帳號:guest(3.137.174.65)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):程彥凱
作者(外文):Cheng, Yen-Kai
論文名稱(中文):應用奈米結構擴散阻障層於化學電解金屬化記憶體之材料選擇與擴散控制
論文名稱(外文):Material Selection and Diffusion Control for Electrochemical Metallization Memory by Using Nano-Structure Diffusion Barrier
指導教授(中文):闕郁倫
指導教授(外文):Chueh, Yu-Lun
口試委員(中文):曾俊元
侯拓宏
口試委員(外文):Tseng, Tseung-Yuen
Hou, Tuo-Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031583
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:56
中文關鍵詞:化學電解金屬化記憶體奈米結構擴散阻障層材料選擇擴散控制
外文關鍵詞:Nano-StructureDiffusionCBRAMECM
相關次數:
  • 推薦推薦:0
  • 點閱點閱:491
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
銀、銅電極與氧化鈦、氧化鉿固態電解質在化學電解金屬化電阻式記憶體中是很常見且性能優良的材料選擇。但是當元件縮小化時,元件的可靠度和易變度就會有很大的影響,因為元件內的導電燈絲是隨機形成與熔斷的,因此如果可以控制離子的注入將可以改善元件的可靠度和易變度。在這個研究中我們考量兩個方向,一個是不同的電極與氧化物的組合有著不同的擴散係數,將影響離子的注入與低阻持久性。第二是探究夾在電極與固態電解質之間的氧化鋁奈米柱狀結構,當調整氧化鋁覆蓋率時,奈米柱的間距將可從十奈米調整至三十奈米,這層氧化鋁將會扮演著限制銀與銅擴散的角色,這層結構的設計將改善元件的持久性與多階儲存功能。實驗的最後也將提供一個指引,告訴讀者不同的電極與固態電解質組合與奈米擴散阻障層結合後在電性表現與在類神經應用的潛力。
Ag and Cu based electrodes with TiOx and HfOx based electrolytes electrochemical metallization (ECM) random access memory is a promising candidate for nonvolatile memory applications due to its simple structure and excellent performances. However, several challenges are needed to solve as the cell area is scaled down, especially for the device reliability and variability. Since the formation and rupture of the conductive filaments is stochastic, the injection of cations plays a critical role in improving the reliability and variability. In this study, two directions are considered, First, the combinations of different electrode/electrolyte cause the diffusivity differences, result in different degrees of cation injections and LRS retention failure times. Second, an Al2O3 layer with nano-pillar array architecture inserted between the electrode and switching layer is demonstrated. The width between the nano-pillar is tunable from 10 nm to 30 nm by changing the coverage of Al2O3 layer. The Al2O3 layer is served as the barrier that restrained the Ag and Cu atoms to diffuse into the electrolyte. With this architecture design, the resistive switching behaviors not only improve different degree of retention performances but also the multi-level storage potential. In the end of research, we will provide a roadmap in regards to the electrical performance and the potential in neuromorphic application with different electrode/electrolyte selection and nano-pillar array architecture.
CHAPTER 1 1
1.1 Research Background 1
1.2 Introduction of Memory 3
1.2.1 Volatile Memory 3
1.2.2 Non-Volatile Memory 6
1.3 New generation non-volatile memory 8
1.3.1 FeRAM 8
1.3.2 MRAM 10
1.3.3 PCRAM 12
1.3.4 RRAM 14
1.4 Switching behavior of RRAM 16
1.5 Classification of RRAM 18
1.5.1 Thermochemical Switching 18
1.5.2 Electrostatic Switching 18
1.5.3 Valence Change Memory (VCM) 19
1.5.4 Electrochemical Metallization Memory (ECM) 19
1.6 Neuromorphic Application 20
CHAPTER 2 24
2.1 Research Motivation 24
2.2 Fabrication Process 27
2.2.1 Glancing Angle e-Beam Evaporation 27
2.2.2 Process Flow 29
2.2.3 Material Characterizations 31
2.2.4 Electrical Characterizations 32
CHAPTER 3 33
3.1 Results and Discussions 33
3.1.1 Diffusion Barrier Layer 33
3.1.2 Electrical Performance 35
3.1.3 TEM Analysis 37
3.1.4 Stability of Conduction Filaments 40
3.1.5 Endurance Performance 43
3.1.6 Relationship between SET voltage and LRS 45
3.1.7 Neuromorphic Application 47
3.1.8 Comparison Table 49
CHAPTER 4 51
Conclusions 51
CHAPTER 5 52
References 52

1. Evalueserve,Non-Volatile Memory Markets.BCC Research, SMC060A, 2005
2. Bez, R. & Pirovano, A. Overview of non-volatile memory technology: markets, technologies and trends, Advances in Non-Volatile Memory and Storage Technology, 1-24, 2014
3. Mielke, N.R. et al. Reliability of Solid-State Drives Based on NAND Flash Memory, Proceedings of the IEEE, 105(9), 1725-1750, 2017
4. Chang, T.C. et al. Resistance random access memory, materials today, 19(5), 254-264, 2016
5. Moon, K. et al. RRAM-based synapse devices for neuromorphic systems, Faraday Discussions, 213, 2019
6. Degraeve, R. et al. Opportunities and Challenges of Resistive RAM for Neuromorphic Applications, IEEE International Symposium, 2018
7. Sidhartha, Classification of Semiconductor Memories and Computer Memories, MEMORY DEVICES, VLSI TECHNOLOGY, 2015
8. Liu, Z. & Kursun, V. Characterization of a Novel Nine-Transistor SRAM Cell, IEEE Transactions on Very Large Scale Integration (VLSI) Systems (IEEE T VLSI SYST), 16(4), 488-492, 2008
9. Cuppu, V. et al. A Performance Comparison of Contemporary DRAM Architectures, ISCA, 1999
10. Meena, J.S. et al. Overview of emerging nonvolatile memory technologies, Nanoscale Research Lettersvolum, 9, 1-33, 2014
11. Thatte, J. RESISTIVE MEMORY DEVICES, INDO-GERMAN WINTER ACADEMY, 2012
12. Muller, G. et.al. Emerging Non-volatile Memon Technologies Solid-State, Cireuits Conference, ESSCIRC, 37-44, 2003
13. Mueller, S. et al. “Next-generation ferroelectric memories based on FE-HfO2.” 2015 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF), International Symposium on Integrated Functionalities (ISIF), and Piezoelectric Force Microscopy Workshop (PFM), 233-236, 2015
14. Kohlstedt, H. et al. Current status and challenges of ferroelectric memory devices, Microelectronic Engineering, 80, 296-304, 2005,
15. Kato, Y. et al. Overview and Future Challenge of FeRAM Technologies, International Conference on Solid State Devices and Materials, 2006, 120-121
16. Kim, Y. et al. IEEE Trans. Electron Devices, 62, 561, 2015
17. Salehi, S. et al. Survey of STT-MRAM Cell Design Strategies: Taxonomy and Sense Amplifier Tradeoffs for Resiliency, ACM Journal on Emerging Technologies in Computing Systems (JETC), 13(3), 2017
18. Andre, T. et al. "ST-MRAM fundamentals, challenges, and applications," Proceedings of the IEEE Custom Integrated Circuits Conference, San Jose, CA, 2013, 1-8, 2013
19. Tominaga, J. et al. Giant multiferroic effects in topological GeTe-Sb2Te3 superlattices, Science and Technology of Advanced Materials, 16(1), 2015
20. Sarwat S.G. Materials science and engineering of phase change random access memory, Materials Science and Technology, 33(16), 2017
21. Wang, Z.R. et al. Functionally Complete Boolean Logic in 1T1R Resistive Random Access Memory, IEEE Electron Device Letters, 38(2), 179-182, 2016
22. Lei, Y. et al. Stacked 3D RRAM Array with Graphene/CNT as Edge Electrodes, Scientific Reports, 5, 13785, 2015
23. Wouters, D. et al. Phase-Change and Redox-Based Resistive Switching Memories, Proceedings of the IEEE, 103(8), 1274-1288, 2015
24. Yang, J.J. et al. Metal oxide memories based on thermochemical and valence change mechanisms, Materials Research Society, 37(2), 131-137, 2012
25. Chen, J.Y. et al. Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories, Nano Lett., 13(8), 3671-3677, 2013
26. Ielmini, D. Resistive switching memories based on metal oxides: mechanisms, reliability and scaling, Sci. Technol., 31, 2016
27. Jeong, D.S. et al. Coexistence of Bipolar and Unipolar Resistive Switching Behaviors in a Pt ∕ TiO2 ∕ Pt Stack, Electrochemical and Solid-State Letters, 10, 2007
28. Mähne, H. et al. Analog resistive switching behavior of Al/Nb2O5/Al device, Semiconductor Science and Technology, 29, 104002, 2014
29. Rana, K. G. et al. Electrical transport across Au/Nb:SrTiO3 Schottky interface with different Nb doping, Appl. Phys. Lett., 100, 213502, 2012
30. Kozicki, M.N. & Barnaby, H.J. Conductive bridging random access memory—materials, devices and applications, Semicond. Sci. Technol, 31 113001, 2016
31. Yu, S. et al. Neuro-inspired computing with emerging nonvolatile memorys, Proceedings of the IEEE, 106(2), 260-285, 2018
32. Yao, P. et al. Face classification using electronic synapses, Nature Communications, 8, 15199, 2017
33. Woo, J.& Yu, S. Resistive Memory-Based Analog Synapses, IEEE Nanotechnology Magazine, 12(3), 36-44, 2018
34. Gao, B. et al. Modeling disorder effect of the oxygen vacancy distribution in filamentary analog RRAM for neuromorphic computing, IEEE International Electron Devices Meeting (IEDM), 17524767, 2017
35. Waser, R. & Aono M. Nanoionics-based resistive switching memories. Nature Mater, 6:833-840, 2007
36. Waser, R. Dittmann R. Staikov G. Szot K. Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv Mater 21:2632–2663, 2009
37. Jameson, J.R. et al. Conductive-bridge memory (CBRAM) with excellent high-temperature retention. IEEE International Electron Devices Meeting (IEDM), 9–11, 2013
38. Shi, Y. et al. Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays, Nature Communications, 9, 5312, 2018
39. Belmonte, A. et al. Origin of the current discretization in deep reset states of an Al2O3/Cu-based conductive-bridging memory, and impact on statelevel and variability, Appl. Phys. Lett., 104, 233508, 2014
40. Celano, U. et al. Conductive filaments multiplicity as a variability factor in CBRAM, IEEE Int. Rel. Phys. Symp. (IRPS), MY.11.1–MY.11.3, 2015
41. Yu, J. et al. Suppression of Filament Overgrowth in Conductive Bridge Random Access Memory by Ta2O5/TaOx Bi-Layer Structure, Nanoscale Research Letters, 2019
42. Wan, H. J. et al. In Situ Observation of Compliance-Current Overshoot and Its Effect on Resistive Switching, IEEE Electron Device Letters, 31(3), 246-248, 2010
43. Cao, R. et al. Improvement of Device Reliability by Introducing a BEOL-Compatible TiN Barrier Layer in CBRAM, IEEE Electron Device Letters, 38(10), 2017
44. Zhao, X. et al. Confining Cation Injection to Enhance CBRAM Performance by Nanopore Graphene Layer, Small, 13, 1-9, 2017
45. Liedtke, S. et al. Glancing angle deposition of sculptured thin metal films at room temperature, IOP science Nanotechnology, 28, 38, 2017
46. Wang, X. et al. Silicon diffusion control in atomic-layer-deposited Al2O3/La2O3/Al2O3 gate stacks using an Al2O3 barrier layer, Nanoscale Res Lett, 10, 141, 2015
47. Bae, D., et al. Investigation of Al2O3 diffusion barrier layer fabricated by atomic layer deposition for flexible Cu(In,Ga)Se2 solar cells, Renewable Energy, 55, 62-68, 2013
48. Saadi, M. et al. On the mechanisms of cation injection in conducting bridge memories: The case of HfO2 in contact with noble metal anodes (Au, Cu, Ag), Journal of Applied Physics, 119, 114501, 2016
49. Michaelson, H.B. The work function of the elements and its periodicity, Journal of Applied Physics, 48, 4729, 1977
50. Aga, F.G. et al. Retention modeling for ultra-thin density of Cu-based conductive bridge random access memory (CBRAM), AIP Advances, 6, 025203, 2016
51. Alghannam, A., Muhich, C.L. and Musgrave, C.B. Adatom surface diffusion of catalytic metals on the anatase TiO2(101) surface, Phys. Chem. Chem. Phys, 19, 4541, 2017
(此全文20250517後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *