帳號:guest(13.58.12.203)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王炫力
作者(外文):Wang, Hsuan-Li
論文名稱(中文):Mo-Nb-Ti-Zr-(Sn, Fe) 生醫高熵合金之開發
論文名稱(外文):Development of Mo-Nb-Ti-Zr-(Sn, Fe) High-Entropy Alloys for Biomedical Materials
指導教授(中文):葉均蔚
林樹均
指導教授(外文):Yeh, Jien-Wei
Lin, Su-Jien
口試委員(中文):洪健龍
林世傑
口試委員(外文):Hong, Jian-Long
Lin, Shih-Jie
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031593
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:298
中文關鍵詞:高熵合金耐火合金機械性質微結構電化學性質表面性質生物相容性生醫應用
外文關鍵詞:High-entropy alloysRefractory alloysMechanical propertiesMicrostructuresElectrochemical propertiesSurface propertiesBiocompatibilityBiomedical applications
相關次數:
  • 推薦推薦:0
  • 點閱點閱:516
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著醫療科技的普及化,全球人口朝向高齡化的趨勢,罹患骨科疾病的機率大幅增加,尤其是關節介面的疾病。現今70-80%的生醫植入材料都使用金屬製成,如: 316L不鏽鋼、CoCr合金、Ti合金等,但是這些合金對於機械性能、抗腐蝕、耐磨性和生物相容性都無法同時兼具良好特性,因此新一代的金屬材料應用於生醫領域需要被開發以解決材料瓶頸。近年來發展出的高熵合金具有眾多優越的性能,但是尚未對於生醫領域有太多的探討,因此本論文以具有良好生物相容性的元素開發出新型的生醫高熵合金,期望具有平滑、高強度、低楊氏模數、高抗腐蝕性及良好的生物相容性,以作為新一代的生醫材料。
本研究將以中熵合金作為基礎成分,透過微結構、機械性質、表面性質、電化學性質以及生物相容性質找尋最佳化成分,進行添加Sn和Fe找尋五元及六元最佳化成分。另外,也對於五元Sn合金的Ti元素進行增量,找尋最佳化成分。
由實驗結果得知,所有合金在鑄造態、滾軋態及退火態主要皆為BCC固溶體結構。室溫機械性質方面,四元合金以N0.7a具有最好的彈性容許應變及低楊氏模數。由N0.7a基地添加Sn和Fe對於強度呈大幅提升,,雖然楊氏模數提升,但彈性容許應變提高。Ti增量的合金則是隨著添加量上升,強度下降,但是楊氏模數有效降低。表面性質方面,N0.7a在四元合金中表面能最高。添加Sn、Fe和Ti後,表面能皆相較於N0.7a有大幅提升,此顯示試片與細胞吸附性佳。電化學性質方面,四元合金抗腐蝕能力與商用合金最好的Ti-6Al-4V差不多。添加Sn、Fe和Ti後使腐蝕電流密度有效下降,抗腐蝕性遠優於商用Ti-6Al-4V。生物相容性方面,退火態的合金皆遠優於鑄造態及滾軋態,四元、五元及六元合金在XTT試驗及細胞染色試驗細胞存活率遠優於商用合金。經免疫螢光染色可得知細胞型態皆為紡錘狀,亦較316L不銹鋼的多邊形狀來得佳。
綜合而言,本研究的高熵合金兼具優異的機械性能、抗腐蝕性和生物相容性,具有發展成為新一代金屬生醫植入材料的潛力。
With the popularization of medical technology, the global population is facing an ageing trend. The risk of suffering from the orthopedic diseases has increased significantly, especially the disease of the joints. Nowadays, 70-80% of the implant biomaterials are made of metals, such as 316L stainless steel, CoCr alloy, Ti alloy, etc., but these alloys cannot simultaneously combine with superior mechanical properties, corrosion resistance, wear resistance and biocompatibility. Therefore, there is a strong need for a new generation of metallic biomaterials to solve the material bottlenecks. In recent years, high-entropy alloys have found to have many superior properties, but they haven’t received much attention in the biomedical field. Hence, we want to develop novel biomedical high-entropy alloys by choosing the elements with good biocompatibility in this research. Our biomedical high-entropy alloys are expected to simultaneously combine with smooth surface, high strength, low Young’s modulus, high corrosion resistance and good biocompatibility for a new generation of metallic biomaterials.
In this work, novel alloys are developed based on quaternary compositions. We will first find the optimized composition through microstructure, mechanical properties, surface properties, electrochemical properties and biocompatible properties. Then, we add the Sn, Fe, and Ti elements to find new optimized compositions.
In this study, all the alloys in the as-cast, rolled and annealed states are BCC solid solution, except for the annealed state of high Sn-content alloys. In terms of mechanical properties at room temperature, N0.7a has the best elastic admissible strain and with the lowest elastic modulus in the quaternary alloys. Sn and Fe additions significantly increase the strength. Although the Young’s modulus is slightly increased, the elasic admissible strain is increased. The Ti addition causes the strength decrease and Young’s modulus decrease. The elastic admissible strain can be even higher. In terms of surface properties, N0.7a has the largest surface energy in the quartenary alloys, which is much higher than the commercial alloys. When Sn, Fe and Ti are added in the N0.7a alloy, the surface energy is effectively increased and has the highest surface energy that causes best attachment of cells. In terms of electochemcial properties, N0.7a has much better corrosion resistance than commercial alloys, except for Ti-6Al-4V. The addition of the Sn, Fe and Ti effectively reduces the corrosion current density. In terms of biocompatible properties, all the designed alloys are much better than commercial alloys with the XTT test, live/dead staining test and immunocytochemistry test.
In summary, the present alloys could show excellent mechanical properties, corrosion resisitance and biocompatibility, which are superior to commercial alloys. They are promisingly potential in the new generation for biomedical applications.
摘 要 I
Abstract III
致 謝 VI
目 錄 XI
圖目錄 XIX
表目錄 XXXIII
壹、 前言 1
貳、 文獻回顧 3
2.1 骨骼與關節介面 3
2.1.1 髖關節的構造 4
2.1.2 全髖關節置換手術發展 (Total hip replacement) 6
2.1.3 人工關節材料的要求和選擇 11
2.1.3.1 超高分子量聚乙烯 (UHMWPE) 15
2.1.3.2 不鏽鋼 16
2.1.3.3 鈷基合金 17
2.1.3.4 第一代鈦合金 18
2.1.3.5 第二代鈦合金 19
2.1.3.6 第三代鈦合金 19
2.1.3.7 氧化鋁/氧化鋯 23
2.2 高熵合金 (High-entropy alloy) [5] 23
2.2.1 開發背景 23
2.2.2 高熵合金的特性 25
2.3 耐火高熵合金 30
2.3.1 第一代耐火高熵合金MoNbTaW與MoNbTaVW [7, 47] 30
2.3.2 第二代耐火高熵合金HfNbTaTiZr 32
2.3.3 輕量化耐火高熵合金NbTiVZr與CrNbTiVZr 33
2.3.4 生醫耐火高熵合金TiZrNbTaMo 35
參、 實驗方法與步驟 39
3.1 合金設計 39
3.1.1 第一部分 39
3.1.2 第二部分 42
3.2 試片代號 51
3.3 實驗流程及方法 53
3.3.1 真空電弧熔煉 54
3.3.2 冷滾軋 56
3.3.3 模擬相圖 (Thermo-calc) 57
3.3.4 微結構與表面形貌分析 58
3.3.4.1 光學顯微鏡 (OM) 分析 58
3.3.4.2 電子顯微鏡分析 59
3.3.4.3 XRD繞射分析 60
3.3.4.4 接觸角分析 60
3.3.4.5 粗糙度分析 62
3.3.5 機械性質分析 63
3.3.5.1 維氏硬度量測 63
3.3.5.2 室溫拉伸測試 64
3.3.6 電化學分析 65
3.3.6.1 動電位極化測試 65
3.3.7 生物相容性分析 67
3.3.7.1 XTT Assay 67
3.3.7.2 活/死細胞染色試驗 (Live/Dead Staining Assay) 68
3.3.7.3 免疫螢光染色 (Immunocytochemistry) 70
3.3.7.4 鹼性磷酸活性染色Alkaline Phosphate (ALP) Activity Colorimetric Assay 71
肆、 結果與討論 72
4.1 四元合金 N1.75-X (Mo0.15Nb1.75-XTiZr0.7+X) 72
4.1.1 微結構與成分分析 72
4.1.1.1 N1.75 (Mo0.15Nb1.75TiZr0.7) 74
4.1.1.2 N1.45 (Mo0.15Nb1.45TiZr) 77
4.1.1.3 N1.3 (Mo0.15Nb1.3TiZr1.15) 79
4.1.1.4 N1.15 (Mo0.15Nb1.15TiZr1.3) 82
4.1.1.5 N1 (Mo0.15NbTiZr1.45) 85
4.1.1.6 N0.7 (Mo0.15Nb0.7TiZr1.75) 88
4.1.1.7 N1.75-X (Mo0.15Nb1.75-XTiZr0.7+X) 成分分析討論 91
4.1.1.8 N1.75-X (Mo0.15Nb1.75-XTiZr0.7+X) XRD結構分析討論 94
4.1.2 機械性質 97
4.1.2.1 硬度分析 97
4.1.2.2 室溫拉伸試驗分析 103
4.1.2.3 機械性質比較 109
4.1.3 表面性質分析 113
4.1.3.1 Alpha step一維表面形貌分析 113
4.1.3.2 接觸角分析 116
4.1.4 電化學性質 119
4.1.4.1 動電位極化測試 119
4.1.4.2 腐蝕SEI表面形貌觀察 124
4.1.5 生物相容性分析 127
4.1.5.1 XTT試驗 127
4.1.5.2 活細胞和死細胞染色試驗 131
4.1.5.3 免疫螢光染色 139
4.1.5.4 ALP活性 143
4.2 五元Sn添加高熵合金 N07Snx 145
4.2.1 微結構與成分分析 145
4.2.1.1 N07S01 (Mo0.15Nb0.7TiZr1.75Sn0.1) 146
4.2.1.2 N07S02 (Mo0.15Nb0.7TiZr1.75Sn0.2) 149
4.2.1.3 N07S03 和 N07S04 154
4.2.2 機械性質 155
4.2.2.1 硬度分析 155
4.2.2.2 室溫拉伸測試 159
4.2.2.3 機械性質比較 165
4.2.3 表面性質 168
4.2.3.1 Alpha step一維表面形貌分析 168
4.2.3.2 接觸角分析 170
4.2.4 電化學性質 173
4.2.4.1 動電位極化測試 173
4.2.5 生物相容性分析 178
4.2.5.1 XTT試驗 178
4.2.5.2 活細胞和死細胞染色試驗 182
4.2.5.3 免疫螢光染色 188
4.3 六元微量Fe添加高熵合金 N07S01Fex 190
4.3.1 微結構與成分分析 190
4.3.1.1 N07S01F1 [(Mo0.15Nb0.7TiZr1.75Sn0.1)99Fe1] 190
4.3.1.2 N07S01F2 [(Mo0.15Nb0.7TiZr1.75Sn0.1)98Fe2] 194
4.3.2 機械性質 196
4.3.2.1 硬度分析 196
4.3.2.2 室溫拉伸測試 199
4.3.2.3 機械性質比較 204
4.3.3 表面性質 207
4.3.3.1 Alpha step 一維表面形貌分析 207
4.3.3.2 接觸角分析 209
4.3.4 電化學性質 212
4.3.4.1 動電位極化測試 212
4.3.5 生物相容性分析 216
4.3.5.1 XTT試驗 216
4.3.5.2 活細胞和死細胞染色試驗 220
4.4 五元Ti變量高熵合金 N07TxS02 226
4.4.1 微結構與成分分析 226
4.4.1.1 N07T15S02 (Mo0.15Nb0.7Ti1.5Zr1.75Sn0.2) 226
4.4.1.2 N07T2S02 (Mo0.15Nb0.7Ti2Zr1.75Sn0.2) 230
4.4.1.3 N07T25S02 (Mo0.15Nb0.7Ti2.5Zr1.75Sn0.2) 234
4.4.2 機械性質 237
4.4.2.1 硬度分析 237
4.4.2.2 室溫拉伸測試 241
4.4.2.3 機械性質比較 247
4.4.3 表面性質 250
4.4.3.1 Alpha step 一維表面形貌分析 250
4.4.3.2 接觸角分析 252
4.4.4 電化學性質 255
4.4.4.1 動電位極化測試 255
4.4.5 生物相容性分析 259
4.4.5.1 XTT試驗 259
4.4.5.2 活細胞和死細胞染色試驗 263
4.4.5.3 免疫螢光染色 269
伍、 結 論 271
陸、 本研究貢獻 282
柒、 建議未來研究方向 284
捌、 參考文獻 286

[1] https://population.un.org/wpp/Graphs/DemographicProfiles/
[2] https://portal.stpi.narl.org.tw/index/article/10120
[3] Li, Y., Yang, C., Zhao, H., Qu, S., Li, X., and Li, Y., New Developments of Ti-Based Alloys for Biomedical Applications. Materials (Basel), 2014. 7(3): p. 1709-1800
[4] Niinomi, M., Nakai, M., and Hieda, J., Development of new metallic alloys for biomedical applications. Acta Biomater, 2012. 8(11): p. 3888-3903
[5] Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303
[6] Yeh, J.-W., Recent progress in high-entropy alloys. Annales de Chimie Science des Matériaux, 2006. 31(6): p. 633-648
[7] Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., and Liaw, P.K., Refractory high-entropy alloys. Intermetallics, 2010. 18(9): p. 1758-1765
[8] 劉姿伶, 全人工髖關節髖臼杯力學穩定度之探討. 2003, 國立成功大學醫學工程研究所: 碩士論文
[9] Frank H, N., 彩色圖解人體解剖與生理學, ed. 徐淑媛 and 陳金山. 2000: 合記圖書出版社
[10] https://bonebro.com/hip-structure/
[11] Learmonth, I.D., Young, C., and Rorabeck, C., The operation of the century: total hip replacement. The Lancet, 2007. 370(9597): p. 1508-1519
[12] Wiles, P., The Surgery of the Osteo-Arthritic Hip. The British Journal of Surgery, 1957. 45: p. 488-497
[13] Brown, S.R., Davies, W.A., DeHeer, D.H., and Swanson, A.B., Long-term survival of McKee-Farrar total hip prostheses. Clin Orthop Relat Res, 2002. 402(402): p. 157-163
[14] Leventhal, G.S., Titanium, A Metal For Surgery. The Journal of Bone and Joint Surgery, 1951. 33: p. 473-474
[15] Charnley, J., Arthroplasty of the Hip: A New Operation. The Lancet, 1961. 1: p. 1129-1132
[16] Chen, Q. and Thouas, G.A., Metallic implant biomaterials. Materials Science and Engineering: R: Reports, 2015. 87: p. 1-57
[17] Abdel-Hady Gepreel, M. and Niinomi, M., Biocompatibility of Ti-alloys for long-term implantation. J Mech Behav Biomed Mater, 2013. 20: p. 407-415
[18] Niinomi, M. and Nakai, M., Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone. Int J Biomater, 2011. 2011: p. 836587
[19] https://behzadisportsdoc.com/patient-education/minimally-invasive-surgery/minimally-invasive-hip-joint-replacement/
[20] Hermawan, H., Ramdan, D., and P. Djuansjah, J.R., Metals for Biomedical Applications, in Biomedical Engineering - From Theory to Applications. 2011: Faculty of Biomedical Engineering and Health Science, Universiti Teknologi Malaysia
[21] https://www.ceramtec.com/ceramic-materials/biolox/delta/
[22] Pruitt, L.A., Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene. Biomaterials, 2005. 26(8): p. 905-915
[23] https://kknews.cc/zh-tw/finance/y6kz42n.html
[24] Niinomi, M., Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions A, 2002. 33(3): p. 477-486
[25] Liao, Y., Hoffman, E., Wimmer, M., Fischer, A., Jacobs, J., and Marks, L., CoCrMo metal-on-metal hip replacements. Phys Chem Chem Phys, 2013. 15(3): p. 746-756
[26] Alam, M.O. and Haseeb, A.S.M.A., Response of Ti–6Al–4V and Ti–24Al–11Nb alloys to dry sliding wear against hardened steel. Tribology International, 2002. 35(6): p. 357-362
[27] Ferreira PC, P.K., Takayanagui AMM, Segura-Muñoz SI, Aluminum as a risk factor for Alzheimer’s disease. Rev Latino-am Enfermagem, 2008. 16: p. 151-157
[28] Darbre, P.D., Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. J Appl Toxicol, 2006. 26(3): p. 191-197
[29] Ress, N.B., Chou, B.J., Renne, R.A., Dill, J.A., Miller, R.A., Roycroft, J.H., Hailey, J.R., Haseman, J.K., and Bucher, J.R., Carcinogenicity of inhaled vanadium pentoxide in F344/N rats and B6C3F1 mice. Toxicol Sci, 2003. 74(2): p. 287-296
[30] Niinomi, M., Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, 1998. 243(1-2): p. 231-236
[31] Zhang, D.C., Yang, S., Wei, M., Mao, Y.F., Tan, C.G., and Lin, J.G., Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys. J Mech Behav Biomed Mater, 2012. 13: p. 156-165
[32] Niinomi, M., Liu, Y., Nakai, M., Liu, H., and Li, H., Biomedical titanium alloys with Young's moduli close to that of cortical bone. Regen Biomater, 2016. 3(3): p. 173-185
[33] Mohsin Talib Mohammed, Z.A.K., Arshad N. Siddiquee Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review International Journal of Chemical, Nuclear, Metallurgical and Materials Engineering, 2014. 8: p. 726-729
[34] Li, Y., Wong, C., Xiong, J., Hodgson, P., and Wen, C., Cytotoxicity of titanium and titanium alloying elements. J Dent Res, 2010. 89(5): p. 493-497
[35] Nunes, A.R.V., Gabriel, S.B., Nunes, C.A., Araújo, L.S., Baldan, R., Mei, P., Malet, L., Dille, J., and Almeida, L.H.d., Microstructure and Mechanical Properties of Ti-12Mo-8Nb Alloy Hot Swaged and Treated for Orthopedic Applications. Materials Research, 2017. 20(suppl 2): p. 526-531
[36] Yang, X. and Hutchinson, C.R., Corrosion-wear of beta-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid. Acta Biomater, 2016. 42: p. 429-439
[37] Niinomi, M., Hattori, T., Morikawa, K., Kasuga, T., Suzuki, A., Fukui, H., and Niwa, S., Development of Low Rigidity β-type Titanium Alloy for Biomedical Applications. Materials Transactions, 2002. 43(12): p. 2970-2977
[38] Bertrand, E., Gloriant, T., Gordin, D.M., Vasilescu, E., Drob, P., Vasilescu, C., and Drob, S.I., Synthesis and characterisation of a new superelastic Ti-25Ta-25Nb biomedical alloy. J Mech Behav Biomed Mater, 2010. 3(8): p. 559-564
[39] 司頤, 錳含量對生物醫用Ti-29Nb-6Ta-5Zr合金顯微組織與性能的影響. 機械工程材料, 2017. 41: p. 48-52
[40] Kopova, I., Strasky, J., Harcuba, P., Landa, M., Janecek, M., and Bacakova, L., Newly developed Ti-Nb-Zr-Ta-Si-Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility. Mater Sci Eng C 2016. 60: p. 230-238
[41] Hao, Y.L., Li, S.J., Sun, S.Y., Zheng, C.Y., and Yang, R., Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications. Acta Biomater, 2007. 3(2): p. 277-286
[42] Yeh, J.-W., Lin, S.-J., Chin, T.-S., Gan, J.-Y., Chen, S.-K., Shun, T.-T., Tsau, C.-H., and Chou, S.-Y., Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metallurgical and Materials Transactions A, 2004. 35(8): p. 2533-2536
[43] 葉均蔚, 高熵合金的發展. 華岡工程學報第 27 期, 2011: p. 1-18
[44] 張慧紋, 以反應式直流濺鍍法製備Al-Cr-Mo-Si-Ti高熵合金氮化物薄膜及其性質探討. 2005, 國立清華大學材料科學工程研究所: 碩士論文
[45] 陳宣佑, Al-Cr-Fe-Mn-Ni高熵合金變形與時效行為之研究. 2004, 國立清華大學材料科學工程研究所: 碩士論文
[46] 郭彥甫, Al-Cr-Fe-Mn-Ni高熵合金變形及時效行為之研究. 2005, 國立清華大學材料科學工程研究所: 碩士論文
[47] Senkov, O.N., Wilks, G.B., Scott, J.M., and Miracle, D.B., Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011. 19(5): p. 698-706
[48] Senkov, O.N., Scott, J.M., Senkova, S.V., Miracle, D.B., and Woodward, C.F., Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys and Compounds, 2011. 509(20): p. 6043-6048
[49] Senkov, O.N., Scott, J.M., Senkova, S.V., Meisenkothen, F., Miracle, D.B., and Woodward, C.F., Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. Journal of Materials Science, 2012. 47(9): p. 4062-4074
[50] Feng, R., Gao, M., Lee, C., Mathes, M., Zuo, T., Chen, S., Hawk, J., Zhang, Y., and Liaw, P., Design of Light-Weight High-Entropy Alloys. Entropy, 2016. 18(9): p. 333-354
[51] Senkov, O.N., Senkova, S.V., Woodward, C., and Miracle, D.B., Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Materialia, 2013. 61(5): p. 1545-1557
[52] Senkov, O.N., Senkova, S.V., Miracle, D.B., and Woodward, C., Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Materials Science and Engineering: A, 2013. 565: p. 51-62
[53] Todai, M., Nagase, T., Hori, T., Matsugaki, A., Sekita, A., and Nakano, T., Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials. Scripta Materialia, 2017. 129: p. 65-68
[54] Wang, S.P. and Xu, J., TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties. Mater Sci Eng C 2017. 73: p. 80-89
[55] https://www.ccmn.cn/
[56] Zhou, T., Itoh, G., Motohashi, Y., and Niinomi, M., Microstructural Modification in a Beta Titanium Alloy for Implant Applications. Materials Transactions, 2006. 47(1): p. 90-95
[57] Yu, S.Y., Scully, J.R., and Vitus, C.M., Influence of Niobium and Zirconium Alloying Additions on the Anodic Dissolution Behavior of Activated Titanium in HCl Solutions. Journal of The Electrochemical Society, 2001. 148(2)
[58] Baker, H., ASM HandBook - Vol 03 - Alloy Phase Diagrams. 1992, ASM International
[59] Miracle, D.B. and Senkov, O.N., A critical review of high entropy alloys and related concepts. Acta Materialia, 2017. 122: p. 448-511
[60] Morinaga, M., Kato, M., and Kamimura, T. Theoretical Design of β-Type Titanium Alloys in Proc. 7th Int. Conf. on Titanium. 1992. San Diego
[61] Takeuchi, A. and Inoue, A., Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Materials Transactions, 2005. 46(12): p. 2817-2829
[62] Owens, D.K. and Wendt, R.C., Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 1969. 13(8): p. 1741-1747
[63] Arenas, M.F. and Acoff, V.L., Contact angle measurements of Sn-Ag and Sn-Cu lead-free solders on copper substrates. Journal of Electronic Materials, 2004. 33(12): p. 1452-1458
[64] Vegard, L., The Constitution of Mixed Crystals and the Space Occupied by Atoms. Zeitsch rift fiir Physics, 1921. 5: p. 17-23
[65] Abbaschian, R. and Reed-Hill, R.E., Physical Metallurgy Principles - SI Version. 2009: Cengage Learning
[66] Song, Y., Xu, D.S., Yang, R., Li, D., Wu, W.T., and Guo, Z.X., Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys. Materials Science and Engineering: A, 1999. 260(1-2): p. 269-274
[67] Song, Y., Yang, R., Li, D., Hu, Z., and Guo, Z., Calculation of bulk modulus of titanium alloys by first principles electronic structure theory. Journal of Computer-Aided Materials Design, 1999. 6(2/3): p. 355-362
[68] Xu, J., Wang, G.d., Lu, X., Liu, L., Munroe, P., and Xie, Z.-H., Mechanical and corrosion-resistant properties of Ti–Nb–Si–N nanocomposite films prepared by a double glow discharge plasma technique. Ceramics International, 2014. 40(6): p. 8621-8630
[69] Ehtemam-Haghighi, S., Cao, G., and Zhang, L.-C., Nanoindentation study of mechanical properties of Ti based alloys with Fe and Ta additions. Journal of Alloys and Compounds, 2017. 692: p. 892-897
[70] Kieswetter, K., Schwartz, Z., Hummert, T.W., Cochran, D.L., Simpson, J., Dean, D.D., and Boyan, B.D., Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. Journal of Biomedical Materials Research, 1996. 32(1): p. 55-63
[71] Ruoslahti, E. and Pierschbacher, M.D., New perspectives in cell adhesion: RGD and integrins. Science, 1987. 238(4826): p. 491-497
[72] Yoon, R.-H., Flinn, D.H., and Rabinovich, Y.I., Hydrophobic Interactions between Dissimilar Surfaces. Journal of Colloid and Interface Science, 1997. 185(2): p. 363-370
[73] Vogler, E.A., Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 1998. 74(1-3): p. 69-117
[74] Haynes, C.A. and Norde, W., Globular proteins at solid/liquid interfaces. Colloids and Surfaces B: Biointerfaces, 1994. 2(6): p. 517-566
[75] Minagar, S., Berndt, C.C., and Wen, C., Fabrication and Characterization of Nanoporous Niobia, and Nanotubular Tantala, Titania and Zirconia via Anodization. J Funct Biomater, 2015. 6(2): p. 153-170
[76] Mishra, A.K. and Shoesmith, D.W., The activation/depassivation of nickel–chromium–molybdenum alloys: An oxyanion or a pH effect—Part II. Electrochimica Acta, 2013. 102: p. 328-335
[77] Takeno, N., Atlas of Eh-pH diagrams, in Intercomparison of thermodynamic databases. 2005, National Institute of Advanced Industrial Science and Technology
[78] Shi, Y., Yang, B., and Liaw, P., Corrosion-Resistant High-Entropy Alloys: A Review. Metals, 2017. 7(2): p. 43-61
[79] Zhao, G.H., Ketov, S.V., Jiang, J., Mao, H., Borgenstam, A., and Louzguine-Luzgin, D.V., New beta-type Ti-Fe-Sn-Nb alloys with superior mechanical strength. Materials Science and Engineering: A, 2017. 705: p. 348-351
[80] Luke, C.A., Taggart, R., and Polonis, D.H., Electronic factors and the metastable constitution of quenched alloys based on titanium and zirconium. Journal of Nuclear Materials, 1965. 16(1): p. 7-18
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *