|
[1] Paul T. Williams. (2013). Pyrolysis of waste tyres: A review. Waste Management, 33, 1714-1728. [2] V. Torrettaa, E. C. Rada, M. Ragazzi, E. Trulli, I. A. Istrate, L. I. Cioca. (2015). Treatment and disposal of tyres: Two EU approaches. A review. Waste Management, 45, 152-160. [3] M. Myhre, S. Saiwari, W. Dierkes, J. Noordermeer. (2012). Rubber recycling: chemistry, processing, and applications. Rubber Chemistry and Technology, 85, 408-449. [4] C. Karakurt. (2015). Microstructure properties of waste tire rubber composites: an overview. Journal of Material Cycles and Waste Management volume, 17, 422–433. [5] A. Quek, R. Balasubramanian. (2013). Liquefaction of waste tires by pyrolysis for oil and chemicals—A review. Journal of Analytical and Applied Pyrolysis, 101, 1-16. [6] C. Inton. (2019, October 17). The true cost of toxic tyres. REUTERS GRAPHICS. Retrieved from https://graphics.reuters.com/ASIA-WASTE-TYRES/0100B2H31RW/index.html [7] M. R. Islam, M. N. Islam, N. N. Mustafi, M. A. Rahim, H. Haniu. (2013). Thermal recycling of solid tire wastes for alternative liquid fuel: the first commercial step in Bangladesh. Procedia Engineering, 56, 573-582. [8] C. Sathiskumar, S. Karthikeyan. (2019). Recycling of waste tires and its energy storage application of by-products –a review. Sustainable Materials and Technologies, 22, e00125. [9] M. Zhi, F. Yang, F. Meng, M. Li, A. Manivannan, N. Wu. (2014). Effects of Pore Structure on Performance of An Activated-Carbon Supercapacitor Electrode Recycled from Scrap Waste Tires. ACS Sustainable Chemistry & Engineering, 2, 1592-1598. [10] A. K. Naskar, Z. Bi, Y. Li, S. K. Akato, D. Saha, Miaofang Chi, et al. (2014). Tailored recovery of carbons from waste tires for enhanced performance as anodes in lithium-ion batteries. RSC Advances, 4, 38213-28221. [11] Shilpa, R. Kumar, A. Sharma. (2018). Morphologically tailored activated carbon derived from waste tires as high-performance anode for Li-ion battery. Journal of Applied Electrochemistry, 48, 1-13. [12] D. Y. Wang, C. Y. Wei, M. C. Lin, C. J. Pan, H. L. Chou, H. A. Chen, et al. (2017). Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nature Communications, 8, 14283. [13] S. Ragan, H. Marsh. (1983). Science and technology of graphite manufacture. Journal of Materials Science, 18, 3161–3176. [14] S. L. Glazier, Jing Li, A. J. Louli, J. P. Allen, J. R. Dahn. (2017). An Analysis of Artificial and Natural Graphite in Lithium Ion Pouch Cells Using Ultra-High Precision Coulometry, Isothermal Microcalorimetry, Gas Evolution, Long Term Cycling and Pressure Measurements. Journal of The Electrochemical Society, 164, A3545-A3555. [15] J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, D. Bresser. (2020). The success story of graphite as a lithium-ion anode material – fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustainable Energy Fuels, Advance Article. DOI: 10.1039/d0se00175a [16] E. G. Acheson. (1896). Manufacture of graphite, United States Patent No. 568323. Washington, DC: U.S. Patent and Trademark Office. [17] R. E. Franklin. (1951). Crystallite growth in graphitizing and non-graphitizing carbons. Proceedings of the Royal Society of London. Series A, 209, 196-218. [18] A. Gupta, S. R.Dhakate, P. Pal, A. Dey, P. K. Iyer, D. K. Singh. (2017). Effect of graphitization temperature on structure and electrical conductivity of poly-acrylonitrile based carbon fibers. Diamond and Related Materials, 78, 31-38. [19] B. Xing, C. Zhang, Y, Cao, G. Huang, Q. Liu, C. Zhang, et al. (2018). Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries. Fuel Processing Technology, 172, 162-171. [20] T. Noda, M. Inagaki. (1962). Heat Treatment of Carbon under Various Pressures. Nature, 196, 772. [21] N. Wang, Q. Liu, B. Sun, J. Gu, B. Yu, W. Zhang, et al. (2018). N-doped catalytic graphitized hard carbon for high-performance lithium/sodium-ion batteries. Scientific Reports, 8, 9934. [22] E. P. Sajitha, V. Prasad, S. V. Subramanyam, S. Eto, K. Takai, T. Enoki. (2004). Synthesis and characteristics of iron nanoparticles in a carbon matrix along with the catalytic graphitization of amorphous carbon. Carbon, 42, 2815-2820. [23] W. Lian, H. Song, X. Chen, L. Li, J. Huo, M. Zhao, et al. (2008). The transformation of acetylene black into onion-like hollow carbon nanoparticles at 1000 °C using an iron catalyst. Carbon, 46, 525-530. [24] Y. Liu, Q. Liu, J. Gu, D. Kang, F. Zhou, W. Zhang, et al. (2013). Highly porous graphitic materials prepared by catalytic graphitization. Carbon, 64, 132-140. [25] H. Budde-Meiwes, J. Drillkens, B. Lunz, J. Muennix, S. Rothgang, J. Kowal, et al. (2013). A review of current automotive battery technology and future prospects. Journal of Automobile Engineering, 227, 761-776. [26] P. Roy, S. K. Srivastava. (2015). Nanostructured anode materials for lithium ion batteries. Journal of Materials Chemistry A, 3, 2454-2484. [27] P. Verma, P. Maire, P. Novák. (2010). A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 55, 6332-6341. [28] J. W. Choi, D. Aurbach. (2016). Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials, 1, 16013. [29] I. Ryu, J. W. Choi, Y. Cui, and W. D. Nix. (2011). Size-dependent fracture of Si nanowire battery anodes. Journal of the Mechanics and Physics of Solids, 59, 1717-1730. [30] H. Wu, Y. Cui. (2012). Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today, 7, 414-429. [31] C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins. (2008). High-performance lithium battery anodes using silicon nanowires. Nature nanotechnology, 3, 31-35. [32] L. Cui, L. Hu, H. Wu, J. W. Choi, Y. Cui. (2011). Inorganic glue enabling high performance of silicon particles as lithium ion battery anode. Journal of The Electrochemical Society, 158, A592-A596. [33] Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, et al. (2011). Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano letters, 11, 2949-2954. [34] H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, et al. (2012). Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature nanotechnology, 7, 310-315. [35] M. Otero, C. Heim, E. P. M. Leiva, N. Wagner, A. Friedrich. (2018). Design-Considerations regarding Silicon/Graphite and Tin/Graphite Composite Electrodes for Lithium-Ion Batteries. Scientific Reports, 8, 15851. [36] Y. Yan, H. Tang, F. Wu, Z. Xie, S. Xu, D. Qu, et al. (2017). Facile synthesis of Fe2O3@graphite nanoparticle composite as the anode for Lithium ion batteries with high cyclic stability. Electrochimica Acta, 253, 104-113. [37] H. Zhang, R. Hu, Y. Liu, J. Liu, Z. Lu, M. Zhu. (2017). Origin of Capacity Increasing in a Long‐Life Ternary Sn–Fe3O4@Graphite Anode for Li‐Ion Batteries. Advanced Materials Interfaces, 4, 1700113. [38] C. L. Ma, C. Ma, J. Wang, H. Wang, J. Shi, Y. Song, et al. (2014). Exfoliated graphite as a flexible and conductive support for Si-based Li-ion battery anodes. Carbon, 72, 38-46. [39] Z. Karkar, D. Mazouzi, C. Reale Hernandez, D. Guyomard, L. Roué, B. Lestriez. (2016). Threshold-like dependence of silicon-based electrode performance on active mass loading and nature of carbon conductive additive. Electrochimica Acta, 215, 276-288. [40] J. Maire, J. Mering. (1965). Les Carbones, 1, Masson et Cie, 129. [41] R.E. Franklin. (1951). The structure of graphitic carbons. Acta Crystallographica 4, 253. [42] P. Lespade, R. Al-Jishi, M. S. Dresselhaus. (1982). Model for Raman scattering from incompletely graphitized carbons. Carbon, 20, 427-431. [43] D. J. Fray, G. Z. Chen, T. W. Farthing. (2000). Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature, 407, 361-364. [44] G. Z. Chen, E. Gordo, D. J. Fray. Metall. (2004). Direct electrolytic preparation of chromium powder. Metallurgical and Materials Transactions B, 35, 223-233. [45] S. Boghosian, A. Godø, H. Mediaas, W. Ravlo, T. Østvold. (1991). Oxide Complexes in Alkali--Alkaline-Earth Chloride Melts. Acta Chemica Scandinavica, 45, 145-157. [46] G. P. Tiwari, & R. S. Mehrotra. (2008). Diffusion and Melting. Defect and Diffusion Forum, 279, 23-37. [47] A. Abbasalizadeh, S. Seetharaman, L. Teng, S. Sridhar, O. Grinder, Y. Izumi, et al. (2013). Highlights of the Salt Extraction Process. JOM, 65, 1552-1558. [48] Z. Zhao, H. Xie, J. Qu, H. Zhao, Q. Ma, P. Xing, et al. (2019). A Natural Transporter of Silicon and Carbon: Conversion of Rice Husks to Silicon Carbide or Carbon‐Silicon Hybrid for Lithium‐Ion Battery Anodes via a Molten Salt Electrolysis Approach. Batteries & Supercaps, 2, 1007-1015. [49] W. Li, Y. Yuan, X. Jin, H. Chen, G. Z. Chen. (2015). Environmental and energy gains from using molten magnesium–sodium–potassium chlorides for electro-metallisation of refractory metal oxides. Progress in Natural Science: Materials International, 25, 650-653. [50] J. Peng, N. Chen, R. He, Z. Wang, S. Dai, X. Jin. (2017). Electrochemically Driven Transformation of Amorphous Carbons to Crystalline Graphite Nanoflakes: A Facile and Mild Graphitization Method. Angewandte Chemie International Edition, 56, 1751-1755. [51] K. Song, Y. Lee, M. R. Jo, K. M. Nam, Y. M. Kang. (2012). Comprehensive design of carbon-encapsulated Fe3O4 nanocrystals and their lithium storage properties. Nanotechnology, 23, 505401. [52] D. Wang, X. Jin, G. Z. Chen. (2008). Solid state reactions: an electrochemical approach in molten salts. Annual Reports Section "C" (Physical Chemistry), 104, 189-234. [53] F. Wu, R. Huang, D. Mu, B. Wu, Y. Chen. (2016). Controlled synthesis of graphitic carbon-encapsulated α-Fe2O3 nanocomposite via low-temperature catalytic graphitization of biomass and its lithium storage property. Electrochimica Acta, 187, 508-516. [54] A. Ōya, H. Marsh. (1982). Phenomena of catalytic graphitization. Journal of Materials Science, 17, 309-322.
|