.; Abdul Hamid, M. A.; Keng, L. K.; Ahmed, N. M.; Shamsudin, R., A wide-band UV photodiode based on n-ZnO/p-Si heterojunctions. Sensors and Actuators A: Physical 2014, 207, 61-66.
110. Liu, Z.; Liu, C.; Ya, J.; Lei, E., Controlled synthesis of ZnO and TiO2 nanotubes by chemical method and their application in dye-sensitized solar cells. Renewable Energy 2011, 36 (4), 1177-1181.
111. Liu, Z.; Cai, Q.; Ma, C.; Zhang, J.; Liu, J., Photoelectrochemical properties and growth mechanism of varied ZnO nanostructures. New Journal of Chemistry 2017, 41 (16), 7947-7952.
112. Hu, J.; Liu, X. W.; Pan, B. C., A study of the size-dependent elastic properties of ZnO nanowires and nanotubes. Nanotechnology 2008, 19 (28), 285710.
113. Lin, J. C.; Huang, B. R.; Lin, T. C., Bilayer Structure of ZnO Nanorod/Nanodiamond Film Based Ultraviolet Photodetectors. Journal of The Electrochemical Society 2013, 160 (8), H509.
114. Dhahri, R.; Hjiri, M.; El Mir, L.; Fazio, E.; Neri, F.; Barreca, F.; Donato, N.; Bonavita, A.; Leonardi, S. G.; Neri, G., ZnO:Ca nanopowders with enhanced CO2 sensing properties. Journal of Physics D: Applied Physics 2015, 48 (25), 255503.
115. Su, Y.; Yao, M.; Xie, G.; Pan, H.; Yuan, H.; Yang, M.; Tai, H.; Du, X.; Jiang, Y., Improving sensitivity of self-powered room temperature NO2 sensor by triboelectric-photoelectric coupling effect. Applied Physics Letters 2019, 115 (7), 073504.
116. Su, Y.; Xie, G.; Tai, H.; Li, S.; Yang, B.; Wang, S.; Zhang, Q.; Du, H.; Zhang, H.; Du, X.; Jiang, Y., Self-powered room temperature NO2 detection driven by triboelectric nanogenerator under UV illumination. Nano Energy 2018, 47, 316-324.
117. Wang, S.; Jiang, Y.; Tai, H.; Liu, B.; Duan, Z.; Yuan, Z.; Pan, H.; Xie, G.; Du, X.; Su, Y., An integrated flexible self-powered wearable respiration sensor. Nano Energy 2019, 63, 103829.
118. Nguyen, D. D.; Hsieh, P.-Y.; Tsai, M. T.; Lee, C. Y.; Tai, N. H.; To, B. D.; Vu, D. T.; Hsu, C. C., Hollow Few-Layer Graphene-Based Structures from Parafilm Waste for Flexible Transparent Supercapacitors and Oil Spill Cleanup. ACS Applied Materials & Interfaces 2017, 9 (46), 40645-40654.
119. Saravanan, A.; Huang, B.-R.; Sankaran, K. J.; Tai, N. H.; Lin, I. N., Highly Conductive Diamond–Graphite Nanohybrid Films with Enhanced Electron Field Emission and Microplasma Illumination Properties. ACS Applied Materials & Interfaces 2015, 7 (25), 14035-14042.
120. Shalini, J.; Sankaran, K. J.; Lee, C. Y.; Tai, N. H.; Lin, I. N., An amperometric urea bisosensor based on covalent immobilization of urease on N2 incorporated diamond nanowire electrode. Biosensors and Bioelectronics 2014, 56, 64-70.
121. Ouyang, W.; Teng, F.; He, J. H.; Fang, X., Enhancing the Photoelectric Performance of Photodetectors Based on Metal Oxide Semiconductors by Charge-Carrier Engineering. Advanced Functional Materials 2019, 29 (9), 1807672.
122. Kahn, A., Fermi level, work function and vacuum level. Materials Horizons 2016, 3 (1), 7-10.
123. Seok, H. J.; Ali, A.; Seo, J. H.; Lee, H. H.; Jung, N. E.; Yi, Y.; Kim, H. K., ZnO:Ga-graded ITO electrodes to control interface between PCBM and ITO in planar perovskite solar cells. Science and Technology of Advanced Materials 2019, 20 (1), 389-400.
124. Yang, M.; Au, C.; Deng, G.; Mathur, S.; Huang, Q.; Luo, X.; Xie, G.; Tai, H.; Jiang, Y.; Chen, C.; Cui, Z.; Liu, X.; He, C.; Su, Y.; Chen, J., NiWO4 Microflowers on Multi-Walled Carbon Nanotubes for High-Performance NH3 Detection. ACS Applied Materials & Interfaces 2021, 13 (44), 52850-52860.
125. Paskal, A. M.; Paskal, W.; Pietruski, P.; Wlodarski, P. K., Polyethylene Glycol: The Future of Posttraumatic Nerve Repair? Systemic Review. International Journal of Molecular Sciences 2019, 20 (6), 1478.
126. Liu, B.; Libanori, A.; Zhou, Y.; Xiao, X.; Xie, G.; Zhao, X.; Su, Y.; Wang, S.; Yuan, Z.; Duan, Z.; Liang, J.; Jiang, Y.; Tai, H.; Chen, J., Simultaneous Biomechanical and Biochemical Monitoring for Self-Powered Breath Analysis. ACS Applied Materials & Interfaces 2022, 14 (5), 7301-7310.
127. Bird, C. D.; Emery, N. J., Insightful problem solving and creative tool modification by captive nontool-using rooks. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (25), 10370-10375.
128. Zhong, Y.; Peng, C.; He, Z.; Chen, D.; Jia, H.; Zhang, J.; Ding, H.; Wu, X., Interface engineering of heterojunction photocatalysts based on 1D nanomaterials. Catalysis Science & Technology 2021, 11 (1), 27-42.
129. Xie, W.; Yu, M.; Wang, R., CO2 Capture Behaviors of Amine-Modified Resorcinol-Based Carbon Aerogels Adsorbents. Aerosol and Air Quality Research 2017, 17 (11), 2715-2725.
130. Bommer, C.; Sagalova, V.; Heesemann, E.; Manne-Goehler, J.; Atun, R.; Bärnighausen, T.; Davies, J.; Vollmer, S., Global economic burden of diabetes in adults: projections from 2015 to 2030. Diabetes care 2018, 41 (5), 963-970.
131. Zhang, W.; Du, Y.; Wang, M. L., On-chip highly sensitive saliva glucose sensing using multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and glucose oxidase. Sensing and Bio-Sensing Research 2015, 4, 96-102.
132. Jeong, H.; Kim, J., Fabrication of nanoporous Au films with ultra-high surface area for sensitive electrochemical detection of glucose in the presence of Cl−. Applied surface science 2014, 297, 84-88.
133. Chen, A.; Wang, J.; Wang, Y.; Jia, Y.; Gu, J.; Xie, X.; Pan, D., Effects of pore size and residual Ag on electrocatalytic properties of nanoporous gold films prepared by pulse electrochemical dealloying. Electrochimica Acta 2015, 153, 552-558.
134. Hsu, C. W.; Su, F. C.; Peng, P. Y.; Young, H. T.; Liao, S.; Wang, G. J., Highly sensitive non-enzymatic electrochemical glucose biosensor using a photolithography fabricated micro/nano hybrid structured electrode. Sensors and Actuators B: Chemical 2016, 230, 559-565.
135. Zhong, S. L.; Zhuang, J.; Yang, D. P.; Tang, D., Eggshell membrane-templated synthesis of 3D hierarchical porous Au networks for electrochemical nonenzymatic glucose sensor. Biosensors and Bioelectronics 2017, 96, 26-32.
136. Chang, G.; Shu, H.; Ji, K.; Oyama, M.; Liu, X.; He, Y., Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose. Applied surface science 2014, 288, 524-529.
137. Ahammad, A.; Al Mamun, A.; Akter, T.; Mamun, M.; Faraezi, S.; Monira, F., Enzyme-free impedimetric glucose sensor based on gold nanoparticles/polyaniline composite film. Journal of Solid State Electrochemistry 2016, 20 (7), 1933-1939.
138. Xu, M.; Song, Y.; Ye, Y.; Gong, C.; Shen, Y.; Wang, L.; Wang, L., A novel flexible electrochemical glucose sensor based on gold nanoparticles/polyaniline arrays/carbon cloth electrode. Sensors and Actuators B: Chemical 2017, 252, 1187-1193.
139. Ahmad, R.; Tripathy, N.; Ahn, M.-S.; Bhat, K. S.; Mahmoudi, T.; Wang, Y.; Yoo, J. Y.; Kwon, D.-W.; Yang, H. Y.; Hahn, Y. B., Highly efficient non-enzymatic glucose sensor based on CuO modified vertically-grown ZnO nanorods on electrode. Scientific reports 2017, 7 (1), 1-10.
140. Al-Hardan, N.; Jalar, A.; Hamid, M. A.; Keng, L. K.; Ahmed, N.; Shamsudin, R., A wide-band UV photodiode based on n-ZnO/p-Si heterojunctions. Sensors and Actuators A: Physical 2014, 207, 61-66.
141. Chang, C.; Lee, C. Y.; Tai, N. H., Human Exhalation CO2 Sensor Based on the PEI-PEG/ZnO/NUNCD/Si Heterojunction Electrode. ACS omega 2022, 7 (18), 15657-15665.
142. Hale, P. D.; Boguslavsky, L. I.; Inagaki, T.; Karan, H. I.; Lee, H. S.; Skotheim, T. A.; Okamoto, Y., Amperometric glucose biosensors based on redox polymer-mediated electron transfer. Analytical chemistry 1991, 63 (7), 677-682.
143. Hale, P.; Lan, H.; Boguslavsky, L.; Karan, H.; Okamoto, Y.; Skotheim, T., Amperometric glucose sensors based on ferrocene-modified poly (ethylene oxide) and glucose oxidase. Analytica chimica acta 1991, 251 (1-2), 121-128.
144. Kaku, T.; Karan, H. I.; Okamoto, Y., Amperometric glucose sensors based on immobilized glucose oxidase-polyquinone system. Analytical chemistry 1994, 66 (8), 1231-1235.
145. Kaku, T.; Okamoto, Y.; Charles, L.; Holness, W.; Karan, H. I., The effect of structure on poly (quinone) systems for amperometric glucose sensors. Polymer 1995, 36 (14), 2813-2818.
146. Patel, H.; Li, X.; Karan, H., Amperometric glucose sensors based on ferrocene containing polymeric electron transfer systems—a preliminary report. Biosensors and Bioelectronics 2003, 18 (8), 1073-1076.
147. Shim, N. Y.; Bernards, D. A.; Macaya, D. J.; DeFranco, J. A.; Nikolou, M.; Owens, R. M.; Malliaras, G. G., All-plastic electrochemical transistor for glucose sensing using a ferrocene mediator. Sensors 2009, 9 (12), 9896-9902.
148. Adeel, M.; Rahman, M. M.; Caligiuri, I.; Canzonieri, V.; Rizzolio, F.; Daniele, S., Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions. Biosensors and Bioelectronics 2020, 165, 112331.
149. Chai, J. H.; Wu, Q. S., Electrospinning preparation and electrical and biological properties of ferrocene/poly (vinylpyrrolidone) composite nanofibers. Beilstein Journal of Nanotechnology 2013, 4 (1), 189-197.
150. Zanello, P.; Nervi, C.; De Biani, F. F., Inorganic electrochemistry: theory, practice and application. Royal Society of Chemistry: 2019.
151. Park, S. M.; Yoo, J. S., Peer reviewed: electrochemical impedance spectroscopy for better electrochemical measurements. ACS Publications: 2003.
152. Shim, J.; Woo, J.-J.; Moon, S. H.; Kim, G. Y., A preparation of a single-layered enzyme-membrane using asymmetric pBPPO base film for development of pesticide detecting biosensor. Journal of Membrane Science 2009, 330 (1-2), 341-348.
153. Shim, J.; Kim, G. Y.; Moon, S. H., Covalent co-immobilization of glucose oxidase and ferrocenedicarboxylic acid for an enzymatic biofuel cell. Journal of Electroanalytical Chemistry 2011, 653 (1-2), 14-20.
154. Xu, T.; Jin, W.; Wang, Z.; Cheng, H.; Huang, X.; Guo, X.; Ying, Y.; Wu, Y.; Wang, F.; Wen, Y., Electrospun CuO-nanoparticles-modified polycaprolactone@polypyrrole fibers: An application to sensing glucose in saliva. Nanomaterials 2018, 8 (3), 133.
155. Olejnik, A.; Karczewski, J.; Dołęga, A.; Siuzdak, K.; Grochowska, K., Novel approach to interference analysis of glucose sensing materials coated with Nafion. Bioelectrochemistry 2020, 135, 107575.
156. Shalini, J.; Sankaran, K. J.; Dong, C.-L.; Lee, C. Y.; Tai, N. H.; Lin, I. N., In situ detection of dopamine using nitrogen incorporated diamond nanowire electrode. Nanoscale 2013, 5 (3), 1159-1167.
157. Claros, M.; Setka, M.; Jimenez, Y. P.; Vallejos, S., AACVD synthesis and characterization of iron and copper oxides modified ZnO structured films. Nanomaterials 2020, 10 (3), 471.
158. Al-Gaashani, R.; Radiman, S.; Daud, A.; Tabet, N.; Al-Douri, Y., XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceramics International 2013, 39 (3), 2283-2292.
159. Lee, J.; Du Plessis, G.; Arrigan, D. W.; Silvester, D. S., Towards improving the robustness of electrochemical gas sensors: impact of PMMA addition on the sensing of oxygen in an ionic liquid. Analytical Methods 2015, 7 (17), 7327-7335.
160. Guiseppi-Elie, A.; Lei, C.; Baughman, R. H., Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 2002, 13 (5), 559.
161. Zhan, T.; Feng, X.-Z.; An, Q. Q.; Li, S.; Xue, M.; Chen, Z.; Han, G. C.; Kraatz, H. B., Enzyme-free glucose sensors with efficient synergistic electro-catalysis based on a ferrocene derivative and two metal nanoparticles. RSC advances 2022, 12 (9), 5072-5079.
162. Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W.; Gerson, A. R.; Smart, R. S. C., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science 2011, 257 (7), 2717-2730.
163. Lipińska, W.; Siuzdak, K.; Karczewski, J.; Dołęga, A.; Grochowska, K., Electrochemical glucose sensor based on the glucose oxidase entrapped in chitosan immobilized onto laser-processed Au-Ti electrode. Sensors and Actuators B: Chemical 2021, 330, 129409.
164. Ge, L.; Hou, R.; Cao, Y.; Tu, J.; Wu, Q., Photoelectrochemical enzymatic sensor for glucose based on Au@C/TiO2 nanorod arrays. RSC advances 2020, 10 (72), 44225-44231.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *