|
[1] Miracle, D.B. and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Materialia, 2017. 122: p. 448-511. [2] Miracle, D.B., High-Entropy Alloys: A Current Evaluation of Founding Ideas and Core Effects and Exploring “Nonlinear Alloys”. Jom, 2017. 69(11): p. 2130-2136. [3] Tsai, M.-H. and J.-W. Yeh, High-Entropy Alloys: A Critical Review. Materials Research Letters, 2014. 2(3): p. 107-123. [4] Ye, Y.F., et al., High-entropy alloy: challenges and prospects. Materials Today, 2016. 19(6): p. 349-362. [5] Mary, S.J., N. Rajan, and R. Epshiba, High entropy alloys properties and its applications–An over view. European Chemical Bulletin, 2015. 4(4-6): p. 279-284. [6] Raabe, D., et al., From High-Entropy Alloys to High-Entropy Steels. steel research international, 2015. 86(10): p. 1127-1138. [7] Zhang, Y., et al., Microstructures and properties of high-entropy alloys. Progress in Materials Science, 2014. 61: p. 1-93. [8] Chen, R., et al., Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility. Acta Materialia, 2018. 144: p. 129-137. [9] Ye, Y.F., et al., Design of high entropy alloys: A single-parameter thermodynamic rule. Scripta Materialia, 2015. 104: p. 53-55. [10] Li, Z., et al., Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 2016. 534(7606): p. 227-30. [11] Deng, Y., et al., Design of a twinning-induced plasticity high entropy alloy. Acta Materialia, 2015. 94: p. 124-133. [12] Stepanov, N.D., et al., Mechanical properties of a new high entropy alloy with a duplex ultra-fine grained structure. Materials Science and Engineering: A, 2018. 728: p. 54-62. [13] Chakravarthi, K.V.A., et al., Microstructure, properties and hot workability of M300 grade maraging steel. Defence Technology, 2018. 14(1): p. 51-58. [14] Jiao, Z.B., et al., Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels. Acta Materialia, 2013. 61(16): p. 5996-6005. [15] Zhao, Y.L., et al., Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates. Scripta Materialia, 2018. 148: p. 51-55. [16] He, Y., et al., Age hardening and mechanical properties of a 2400 MPa grade cobalt-free maraging steel. Metallurgical and Materials Transactions A, 2006. 37(4): p. 1107-1116. [17] Raabe, D., et al., Nanoprecipitate-hardened 1.5GPa steels with unexpected high ductility. Scripta Materialia, 2009. 60(12): p. 1141-1144. [18] Qian, F., J. Sharp, and W.M. Rainforth, Microstructural evolution of Mn-based maraging steels and their influences on mechanical properties. Materials Science and Engineering: A, 2016. 674: p. 286-298. [19] Raabe, D., et al., Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite. Acta Materialia, 2013. 61(16): p. 6132-6152. [20] Forghani, F. and M. Nili-Ahmadabadi, Microstructural characteristics and second-phase particles in yttrium-bearing Fe-10Ni-7Mn martensitic steels. Journal of Rare Earths, 2014. 32(4): p. 326-333. [21] Lian, Y., et al., Effects of cold rolling on the microstructure and properties of Fe-Cr-Ni-Mo-Ti maraging steel. Materials Science and Engineering: A, 2018. 712: p. 663-670. [22] Shekhter, A., et al., Effect of aging and deformation on the microstructure and properties of Fe-Ni-Ti maraging steel. Metallurgical and Materials Transactions A, 2004. 35(3): p. 973-983. [23] Hossein Nedjad, S., et al., Analytical transmission electron microscopy study of grain boundary precipitates in an Fe–Ni–Mn maraging alloy. Materials Science and Engineering: A, 2006. 438-440: p. 288-291. [24] Hossein Nedjad, S., M. Nili Ahmadabadi, and T. Furuhara, Transmission Electron Microscopy Study on the Grain Boundary Precipitation of an Fe-Ni-Mn Maraging Steel. Metallurgical and Materials Transactions A, 2007. 39(1): p. 19-27. [25] Hossein Nedjad, S., M. Nili Ahmadabadi, and T. Furuhara, Correlation between the intergranular brittleness and precipitation reactions during isothermal aging of an Fe–Ni–Mn maraging steel. Materials Science and Engineering: A, 2008. 490(1-2): p. 105-112. [26] Millán, J., et al., Designing Heusler nanoprecipitates by elastic misfit stabilization in Fe–Mn maraging steels. Acta Materialia, 2014. 76: p. 94-105. [27] Stiller, K., F. Danoix, and M. Hättestrand, Mo precipitation in a 12Cr–9Ni–4Mo–2Cu maraging steel. Materials Science and Engineering: A, 1998. 250(1): p. 22-26. [28] Jiang, S., et al., Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature, 2017. 544(7651): p. 460-464. [29] Li, K., et al., Strengthening of cobalt-free 19Ni3Mo1.5Ti maraging steel through high-density and low lattice misfit nanoscale precipitates. Materials Science and Engineering: A, 2018. 715: p. 174-185. [30] Schnitzer, R., et al., Reverted austenite in PH 13-8 Mo maraging steels. Materials Chemistry and Physics, 2010. 122(1): p. 138-145. [31] Tian, J., et al., A New Maraging Stainless Steel with Excellent Strength-Toughness-Corrosion Synergy. Materials (Basel), 2017. 10(11). [32] Springer, H., M. Belde, and D. Raabe, Bulk combinatorial design of ductile martensitic stainless steels through confined martensite-to-austenite reversion. Materials Science and Engineering: A, 2013. 582: p. 235-244. [33] Jiao, Z.B., et al., Co-precipitation of nanoscale particles in steels with ultra-high strength for a new era. Materials Today, 2017. 20(3): p. 142-154. [34] Jiao, Z.B., et al., Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles. Acta Materialia, 2015. 97: p. 58-67. [35] Murthy, A.S., et al., Copper precipitation in cobalt-alloyed precipitation-hardened stainless steel. Scripta Materialia, 2012. 66(11): p. 943-946. [36] Raabe, D., et al., Designing Ultrahigh Strength Steels with Good Ductility by Combining Transformation Induced Plasticity and Martensite Aging. Advanced Engineering Materials, 2009. 11(7): p. 547-555. [37] Wang, M.M., et al., Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels. Acta Materialia, 2014. 79: p. 268-281. [38] Galindo-Nava, E.I., W.M. Rainforth, and P.E.J. Rivera-Díaz-del-Castillo, Predicting microstructure and strength of maraging steels: Elemental optimisation. Acta Materialia, 2016. 117: p. 270-285. [39] Nioaţă, A., Researches regarding the optimization of thermal treatment depending on hardness for maraging 300 steel. Metalurgija, 2013. 52(2): p. 231-234. [40] Sha, W., et al., Phase transformations in maraging steels, in Phase Transformations in Steels. 2012. p. 332-362. [41] Boesch, W. and T. Cowan, Evolution of a Commercial 400 Ksi Grade Maraging Steel. 1968, SPECIAL METALS CORP NEW HARTFORD NY. [42] Tian, J., et al., Role of Co in formation of Ni-Ti clusters in maraging stainless steel. Journal of Materials Science & Technology, 2018. 34(9): p. 1671-1675. [43] Andersson, M., K. Stiller, and M. Hättestrand, Comparison of early stages of precipitation in Mo-rich and Mo-poor maraging stainless steels. Surface and Interface Analysis, 2007. 39(2-3): p. 195-200. [44] Liu, P., A.H. Stigenberg, and J.-O. Nilsson, Quasicrystalline and crystalline precipitation during isothermal tempering in a 12Cr-9Ni-4Mo maraging stainless steel. Acta metallurgica et materialia, 1995. 43(7): p. 2881-2890. [45] Campbell, J., F.J. Barone, and D. Moon, The mechanical properties of the 18 per cent nickel maraging steels. 1964, BATTELLE MEMORIAL INST COLUMBUS OH DEFENSE METALS INFORMATION CENTER. [46] Suk, J.I., et al., Development and properties of tungsten-bearing stainless maraging steels. Materials Science and Engineering: A, 1991. 138(2): p. 267-273. [47] Dmitrieva, O., et al., Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation. Acta Materialia, 2011. 59(1): p. 364-374. [48] Capdevila, C., F.G. Caballero, and C.G.d. Andrés, Determination of Ms Temperature in Steels: A Bayesian Neural Network Model. ISIJ International, 2002. 42(8): p. 894-902. [49] El-Fawkhry, M.K., et al., Development of Maraging Steel with Retained Austenite in Martensite Matrix. Materials Today: Proceedings, 2015. 2: p. S711-S714. [50] Zhu, K., C. Magar, and M.X. Huang, Abnormal relationship between Ms temperature and prior austenite grain size in Al-alloyed steels. Scripta Materialia, 2017. 134: p. 11-14. [51] Li, X. and Z. Yin, Reverted austenite during aging in 18Ni (350) maraging steel. Materials Letters, 1995. 24(4): p. 239-242. [52] Casati, R., et al., Aging Behaviour and Mechanical Performance of 18-Ni 300 Steel Processed by Selective Laser Melting. Metals, 2016. 6(9). [53] Takeuchi, A. and A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Materials Transactions, 2005. 46(12): p. 2817-2829. [54] Mahmoudi, A., et al., Aging behavior and mechanical properties of maraging steels in the presence of submicrocrystalline Laves phase particles. Materials Characterization, 2011. 62(10): p. 976-981. [55] Yuan, Y., et al., Diffusion multiple study of the Co-Fe-Ni system at 800 °C. Calphad, 2019. 64: p. 149-159. [56] Yoo, Y.K., et al., Identification of amorphous phases in the Fe–Ni–Co ternary alloy system using continuous phase diagram material chips. Intermetallics, 2006. 14(3): p. 241-247. [57] Xiang, X.-D., et al., Individualized Pixel Synthesis and Characterization of Combinatorial Materials Chips. Engineering, 2015. 1(2): p. 225-233.
|