帳號:guest(18.117.192.192)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林敬偉
作者(外文):Lin, Ching-Wei
論文名稱(中文):以簡易電化學法高價值化廢棄輪胎碳黑生成奈米片狀石墨並作為導電劑應用於鋰離子電池矽負極之研究
論文名稱(外文):Low Cost and Facile Synthesis of Waste Tire-Derived Graphite Nanoflakes as Conductive Additives for Si-based Anode Material in Lithium Ion Battery
指導教授(中文):陳力俊
闕郁倫
指導教授(外文):Chen, Lih-Juann
Chueh, Yu-Lun
口試委員(中文):陳志勇
張培俊
口試委員(外文):Chen, Chuh-Yung
Chang, Pai-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031587
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:81
中文關鍵詞:廢輪胎電化學石墨化氧化鐵催化鋰離子電池矽負極
外文關鍵詞:Waste TireElectrochemical GraphitizationIron Oxide CatalystLithium Ion BatterySilicon Anode
相關次數:
  • 推薦推薦:0
  • 點閱點閱:345
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
石墨因其高導電性以及良好的電化學穩定度,直至今日仍作為主流儲能材料開發的首要選擇。然而由於天然石墨經大量開採其資源終將耗盡,且傳統的石墨化方法仍存在著許多缺點,包含極高的製程溫度、碳前驅物的諸多限制、繁雜的化學處理,以及大量排放溫室氣體等等,因此人們近幾年正著力於研發簡易、環保且高效率將非晶碳黑轉化為高結晶性的人造石墨之方法。於此研究中,我們成功將由廢棄輪胎取得的碳黑,利用熔融鹽電化學法達到石墨化形成奈米片狀石墨。此方法不僅低耗能低汙染,更具有工業化規模發展的潛力。再加上藉由從廢棄輪胎回收碳黑,來實現循環經濟並達到產品高價值化的目標。此外,我們結合催化石墨化的原理,透過直接添加氧化鐵於非晶碳黑中進行電化學法,於低溫下進一步提高碳的石墨化程度以及石墨化均一性。最後,我們將石墨化碳直接作為導電劑應用於鋰離子電池的矽負極。相較於原始的輪胎非晶碳,石墨化碳的導電片狀結構,可改善矽在充放電時電極結構不穩且導電度差的缺點,使得電池的循環表現有顯著提升,並可與商業化導電劑相比擬。此研究不僅提供了廢棄輪胎碳另一高價值化的應用,藉由石墨化時催化劑的添加,更證實了大規模生產與高均一性石墨化同時並進的可行性。
Graphite, because of its excellent conductivity and electrochemical stability, is still the mainstream option for the development of energy storage materials nowadays. Recently, people have been searching for significantly efficient and facile approaches for the conversion of amorphous carbon black into high crystallinity graphitic carbon. However, the traditional graphitization strategies remain problems to be solved, including extremely high operating temperature, restrictions on types of amorphous carbon, complex pretreatment-requirement, and emission of toxic or greenhouse gases such as SO2 and CO2.

In this work, it is demonstrated that graphitic carbon with high degree of graphitization and nanoflake structure is successfully transformed from the hard carbon of recycling waste tire. First, after the pyrolysis and simple pre-acid treatment, pure amorphous carbon black with a porous structure could be obtained. In the next step, the carbon black was converted into highly graphitic structure at low temperature (850 °C), through a facile electrochemical route in molten salt, which is eco-friendly and of high potential for large scale graphitization compared with conventional incineration method. In addition, we further increase the crystallinity and uniformity of product simultaneously by directly mixing the metal oxide catalyst Fe2O3 with carbon precursor. Moreover, the mechanism of metal-catalyzed electrochemical graphitization process has been discussed in detail. To enhance the value of applications, the as-prepared graphitized nanoflakes were used as conductive additives for silicon anodes in lithium-ion batteries, which shows a comparable stability performance as utilizing commercial Super-P additives. It exhibited an initial Coulombic efficiency of around 79.7 % and high capacity retention about 45.8 % after 100 cycles, with reversible capacity of 1220 mAh/g at a current rate of 400 mA/g. Overall, utilizing the low temperature Fe2O3-catalyzed electrochemical process, we successfully recycle waste tires and propose a sustainable but also value-added application in the field of energy storage.
Abstract I
摘要 III
Acknowledgements IV
Table of Contents VI
List of Figures IX
List of Tables XVI
Chapter 1 Introduction 1
1.1 Introduction of waste tire recycling 1
1.1.1 Potential application of waste tire after pyrolysis process 1
1.1.2 Tire-derived carbon as the source of energy storage materials 4
1.2 Introduction of graphite 8
1.2.1 The characteristics of graphite 9
1.2.2 The synthesis of artificial graphite − Graphitization process 11
1.2.2.1 High-temperature treatment for graphitization 12
1.2.2.2 Catalytic graphitization 16
1.3 Lithium ion battery 20
1.3.1 Lithium ion battery overview 20
1.3.2 Working mechanism of lithium ion battery 22
1.3.3 Si-based material as the anode of lithium ion battery 23
1.3.4 Graphite additives for Si-based anode of lithium ion battery 27
Chapter 2 Motivation 30
2.1 Scalable & facile process for graphitization 30
2.2 High value-added applications of tire derived-carbon 30
Chapter 3 Material analysis method and technology 31
3.1 Scanning electron microscopy (SEM) 31
3.2 High-resolution transmission electron microscopy (HR-TEM) 32
3.3 X-ray photoelectron spectroscopy (XPS) 33
3.4 Powder X-ray diffraction (XRD) 34
3.5 Raman spectroscopy 35
3.6 Potentiostat 37
3.7 Coin-cell testing system 37
3.8 Cyclic voltammetry 38
Chapter 4 Results and discussion 40
4.1 Waste tire carbon black acid treatment 40
4.2 Graphitization of pure waste tire-derived carbon by FFC Cambridge method 42
4.2.1 Experimental design 42
4.2.2 Material characterization: Different molten salts as electrolyte 45
4.2.3 Material characterization: Different applied voltages & temperatures 50
4.3 Graphitization of waste tire-derived carbon with Fe2O3 as catalyst 55
4.3.1 Experimental design 55
4.3.2 Material characterization: Different wt.% of Fe2O3 56
4.3.3 Uniformity of graphitized carbon 59
4.4 TEM characterization & mechanism discussion 61
4.5 Battery and electrochemical performance 68
Chapter 5 Conclusions and future works 73
References 75
[1] Paul T. Williams. (2013). Pyrolysis of waste tyres: A review. Waste Management, 33, 1714-1728.
[2] V. Torrettaa, E. C. Rada, M. Ragazzi, E. Trulli, I. A. Istrate, L. I. Cioca. (2015). Treatment and disposal of tyres: Two EU approaches. A review. Waste Management, 45, 152-160.
[3] M. Myhre, S. Saiwari, W. Dierkes, J. Noordermeer. (2012). Rubber recycling: chemistry, processing, and applications. Rubber Chemistry and Technology, 85, 408-449.
[4] C. Karakurt. (2015). Microstructure properties of waste tire rubber composites: an overview. Journal of Material Cycles and Waste Management volume, 17, 422–433.
[5] A. Quek, R. Balasubramanian. (2013). Liquefaction of waste tires by pyrolysis for oil and chemicals—A review. Journal of Analytical and Applied Pyrolysis, 101, 1-16.
[6] C. Inton. (2019, October 17). The true cost of toxic tyres. REUTERS GRAPHICS. Retrieved from https://graphics.reuters.com/ASIA-WASTE-TYRES/0100B2H31RW/index.html
[7] M. R. Islam, M. N. Islam, N. N. Mustafi, M. A. Rahim, H. Haniu. (2013). Thermal recycling of solid tire wastes for alternative liquid fuel: the first commercial step in Bangladesh. Procedia Engineering, 56, 573-582.
[8] C. Sathiskumar, S. Karthikeyan. (2019). Recycling of waste tires and its energy storage application of by-products –a review. Sustainable Materials and Technologies, 22, e00125.
[9] M. Zhi, F. Yang, F. Meng, M. Li, A. Manivannan, N. Wu. (2014). Effects of Pore Structure on Performance of An Activated-Carbon Supercapacitor Electrode Recycled from Scrap Waste Tires. ACS Sustainable Chemistry & Engineering, 2, 1592-1598.
[10] A. K. Naskar, Z. Bi, Y. Li, S. K. Akato, D. Saha, Miaofang Chi, et al. (2014). Tailored recovery of carbons from waste tires for enhanced performance as anodes in lithium-ion batteries. RSC Advances, 4, 38213-28221.
[11] Shilpa, R. Kumar, A. Sharma. (2018). Morphologically tailored activated carbon derived from waste tires as high-performance anode for Li-ion battery. Journal of Applied Electrochemistry, 48, 1-13.
[12] D. Y. Wang, C. Y. Wei, M. C. Lin, C. J. Pan, H. L. Chou, H. A. Chen, et al. (2017). Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nature Communications, 8, 14283.
[13] S. Ragan, H. Marsh. (1983). Science and technology of graphite manufacture. Journal of Materials Science, 18, 3161–3176.
[14] S. L. Glazier, Jing Li, A. J. Louli, J. P. Allen, J. R. Dahn. (2017). An Analysis of Artificial and Natural Graphite in Lithium Ion Pouch Cells Using Ultra-High Precision Coulometry, Isothermal Microcalorimetry, Gas Evolution, Long Term Cycling and Pressure Measurements. Journal of The Electrochemical Society, 164, A3545-A3555.
[15] J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, D. Bresser. (2020). The success story of graphite as a lithium-ion anode material – fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustainable Energy Fuels, Advance Article. DOI: 10.1039/d0se00175a
[16] E. G. Acheson. (1896). Manufacture of graphite, United States Patent No. 568323. Washington, DC: U.S. Patent and Trademark Office.
[17] R. E. Franklin. (1951). Crystallite growth in graphitizing and non-graphitizing carbons. Proceedings of the Royal Society of London. Series A, 209, 196-218.
[18] A. Gupta, S. R.Dhakate, P. Pal, A. Dey, P. K. Iyer, D. K. Singh. (2017). Effect of graphitization temperature on structure and electrical conductivity of poly-acrylonitrile based carbon fibers. Diamond and Related Materials, 78, 31-38.
[19] B. Xing, C. Zhang, Y, Cao, G. Huang, Q. Liu, C. Zhang, et al. (2018). Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries. Fuel Processing Technology, 172, 162-171.
[20] T. Noda, M. Inagaki. (1962). Heat Treatment of Carbon under Various Pressures. Nature, 196, 772.
[21] N. Wang, Q. Liu, B. Sun, J. Gu, B. Yu, W. Zhang, et al. (2018). N-doped catalytic graphitized hard carbon for high-performance lithium/sodium-ion batteries. Scientific Reports, 8, 9934.
[22] E. P. Sajitha, V. Prasad, S. V. Subramanyam, S. Eto, K. Takai, T. Enoki. (2004). Synthesis and characteristics of iron nanoparticles in a carbon matrix along with the catalytic graphitization of amorphous carbon. Carbon, 42, 2815-2820.
[23] W. Lian, H. Song, X. Chen, L. Li, J. Huo, M. Zhao, et al. (2008). The transformation of acetylene black into onion-like hollow carbon nanoparticles at 1000 °C using an iron catalyst. Carbon, 46, 525-530.
[24] Y. Liu, Q. Liu, J. Gu, D. Kang, F. Zhou, W. Zhang, et al. (2013). Highly porous graphitic materials prepared by catalytic graphitization. Carbon, 64, 132-140.
[25] H. Budde-Meiwes, J. Drillkens, B. Lunz, J. Muennix, S. Rothgang, J. Kowal, et al. (2013). A review of current automotive battery technology and future prospects. Journal of Automobile Engineering, 227, 761-776.
[26] P. Roy, S. K. Srivastava. (2015). Nanostructured anode materials for lithium ion batteries. Journal of Materials Chemistry A, 3, 2454-2484.
[27] P. Verma, P. Maire, P. Novák. (2010). A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 55, 6332-6341.
[28] J. W. Choi, D. Aurbach. (2016). Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials, 1, 16013.
[29] I. Ryu, J. W. Choi, Y. Cui, and W. D. Nix. (2011). Size-dependent fracture of Si nanowire battery anodes. Journal of the Mechanics and Physics of Solids, 59, 1717-1730.
[30] H. Wu, Y. Cui. (2012). Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today, 7, 414-429.
[31] C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins. (2008). High-performance lithium battery anodes using silicon nanowires. Nature nanotechnology, 3, 31-35.
[32] L. Cui, L. Hu, H. Wu, J. W. Choi, Y. Cui. (2011). Inorganic glue enabling high performance of silicon particles as lithium ion battery anode. Journal of The Electrochemical Society, 158, A592-A596.
[33] Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, et al. (2011). Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano letters, 11, 2949-2954.
[34] H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, et al. (2012). Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature nanotechnology, 7, 310-315.
[35] M. Otero, C. Heim, E. P. M. Leiva, N. Wagner, A. Friedrich. (2018). Design-Considerations regarding Silicon/Graphite and Tin/Graphite Composite Electrodes for Lithium-Ion Batteries. Scientific Reports, 8, 15851.
[36] Y. Yan, H. Tang, F. Wu, Z. Xie, S. Xu, D. Qu, et al. (2017). Facile synthesis of Fe2O3@graphite nanoparticle composite as the anode for Lithium ion batteries with high cyclic stability. Electrochimica Acta, 253, 104-113.
[37] H. Zhang, R. Hu, Y. Liu, J. Liu, Z. Lu, M. Zhu. (2017). Origin of Capacity Increasing in a Long‐Life Ternary Sn–Fe3O4@Graphite Anode for Li‐Ion Batteries. Advanced Materials Interfaces, 4, 1700113.
[38] C. L. Ma, C. Ma, J. Wang, H. Wang, J. Shi, Y. Song, et al. (2014). Exfoliated graphite as a flexible and conductive support for Si-based Li-ion battery anodes. Carbon, 72, 38-46.
[39] Z. Karkar, D. Mazouzi, C. Reale Hernandez, D. Guyomard, L. Roué, B. Lestriez. (2016). Threshold-like dependence of silicon-based electrode performance on active mass loading and nature of carbon conductive additive. Electrochimica Acta, 215, 276-288.
[40] J. Maire, J. Mering. (1965). Les Carbones, 1, Masson et Cie, 129.
[41] R.E. Franklin. (1951). The structure of graphitic carbons. Acta Crystallographica 4, 253.
[42] P. Lespade, R. Al-Jishi, M. S. Dresselhaus. (1982). Model for Raman scattering from incompletely graphitized carbons. Carbon, 20, 427-431.
[43] D. J. Fray, G. Z. Chen, T. W. Farthing. (2000). Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature, 407, 361-364.
[44] G. Z. Chen, E. Gordo, D. J. Fray. Metall. (2004). Direct electrolytic preparation of chromium powder. Metallurgical and Materials Transactions B, 35, 223-233.
[45] S. Boghosian, A. Godø, H. Mediaas, W. Ravlo, T. Østvold. (1991). Oxide Complexes in Alkali--Alkaline-Earth Chloride Melts. Acta Chemica Scandinavica, 45, 145-157.
[46] G. P. Tiwari, & R. S. Mehrotra. (2008). Diffusion and Melting. Defect and Diffusion Forum, 279, 23-37.
[47] A. Abbasalizadeh, S. Seetharaman, L. Teng, S. Sridhar, O. Grinder, Y. Izumi, et al. (2013). Highlights of the Salt Extraction Process. JOM, 65, 1552-1558.
[48] Z. Zhao, H. Xie, J. Qu, H. Zhao, Q. Ma, P. Xing, et al. (2019). A Natural Transporter of Silicon and Carbon: Conversion of Rice Husks to Silicon Carbide or Carbon‐Silicon Hybrid for Lithium‐Ion Battery Anodes via a Molten Salt Electrolysis Approach. Batteries & Supercaps, 2, 1007-1015.
[49] W. Li, Y. Yuan, X. Jin, H. Chen, G. Z. Chen. (2015). Environmental and energy gains from using molten magnesium–sodium–potassium chlorides for electro-metallisation of refractory metal oxides. Progress in Natural Science: Materials International, 25, 650-653.
[50] J. Peng, N. Chen, R. He, Z. Wang, S. Dai, X. Jin. (2017). Electrochemically Driven Transformation of Amorphous Carbons to Crystalline Graphite Nanoflakes: A Facile and Mild Graphitization Method. Angewandte Chemie International Edition, 56, 1751-1755.
[51] K. Song, Y. Lee, M. R. Jo, K. M. Nam, Y. M. Kang. (2012). Comprehensive design of carbon-encapsulated Fe3O4 nanocrystals and their lithium storage properties. Nanotechnology, 23, 505401.
[52] D. Wang, X. Jin, G. Z. Chen. (2008). Solid state reactions: an electrochemical approach in molten salts. Annual Reports Section "C" (Physical Chemistry), 104, 189-234.
[53] F. Wu, R. Huang, D. Mu, B. Wu, Y. Chen. (2016). Controlled synthesis of graphitic carbon-encapsulated α-Fe2O3 nanocomposite via low-temperature catalytic graphitization of biomass and its lithium storage property. Electrochimica Acta, 187, 508-516.
[54] A. Ōya, H. Marsh. (1982). Phenomena of catalytic graphitization. Journal of Materials Science, 17, 309-322.
(此全文20250814後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *