帳號:guest(3.145.175.50)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃柏誠
作者(外文):Huang, Po-Cheng
論文名稱(中文):電鍍型多孔性銅薄膜於散熱裝置中之應用
論文名稱(外文):Electroplated copper porous films for heat dissipation applications
指導教授(中文):廖建能
指導教授(外文):Liao, Chien-Neng
口試委員(中文):歐陽汎怡
黃泓憲
口試委員(外文):OuYang, Fan-Yi
Huang, Hung-Hsien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031599
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:47
中文關鍵詞:熱導管均溫版散熱裝置電鍍多孔性結構枝狀晶毛細表現參數
外文關鍵詞:Heat pipeVapor chamberHeat dissipation applicationsElectrodepositionPorous structureDendriteCapillary performance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:214
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在過去數十年以來,由於電子元件的效能提升,許多團隊都致力於開發高性能的散熱裝置以處理晶片運作中所帶來的廢熱,以延長電子元件的壽命。電子元件的散熱裝置以熱管及均溫板為兩大主要核心,其中的毛細滲透層又以燒結型的管芯結構最為通用。然而,在高溫燒結製程下所帶來的高成本再加上電子元件尺寸持續的縮小,使得燒結型結構將面臨銅粉不易填入熱管的微型化挑戰。本研究透過控制直流電鍍模式的製程參數,成功製備出兩種不同種類的多孔性吸濕微結構銅薄膜。經由掃描式電子顯微鏡的觀察,此銅薄膜具有奈米級(枝狀晶間隙所構成)的孔洞結構以及微米級(氫氣泡之生成)的孔洞結構。利用電鍍方式製備的結構有別於通用的燒結型,具有低成本、短製程時間及穩定的優點,藉由改變銅薄膜的厚度(介於30 ~ 550 μm)可改變其能容納工作流體的量。此外隨著電鍍電流密度的提升,擁有多尺寸孔洞的銅薄膜微結構將由通道型孔洞枝狀晶轉化為隕石坑型孔洞枝狀晶。當電鍍電流密度為0.5 A/cm2 時,吸濕特性參數(K/Reff,K:透透率(Permeability),Reff:有效孔洞半徑(Effective pore size))可達到0.5 μm。最後,具備多尺寸孔洞之電鍍銅膜最大散熱量可達約66.8 W(應用於等效長度10 cm、毛細結構截面積 3.6×〖10〗^(-5) m^2之平板型熱管,並以水為工作流體),其等效熱傳導係數為純銅塊的18.5~30倍。
With the advance of microelectronic device technology, a tremendous research effort has been devoted to the development of high-efficiency heat dissipation components for device performance and reliability considerations. Heat pipes and vapor chambers are two cores technology for heat dissipation applications. The wick structure for capillarity operation is commonly prepared by sintering copper powder in copper tube or copper plates. However, with the downsizing of many electronic devices, miniaturization of heat dissipation components and micro-scale wick structures become essential, which is hardly accomplished by traditional powder sintering method. In this study, we have successfully fabricated two types of copper porous structures by a DC electrodeposition method. The porous structure consists of nanoscale dendritic structure and micron-sized channels according to the scanning electron microscopy observation. The structure fabricated by electroplating is different from the general sintered type, it has the advantages of low cost, short processing time, and good stability. The capability of working fluid accommodation can be tailored by changing the thickness of the copper film ranging from 30 to 550 μm. In addition, with the increasing of electroplating current density, the porous structure in the copper films evolved from a channel/dendrite pore structure to a crater/dendrite pore structure. The Cu film deposited at a current density of 0.5 A / cm2 exhibits the best capillary performance of 0.5 μm, as defined as the ratio of permeability (K) to effective pore size (Reff). Finally, the maximum heat transfer capacity was estimated to be 66.8 W by assuming a flat heat pipe dimension of 10 cm in effective length and 3.6×〖10〗^(-5) m^2 in cross section area with water as working fluid. The effective thermal conductivity of the heat pipe is around 18.5~30 times of the value of copper bulk.
摘要...I
Abstract...II
誌謝...III
目錄...V
圖表目錄...VII
表目錄...X
第一章 緒論...1
1.1 研究背景...1
第二章 文獻回顧...2
2.1 散熱裝置...2
2.1.1 散熱裝置發展史...2
2.1.2 散熱裝置之結構與工作原理...3
2.2 散熱裝置之毛細結構類型...4
2.2.1 溝槽型...5
2.2.2 編織網型...5
2.2.3 燒結銅粉型...6
2.2.4 複合型...6
2.3 影響毛細表現之重要參數...7
2.3.1 散熱裝置之最大熱傳極限...7
2.3.2 滲透率及有效孔洞半徑之量測與計算...9
2.4 雙尺寸孔洞毛細結構...11
第三章 實驗步驟...16
3.1 實驗流程...16
3.2 實驗藥品與儀器...17
3.2.1 化學藥品與藥劑...17
3.2.2 實驗儀器...18
3.3 電鍍多孔性銅薄膜...18
3.4 多孔性銅薄膜微結構與毛細表現之分析...19
3.4.1 冷場發射掃描式電子顯微鏡 (CFE-SEM)...19
3.4.2 電動升降具操作台...20
3.4.3 循環伏安法(Cyclic voltammetry)...20
第四章 結果與討論...22
4.1 製備多孔性銅薄膜...22
4.2 電流密度與電鍍時間對銅薄膜微結構之影響...24
4.3 電鍍銅薄膜之毛細表現...32
4.3.1 不同電鍍參數下孔洞大小與滲透率之關係...32
4.3.2 不同電鍍參數下所製備銅薄膜表面孔洞大小與有效孔洞半徑(Reff)之比較...37
4.3.3 不同電鍍參數下之毛細表現...40
第五章 結論...44
參考文獻...45
1.林唯耕,電子構裝散熱理論與量測實驗之設計.(國立清華大學, 2017).
2.M. Mochizuki et al., A review of heat pipe application including new opportunities. Frontiers in Heat Pipes 2, 1-15 (2011).
3.A. Faghri, Review and advances in heat pipe science and technology. Journal of heat transfer 134, 123001(123001-123018) (2012).
4.D. Deng, Y. Tang, G. Huang, L. Lu, D. Yuan, Characterization of capillary performance of composite wicks for two-phase heat transfer devices. Int. J. Heat Mass Transfer 56, 283-293 (2013).
5.D. Deng, Y. Tang, J. Zeng, S. Yang, H. Shao, Characterization of capillary rise dynamics in parallel micro V-grooves. Int. J. Heat Mass Transfer 77, 311-320 (2014).
6.S.-C. Wong, Y.-H. Kao, Visualization and performance measurement of operating mesh-wicked heat pipes. Int. J. Heat Mass Transfer 51, 4249-4259 (2008).
7.X.-b. Li, Y. Tang, Y. Li, S.-z. Zhou, Z.-x. Zeng, Sintering technology for micro heat pipe with sintered wick. Journal of Central South University of Technology 17, 102-109 (2010).
8.P.-G. De Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and wetting phenomena: drops, bubbles, pearls, waves. (Springer Science & Business Media, 2013).
9.G. P. Peterson, An introduction to heat pipes: modeling, testing, and applications. (Wiley-Interscience, 1994).
10.S.W. Chi, Heat pipe theory and practice. (Infoscience, 1976).
11.B. Holley, A. Faghri, Permeability and effective pore radius measurements for heat pipe and fuel cell applications. Applied thermal engineering 26, 448-462 (2006).
12.C.-C. Yeh, C.-N. Chen, Y.-M. Chen, Heat transfer analysis of a loop heat pipe with biporous wicks. Int. J. Heat Mass Transfer 52, 4426-4434 (2009).
13.T. Semenic, Y.-Y. Lin, I. Catton, Thermophysical properties of biporous heat pipe evaporators. Journal of Heat Transfer 130, 022601-0226010) (2008).
14.Y. Tang, D. Deng, L. Lu, M. Pan, Q. Wang, Experimental investigation on capillary force of composite wick structure by IR thermal imaging camera. Experimental Thermal and Fluid Science 34, 190-196 (2010).
15.Y. Li, H.-f. He, Z.-x. Zeng, Evaporation and condensation heat transfer in a heat pipe with a sintered-grooved composite wick. Applied Thermal Engineering 50, 342-351 (2013).
16.P. T. Kissinger, W. R. Heineman, Cyclic voltammetry. Journal of Chemical Education 60, 702-706 (1983).
17.G. A. Mabbott, An introduction to cyclic voltammetry. Journal of Chemical education 60, 697-702 (1983).
18.D. Lumanauw, Hydrogen bubble characterization in alkaline water electrolysis. Master Thesis. University of Toronto, (2000).
19.L. Martins et al., Morphology of copper coatings electroplated in an ultrasonic field, Materials Science Forum 455, 844-848 (2004).
20.N. Ibl, Probleme des konvektiven Stofftransports bei der Elektrolyse. Chemie Ingenieur Technik 33, 69-74 (1961).
21.N. Nikolić, K. I. Popov, L. J. Pavlović, M. Pavlović, The effect of hydrogen codeposition on the morphology of copper electrodeposits. I. The concept of effective overpotential. Journal of Electroanalytical Chemistry 588, 88-98 (2006).
22.K. Popov, Electrodeposition of metal powders with controlled particle grain size and morphology. Mod. Aspects Electrochem 24, 299-391 (1993)
23.V. D. Jović, KI Popov, SS Đokić and BN Grgur, Fundamental aspects of electrocmetallurgy. Journal of the Serbian Chemical Society 69, 411-412 (2004).
24.P. J. Sides, C. W. Tobias, A close view of gas evolution from the back side of a transparent electrode. Journal of the Electrochemical Society 132, 583-587 (1985).
25.P. Chandran, S. Bakshi, D. Chatterjee, Study on the characteristics of hydrogen bubble formation and its transport during electrolysis of water. Chemical Engineering Science 138, 99-109 (2015).
26.C. Byon, S. J. Kim, Capillary performance of bi-porous sintered metal wicks. Int. J. Heat Mass Transfer 55, 4096-4103 (2012).
27.A. Faghri, Heat pipe science and technology. (Elsevier Science, 1995).
28.H. Li, X. Fang, G. Li, G. Zhou, Y. Tang, Investigation on fabrication and capillary performance of multi-scale composite porous wick made by alloying-dealloying method. Int. J. Heat Mass Transfer 127, 145-153 (2018).
29.L. Lu, J. Sun, Q. Liu, X. Liu, Y. Tang, Influence of electrochemical deposition parameters on capillary performance of a rectangular grooved wick with a porous layer. Int. J. Heat Mass Transfer 109, 737-745 (2017).
(此全文20250115後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *