帳號:guest(18.118.166.47)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):方星傑
作者(外文):Fang, Hsing-Chieh
論文名稱(中文):釩離子摻雜之α- Fe2O3作為鋰離子電池陽極之電化學性能研究
論文名稱(外文):Electrochemical Properties of Vanadium Doped α- Fe2O3 as an Anode Material for Li-ion Batteries
指導教授(中文):蔡哲正
指導教授(外文):Tsai, Cho-Jen
口試委員(中文):游萃蓉
林居南
口試委員(外文):Yew, Tri-Ring
Lin, Ju-Nan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031579
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:44
中文關鍵詞:鋰電池鋰離子電池陽極氧化鐵摻雜釩離子摻雜
外文關鍵詞:Fe2O3Vanadium-dopedAnodeBatteries
相關次數:
  • 推薦推薦:0
  • 點閱點閱:634
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著科技日漸的進步,人們對於能源的需求也越來越大,並且致力於研究出更高能量密度的儲能裝置,而鋰離子電池因其高能量密度而有許多團隊在進行研究。其中陽極的部分雖然市售的Li4Ti5O12以及碳都有很好的循環壽命,但是受限於本身的電容量太低,所提供的能量密度如今已不符合人們的需求,而Fe2O3不僅無毒性,而且本身的穩定性良好以及地殼上的含量非常豐富,再加上工作電壓不高且有理論電容量高達1005 mA h g−1,是一個及有淺力的陽極材料。
但是Fe2O3受限於其傳導性差,且在充放電過程中的轉變反應會造成96%的體積膨脹,使得電容量在循環壽命上受到限制。而本實驗即是利用摻雜釩離子進入Fe2O3,欲利用釩離子較大的半徑,摻雜進Fe2O3的結構中使晶格結構變大,有助於鋰離子在晶格中的傳導,並且佔據住晶格中的位置,讓Fe2O3在充放電過後依舊能維持住本身的結構,不會有結構崩塌而造成電池死亡的現象發生。
而結果的確如預期,摻雜釩離子過後的Fe2O3的確不會因為結構崩塌而造成電性上的損失,不僅在0.1 C的定速率下循環100圈還能維持有1303.8 mA h g−1的電容量,在變速率下也有比較好的電性表現。
α- Fe2O3, which is the most stable phase of iron oxide, has a theoretical capacity of 1005 mA h g−1 which is much higher than the commercial materials like LTO and graphite. However, the drastic volume change, about 96%, occurs in the conversion reaction during lithiation/delithiation from α- LixFe2O3(rhombohedral structure) to Li2Fe2O3(cubic structure) for α- Fe2O3.
The present work attempted to dope different amount of vanadium in hematite as the anode materials for lithium battery. The results show that doping vanadium in hematite can help sustaining the Li2Fe2O3 structure during lithiuation/delithiation, preventing the structure of Li2Fe2O3 from collapse after cycling. Moreover, with increasing amount of vanadium doped, the diffusivity of lithium ion in the Li2Fe2O3 structure increases which improves the shortcoming of poor ionic counductivity of the transition oxides. However, the partical sizes, observed by scanning electron microscope, increases as increasing amount of vanadium doped. Both factors influence the electrochemical performance of the vanadium doped hematite as the anode of lithium ion battery.
Comparing to Fe2O3 without V doping, Fe2O3 doped with 10% V showed an improved electrochemical performance in long cycling performance. At current densities of 0.1 C, V-doped Fe2O3 exhibited an initial capacity of 1049 mA h g−1, and the capacity was rising up to 1303.8 mA h g−1 after 100 cycles.
第1章 緒論 1
1.1 鋰電池的發展與應用 1
1.2 α- Fe2O3 3
1.2.1 α- Fe2O3的優缺點 3
1.2.2 α- Fe2O3充放電機制 3
第2章 文獻回顧 4
2.1 奈米顆粒α- Fe2O3 4
2.2 包覆導電分子 5
2.3 複合物 6
2.4 摻雜不參與反應元素 8
第3章 實驗步驟與相關儀器 12
3.1 研究動機 12
3.2 實驗藥品 12
3.3 材料製備 13
3.3.1 以水熱法合成α- Fe2O3活物 13
3.3.2 以水熱法合成摻雜釩離子α- Fe2O3活物 13
3.4 電極製備 14
3.5 電池組裝 15
3.6 材料鑑定分析 15
3.6.1 XRD結晶繞射分析 15
3.6.2 場發掃描式電子顯微鏡 15
3.6.3 X-ray 光電子能譜分析 16
3.7 材料電性分析 16
3.7.1 循環壽命測試 16
3.7.2 循環伏安測試 16
3.7.3 交流阻抗測試 16
第4章 實驗結果與討論 17
4.1 α- Fe2O3與摻雜釩離子α- Fe2O3粉末 17
4.1.1 X-ray繞射分析 17
4.1.2 SEM顯微結構分析 19
4.1.3 XPS分析 22
4.2 電性表現 24
4.2.1 等速率循環壽命 24
4.2.2 變速率循環壽命 27
4.2.3 放電平台分析 28
4.3 電化學表現 30
4.3.1 循環伏安法分析 30
4.3.2 利用循環伏安法討論擴散速率 33
4.3.3 晶粒大小與擴散速率對於電性的影響 36
4.3.4 交流阻抗分析 39
第5章 結論 41
第6章 未來展望 42
第7章 參考文獻 43
1.https://cdn.thestandnews.com/media/photos/cache/image015_hvw8E_1200x0.png 2.http://i.epochtimes.com/assets/uploads/2005/09/509291747775.jpg
3.http://www.energia.sp.gov.br/wp-content/uploads/2018/04/Smart-Grid.jpg
4.Yaser Abu-Lebdeh, et al. (2013) “Nanotechnology for Lithium-Ion Batteries” 85-116
5.Guangda Li, et al. (2016) “Synthesis and superior electrochemical properties of shaggy hollow Zn-doped Fe2O3 nanospheres for high-performance lithium-ion batteries.” CrystEngComm 2016,18, 2949 –2955
6.J F Lu,et al. (2016) “shape dependenceof the electrochemical properties of α- Fe2O3 particals as anode materials for lithium ion battery .” RSC Advances, 2016,6, 26929–26935
7.Kangzhe Cao, et al. (2015) “3D hierarchical porous α-Fe2O3 nanosheets for high-performance lithium-ion batteries.” Adv. Energy Mater. 2015, 5, 1401421
8.Z. Zheng, et al. (2018) “Robust erythrocyte-like Fe2O3@carbon with yolk-shell structures as high-performance anode for lithium ion batteries.” Chemical Engineering Journal 2018,347,563–573
9.Jung Sang Cho, et al. (2015) “Design and Synthesis of Bubble-Nanorod-Structured Fe2O3–Carbon Nanofibers as Advanced Anode Material for Li-Ion Batteries.” ACS Nano 2015, 9,4,4026-4035
10.Zhiyu Wang, et al. (2012) “Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability.” Energy & Environmental Science 2012,5, 5252–5256
11.Guangda Li, et al. (2016) “Synthesis and superior electrochemical properties of shaggy hollow Zn-doped Fe2O3 nanospheres for high-performance lithium-ion batteries.” CrystEngComm 2016,18, 2949 –2955
12.Xinru Liu, et al. (2014) “The controlled synthesis and improved electrochemical cyclability of Mn-doped a-Fe2O3 hollow porous quadrangular prisms as lithium-ion battery anodes.” RSC Advances 2015, 5, 7604–7610
13.Guangda Li, et al. (2016) “Facile synthesis of Mn-doped hollow Fe2O3 nanospheres coated with polypyrrole as anode for high-performance lithium-ion battery.” RSC Advances 2016,6, 48199 –48204
14.Feixia Min, et al. (2018) “Cu-Doped - Fe2O3 Microspheres as Anode Materials for Lithium-Ion Batteries.” Journal of Nanoscience and Nanotechnology 2018,18, 4296–4301
15.G.Heidari, et al. (2017) “Comparative study of α- Fe2O3 films prepared by electrodeposition and spray pyrolysis methods as photoanode.” Journal of Materials Science: Materials in Electronics 2017, 29(6)
16.Richard J. Colton, et al. (1978) “Electrochromism in some thin-film transition-metal oxides characterized by xray electron spectroscopy” Journal of Applied Physics 1978,49,409-416
17.H.S. Lim, et al. (2013) “ Rattle type a- Fe2O3 submicron spheres with a thin carbon layer for lithium-ion battery anodes.” J. Mater. Chem.2013,1, 10107-10111
18.J. Zhu, et al.(2013) “ Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation” Energy Environ. Sci. 2013,6, 987-993.
19.Xingxing Li, et al.(2016) “Peapod-like V2O3 nanorods encapsulated into carbon as binder-freeandflexible electrodes in lithium-ion batteries.” Journal of Power Sources 2016, 331, 58-66
20.Xinhui Xia, et al.(2015) “VO2 nanoflake arrays for supercapacitor and Li-ion battery electrodes: performance enhancement by hydrogen molybdenum bronze as an efficient shell material.” Mater. Horiz., 2015,2, 237-244
21.Liqiang Mai, et al.(2013) “Cucumber-Like V2O5/poly(3,4-ethylenedioxythiophene)&MnO2 Nanowires with Enhanced Electrochemical Cyclability.” Nano Lett.2013,13,2,740-745
22.A. Bourke, et al. (2016) “Electrode Kinetics of Vanadium Flow Batteries: Contrasting Responses of VII-VIII and VIV-VV to Electrochemical Pretreatment of Carbon.” Journal of The Electrochemical Society 2016, 163 (1), A5097-A5105
23.Qinyou An, et al. (2014) “Amorphous Vanadium Oxide Matrixes Supporting Hierarchical Porous Fe3O4/Graphene Nanowires as a High-Rate Lithium Storage Anode.” Nano Lett. 2014,14,6250−6256
24.Huabin Kong, et al. (2017) “Engineering Mesoporous Single Crystals Co-Doped Fe2O3 for HighPerformance Lithium Ion Batteries.” Inorg. Chem. 2017, 56, 7642−7649
25.Jingang Yang, et al. (2017) “Improved cycle capability of Titanium-doped Fe2O3 anode material for Li-ion batteries.” Journal of Alloys and Compounds 2017,722,414-419
26.Xinhong Q, et al. (2018) “Ni and Co doped yolk-shell type Fe2O3 hollow microspheres as anode materials for lithium-ion batteries.” Materials Chemistry and Physics 2018,211, 452-461
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *