帳號:guest(3.16.130.130)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):古心寧
作者(外文):Ku, Hsin-Ning
論文名稱(中文):臨場觀測並探討音樂對於大腸桿菌之影響
論文名稱(外文):In-situ Monitor and Investigate the Effect of Music on Escherichia coli
指導教授(中文):游萃蓉
指導教授(外文):Yew, Tri-Rung
口試委員(中文):張平
陳盈潔
口試委員(外文):Chang, Pin
Chen, Ying-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031581
出版年(民國):109
畢業學年度:107
語文別:中文
論文頁數:79
中文關鍵詞:音樂大腸桿菌頻率節奏生長運動能力
外文關鍵詞:MusicE. coliFrequencyTempoGrowthMotility
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1102
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用臨場觀測技術 (in-situ monitor) 以及傳統微生物學的方法 (traditional microbiology test) 分別去探討不同頻率 (frequency) 及節奏 (tempo) 的音樂對於大腸桿菌 (Escherichia coli, E. coli) 在運動能力 (motility) 以及生長 (growth) 的影響。
本研究利用樂譜軟體 (musescore) 調整鋼琴樂譜 《大黃蜂的飛行,Flight of the Bumblebee》中的頻率及節拍,將實驗欲探討的音樂再細分為:Midslow (55-1760 Hz,25 BPM ) , Midfast (55-1760 Hz,250 BPM), Highfast (330- 4186 Hz,250 BPM),以初步研究頻率與節奏快慢對於大腸桿菌的影響。同時,亦利用骨導式耳機 (bone conduction) 具有以固體作為介質,傳遞聲音震動的特性,有效地將音樂的刺激傳遞至大腸桿菌。
本研究透過泳動實驗 (swimming test) 間接探討音樂對於大腸桿菌運動能力的影響,亦透過光學顯微鏡搭配影像錄製及軟體分析,得到大腸桿菌臨場游動的軌跡及速度變化。兩種實驗的結果皆顯示,頻率越高以及節奏越快的音樂,可以最有效促進大腸桿菌的運動能力。
本研究亦利用吸光值 (optical density,OD) 得到大腸桿菌的生長曲線,並利用電化學中的交流阻抗法 (electrochemical impedance spectroscopy,EIS),臨場觀測大腸桿菌在對數生長期 (logarithmic phase) 的菌液阻抗變化,用以比較音樂對大腸桿菌生長的影響。結果顯示,頻率越低以及節奏越慢的音樂,可以最有效地促進大腸桿菌的生長。

In this work, the in-situ monitor and the traditional microbiology tests were utilized to investigate the effect of music with different frequency and tempo on the motility and the growth of Escherichia coli (E. coli).
In this work, the musescore software was used to vary the frequency and the tempo of “Flight of the Bumblebee”. By this way, the music was categorized into three groups in this study, including Midslow (55-1760 Hz, 25 BPM), Midfast (55-1760 Hz, 250 BPM) and Highfast (330-4186 Hz, 250 BPM). Meanwhile, the music was effectively transmitted to E. coli by the bone conduction which could transport the sound via the vibration of solid medium.
In this work, the effect of music on the motility of E. coli was in-vestigated indirectly by swimming test. Besides, the swimming velocity of swimming E. coli were in-situ monitored by the optical microscope with video recording and software analysis. Both tests showed that the music with higher frequency and faster tempo could enhance the motility of E. coli most.
In this work, the growth curve of the E. coli was also obtained via its correlation with optical density measured by spectrophotometer. In addition to the growth curve, Electrochemical Impedance Spectroscopy (EIS) was used to in-situ measure the impedance of E. coli solution. Both tests were utilized to compare the effect of music on the growth of E. coli. It was observed that the music with lower frequency and slower tempo could enhance the growth of E. coli most.
目錄
第一章 緒論 ........................................................................... 1
第二章 文獻回顧及研究動機 .................................................. 4
2.1 聲音對於生物的影響......................................................... 4
2.1.1 音樂對生物的影響.......................................................... 5
2.2 音樂的組成及傳遞............................................................ 8
2.3 微生物的機械力感受器.................................................... 12
2.4 研究微生物運動能力的方法............................................. 13
2.5 研究微生物生長的方法.................................................... 14
2.5.1 吸光值測量生長曲線..................................................... 14
2.5.2 交流阻抗法臨場觀測菌液阻抗的變化............................ 16
第三章 實驗流程與儀器簡介 ................................................. 18
3.1 實驗步驟 ......................................................................... 20
3.1.1 菌株的選擇.................................................................... 20
3.1.2 不同樂曲及播音裝置對於大腸桿菌運動能力的影響........ 22
3.1.3 《Flight of the Bumblebee》的頻率及節奏調整 ........... 24
3.1.4 樂曲頻率及節奏對於大腸桿菌運動的影響 (泳動測試)..... 26
3.1.5 樂曲頻率及節奏對於大腸桿菌運動的影響 (臨場觀測)..... 27
3.1.6 樂曲頻率及節奏對大腸桿菌生長的影響 (生長曲線)........ 29
3.1.7 樂曲頻率及節奏對大腸桿菌生長的影響 (交流阻抗法) ..... 30
3.2 實驗儀器簡介 ................................................................... 32
3.2.1 播放音樂的裝置.............................................................. 32
3.2.2 細菌培養箱 .................................................................... 34
3.2.3 高溫高壓滅菌釜.............................................................. 35
3.2.4 離心機 ........................................................................... 36
3.2.5 光學穿透反射式顯微鏡 ................................................... 37
3.2.6 分光光度計 ..................................................................... 38
3.2.7 電化學量測系統............................................................... 39
第四章 實驗結果與討論............................................................. 40
4.1 菌株的選擇.......................................................................... 40
4.2 音樂的分析......................................................................... 43
4.3 不同樂曲及播音裝置對於大腸桿菌運動的影響.................... 48
4.3.1 不同樂曲對於大腸桿菌運動能力的影響............................ 48
4.3.2 不同播音裝置對於大腸桿菌運動能力的影響..................... 53
4.4 樂曲頻率及節奏對於大腸桿菌運動能力的影響..................... 55
4.4.1 泳動測試........................................................................... 55
4.4.2 顯微鏡下臨場觀測............................................................ 58
4.5 樂曲頻率及節奏對於大腸桿菌生長的影響............................ 63
4.5.1 OD 值間接量測大腸桿菌的生長曲線 ................................. 63
4.5.2 交流阻抗法 ...................................................................... 68
第五章 結論 .............................................................................. 71
第六章 未來展望........................................................................ 73
參考文獻 .................................................................................. 75
本研究產出之論文發表.............................................................. 78
附錄 ......................................................................................... 79
1. Xing, Y., et al., Mozart, Mozart Rhythm and Retrograde Mozart Effects: Evidences from Behaviours and Neurobiology Bases. Sci Rep, 2016. 6: p. 18744.
2. Makello, L., The Mozart Effect, in EPOCH TIMES. 2012.
3. Pornpongmetta, S.T., M;, Effects of Music on Microbial Substrate Utilization of Aerobic Bacteria from Municipal Wastewater Treatment Plant- PART II: Comparative effects of Musical Characteristics. Journal of Research in Engineering and Technology, 2010: p. 41-48.
4. Pornpongmetta, S.T. and M. Thanuttamavong, Effects of Music on Microbial Substrate Utilization of Aerobic Bacteria from Municipal Wastewater Treatment Plant:PART I:Analytical Methods and Statistical Analysis. Journal of Research in Engineering and Technology, 2010: p. 29-40.
5. Idalia, V.-M.N. and F. Bernardo, Escherichia coli as a Model Organism and Its Application in Biotechnology, in Escherichia coli- Recent Advances on Physiology, Pathogenesis and Biotechnological Applications. 2017.
6. Kearns, D.B., A field guide to bacterial swarming motility. Nat Rev Microbiol, 2010. 8(9): p. 634-44.
7. Kraus, K.S., et al., Noise trauma impairs neurogenesis in the rat hippocampus. Neuroscience, 2010. 167(4): p. 1216-26.
8. Zhao, H.C., et al., Effect of sound stimulation on Dendranthema morifolium callus growth. Colloids and Surfaces B-Biointerfaces, 2003. 29(2-3): p. 143-147.
9. Bochu, W.X., Chen; and W.Q. Zhen, Fu; Hao, Zhou; Liang, Ran, Biological effect of sound field stimulation on paddy rice seeds. Colloids and Surfaces B: Biointerfaces, 2003. 32(1): p. 29-34.
10. Gu, S.B., et al., A pilot study of the effect of audible sound on the growth of Escherichia coli. Colloids and Surfaces B-Biointerfaces, 2010. 78(2): p. 367-371.
11. Gu, S.B., Y.Z. Zhang, and Y. Wu, Effects of sound exposure on the growth and intracellular macromolecular synthesis of E-coli k-12. Peerj, 2016. 4.
12. Bandara, H.M.H.N., et al., Sound Waves Effectively Assist Tobramycin in Elimination of Pseudomonas aeruginosa Biofilms In vitro. Aaps Pharmscitech, 2014. 15(6): p. 1644-1654.
13. Matsuhashi, M., et al., Bacillus carboniphilus cells respond to growth-promoting physical signals from cells of homologous and heterologous bacteria. J. Gen. Appl. Microbiol, 1996. 42: p. 315-323.
14. Matsuhashi, M., et al., Production of sound waves by bacterial cells and the response of bacterial cells to sound. Journal of General and Applied Microbiology, 1998. 44(1): p. 49-55.
15. Kirste, I., et al., Is silence golden? Effects of auditory stimuli and their absence on adult hippocampal neurogenesis. Brain Struct Funct, 2015. 220(2): p. 1221-8.
16. Chandra, T.S., V.S. Lekha, and T.M. Krishna, Effect of music on growth and pigment production of Brevibacterium SP. INternational Journal of Pharmaceutical, Chemical and Biological Sciences, 2018. 8(81): p. 157-160.
17. Sarvaiya, N. and V. Kothari, Effect of audible sound in form of music on microbial growth and production of certain important metabolites. Microbiology, 2015. 84(2): p. 227-235.
18. Kothari, V.N., Sarvaiya, Audible sound in form of music can influence microbial growth, metabolism and antibiotic susceptibility. Journal of Applied Biotechnology & Bioengineering, 2017. 2.
19. Kotwak, N.K., J. Damani, and J. Damani, The effect of music on the growth of Escherichia coli and Staphylococcus aureus. International Journal of Recent Scientific Research, 2016. 7(8).
20. Acuna-Gonzalez, E., D. Ibarra, and J. Benavides, Effects of sound elements on growth, viability and protein production yield in Escherichia coli. Journal of Chemical Technology and Biotechnology, 2019. 94(4): p. 1100-1113.
21. Persat, A., Bacterial mechanotransduction. Current Opinion in Microbiology, 2017. 36: p. 1-6.
22. Apodaca, G., Modulation of membrane traffic by mechanical stimuli. American Journal of Physiology-Renal Physiology, 2002. 282(2): p. F179-F190.
23. Cox, C.D., N. Bavi, and B. Martinac, Bacterial Mechanosensors. Annual Review of Physiology, Vol 80, 2018. 80: p. 71-93.
24. 中興大學物理系. 生物物理實驗 實驗四 生長曲線. 2007; Available from: http://ezphysics.nchu.edu.tw/genphys/gen/92to95/handout/4.pdf.
25. Yang, H., et al., Detection of Escherichia coli with a label-free impedimetric biosensor based on lectin functionalized mixed self-assembled monolayer. Sensors and Actuators B: Chemical, 2016. 229: p. 297-304.
26. Gamella, M., et al., Microorganisms recognition and quantification by lectin adsorptive affinity impedance. Talanta, 2009. 78(4-5): p. 1303-9.
27. Davis, L., Basic Methods in Molecular Biology. 2012: Elsevier. 399.
28. Lu, Y.C., et al., Bacteria detection utilizing electrical conductivity. Biosens Bioelectron, 2008. 23(12): p. 1856-61.
29. contributors, O. E. coli genotypes. 1 October 2018; Available from: https://openwetware.org/mediawiki/index.php?title=E._coli_genotypes&oldid=1047032.
30. Hazan, Z., et al., Effective prevention of microbial biofilm formation on medical devices by low-energy surface acoustic waves. Antimicrobial Agents and Chemotherapy, 2006. 50(12): p. 4144-4152.
31. Lacey, M. How to determine doubling times in Excel. Mel Lacey [Youtube]. 2017.
32. Banerjee, S., et al., Effect of Different Sound Frequencies on the Growth and Antibiotic Susceptibility of Escherichia coli. International Journal of Current Microbiology and Applied Sciences, 2018. 7(03): p. 1931-1939.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *