|
1. Evalueserve,Non-Volatile Memory Markets.BCC Research, SMC060A, 2005 2. Bez, R. & Pirovano, A. Overview of non-volatile memory technology: markets, technologies and trends, Advances in Non-Volatile Memory and Storage Technology, 1-24, 2014 3. Mielke, N.R. et al. Reliability of Solid-State Drives Based on NAND Flash Memory, Proceedings of the IEEE, 105(9), 1725-1750, 2017 4. Chang, T.C. et al. Resistance random access memory, materials today, 19(5), 254-264, 2016 5. Moon, K. et al. RRAM-based synapse devices for neuromorphic systems, Faraday Discussions, 213, 2019 6. Degraeve, R. et al. Opportunities and Challenges of Resistive RAM for Neuromorphic Applications, IEEE International Symposium, 2018 7. Sidhartha, Classification of Semiconductor Memories and Computer Memories, MEMORY DEVICES, VLSI TECHNOLOGY, 2015 8. Liu, Z. & Kursun, V. Characterization of a Novel Nine-Transistor SRAM Cell, IEEE Transactions on Very Large Scale Integration (VLSI) Systems (IEEE T VLSI SYST), 16(4), 488-492, 2008 9. Cuppu, V. et al. A Performance Comparison of Contemporary DRAM Architectures, ISCA, 1999 10. Meena, J.S. et al. Overview of emerging nonvolatile memory technologies, Nanoscale Research Lettersvolum, 9, 1-33, 2014 11. Thatte, J. RESISTIVE MEMORY DEVICES, INDO-GERMAN WINTER ACADEMY, 2012 12. Muller, G. et.al. Emerging Non-volatile Memon Technologies Solid-State, Cireuits Conference, ESSCIRC, 37-44, 2003 13. Mueller, S. et al. “Next-generation ferroelectric memories based on FE-HfO2.” 2015 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF), International Symposium on Integrated Functionalities (ISIF), and Piezoelectric Force Microscopy Workshop (PFM), 233-236, 2015 14. Kohlstedt, H. et al. Current status and challenges of ferroelectric memory devices, Microelectronic Engineering, 80, 296-304, 2005, 15. Kato, Y. et al. Overview and Future Challenge of FeRAM Technologies, International Conference on Solid State Devices and Materials, 2006, 120-121 16. Kim, Y. et al. IEEE Trans. Electron Devices, 62, 561, 2015 17. Salehi, S. et al. Survey of STT-MRAM Cell Design Strategies: Taxonomy and Sense Amplifier Tradeoffs for Resiliency, ACM Journal on Emerging Technologies in Computing Systems (JETC), 13(3), 2017 18. Andre, T. et al. "ST-MRAM fundamentals, challenges, and applications," Proceedings of the IEEE Custom Integrated Circuits Conference, San Jose, CA, 2013, 1-8, 2013 19. Tominaga, J. et al. Giant multiferroic effects in topological GeTe-Sb2Te3 superlattices, Science and Technology of Advanced Materials, 16(1), 2015 20. Sarwat S.G. Materials science and engineering of phase change random access memory, Materials Science and Technology, 33(16), 2017 21. Wang, Z.R. et al. Functionally Complete Boolean Logic in 1T1R Resistive Random Access Memory, IEEE Electron Device Letters, 38(2), 179-182, 2016 22. Lei, Y. et al. Stacked 3D RRAM Array with Graphene/CNT as Edge Electrodes, Scientific Reports, 5, 13785, 2015 23. Wouters, D. et al. Phase-Change and Redox-Based Resistive Switching Memories, Proceedings of the IEEE, 103(8), 1274-1288, 2015 24. Yang, J.J. et al. Metal oxide memories based on thermochemical and valence change mechanisms, Materials Research Society, 37(2), 131-137, 2012 25. Chen, J.Y. et al. Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories, Nano Lett., 13(8), 3671-3677, 2013 26. Ielmini, D. Resistive switching memories based on metal oxides: mechanisms, reliability and scaling, Sci. Technol., 31, 2016 27. Jeong, D.S. et al. Coexistence of Bipolar and Unipolar Resistive Switching Behaviors in a Pt ∕ TiO2 ∕ Pt Stack, Electrochemical and Solid-State Letters, 10, 2007 28. Mähne, H. et al. Analog resistive switching behavior of Al/Nb2O5/Al device, Semiconductor Science and Technology, 29, 104002, 2014 29. Rana, K. G. et al. Electrical transport across Au/Nb:SrTiO3 Schottky interface with different Nb doping, Appl. Phys. Lett., 100, 213502, 2012 30. Kozicki, M.N. & Barnaby, H.J. Conductive bridging random access memory—materials, devices and applications, Semicond. Sci. Technol, 31 113001, 2016 31. Yu, S. et al. Neuro-inspired computing with emerging nonvolatile memorys, Proceedings of the IEEE, 106(2), 260-285, 2018 32. Yao, P. et al. Face classification using electronic synapses, Nature Communications, 8, 15199, 2017 33. Woo, J.& Yu, S. Resistive Memory-Based Analog Synapses, IEEE Nanotechnology Magazine, 12(3), 36-44, 2018 34. Gao, B. et al. Modeling disorder effect of the oxygen vacancy distribution in filamentary analog RRAM for neuromorphic computing, IEEE International Electron Devices Meeting (IEDM), 17524767, 2017 35. Waser, R. & Aono M. Nanoionics-based resistive switching memories. Nature Mater, 6:833-840, 2007 36. Waser, R. Dittmann R. Staikov G. Szot K. Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv Mater 21:2632–2663, 2009 37. Jameson, J.R. et al. Conductive-bridge memory (CBRAM) with excellent high-temperature retention. IEEE International Electron Devices Meeting (IEDM), 9–11, 2013 38. Shi, Y. et al. Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays, Nature Communications, 9, 5312, 2018 39. Belmonte, A. et al. Origin of the current discretization in deep reset states of an Al2O3/Cu-based conductive-bridging memory, and impact on statelevel and variability, Appl. Phys. Lett., 104, 233508, 2014 40. Celano, U. et al. Conductive filaments multiplicity as a variability factor in CBRAM, IEEE Int. Rel. Phys. Symp. (IRPS), MY.11.1–MY.11.3, 2015 41. Yu, J. et al. Suppression of Filament Overgrowth in Conductive Bridge Random Access Memory by Ta2O5/TaOx Bi-Layer Structure, Nanoscale Research Letters, 2019 42. Wan, H. J. et al. In Situ Observation of Compliance-Current Overshoot and Its Effect on Resistive Switching, IEEE Electron Device Letters, 31(3), 246-248, 2010 43. Cao, R. et al. Improvement of Device Reliability by Introducing a BEOL-Compatible TiN Barrier Layer in CBRAM, IEEE Electron Device Letters, 38(10), 2017 44. Zhao, X. et al. Confining Cation Injection to Enhance CBRAM Performance by Nanopore Graphene Layer, Small, 13, 1-9, 2017 45. Liedtke, S. et al. Glancing angle deposition of sculptured thin metal films at room temperature, IOP science Nanotechnology, 28, 38, 2017 46. Wang, X. et al. Silicon diffusion control in atomic-layer-deposited Al2O3/La2O3/Al2O3 gate stacks using an Al2O3 barrier layer, Nanoscale Res Lett, 10, 141, 2015 47. Bae, D., et al. Investigation of Al2O3 diffusion barrier layer fabricated by atomic layer deposition for flexible Cu(In,Ga)Se2 solar cells, Renewable Energy, 55, 62-68, 2013 48. Saadi, M. et al. On the mechanisms of cation injection in conducting bridge memories: The case of HfO2 in contact with noble metal anodes (Au, Cu, Ag), Journal of Applied Physics, 119, 114501, 2016 49. Michaelson, H.B. The work function of the elements and its periodicity, Journal of Applied Physics, 48, 4729, 1977 50. Aga, F.G. et al. Retention modeling for ultra-thin density of Cu-based conductive bridge random access memory (CBRAM), AIP Advances, 6, 025203, 2016 51. Alghannam, A., Muhich, C.L. and Musgrave, C.B. Adatom surface diffusion of catalytic metals on the anatase TiO2(101) surface, Phys. Chem. Chem. Phys, 19, 4541, 2017
|