帳號:guest(18.118.151.12)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林后恆
作者(外文):Lin, Hou-Heng
論文名稱(中文):利用鋅修飾鋰鎳鈷鋁氧層狀正極材料以提高結構穩定性及鋰離子電池之電化學性能
論文名稱(外文):Improving Structural Stability and Electrochemical Properties via Zn-Modified Layered Structure of LiNi0.8Co0.15Al0.05O2 Cathode Material for Lithium Ion Batteries
指導教授(中文):杜正恭
指導教授(外文):Duh, Jenq-Gong
口試委員(中文):李紫原
蕭立殷
口試委員(外文):Lee, Chi-Young
Hsiao, Li-Yin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031578
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:95
中文關鍵詞:鋰離子電池能源材料高鎳三元材料
外文關鍵詞:Lithium Ion BatteriesEnergy MaterialsHigh Nickel Content Cathode Materials
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  近年來,由於能源政策改變、電動車以及電子產品的崛起,市場對於鋰離子電池之需求日益增加。除了高能量密度、長圈數循環、高安全性,對於成本以及環境的考量也成為商業化的關鍵。因此,本研究針對新型 LiNi0.8Co0.15Al0.05O2 正極材料進行深入研究,以具備高電容量、高循環性與低成本等優勢。
  本論文從粉體製備起始,藉由改良的螯合沉澱方法,使用乙二胺四乙酸(EDTA)作為螯合劑,可有效製備出高結晶、高純度之LiNi0.8Co0.15Al0.05O2 正極材料。另外,藉由添加元素鋅於粉體表面之改良,不僅可以擴大晶格層間距、還能減緩導致電性衰退的相變化發生,藉此提高整體電容量及循環壽命,不論在室溫(25°C)或高溫(55°C)下,都能於100圈循環之後達到80%以上的維持率,在大電流(5C)下也能由原本的 100 mAh/g 提升到130 mAh/g。
  本研究進而利用TEM了解表面結構與電化學之關係,並提出新穎之材料設計方式,期能突破傳統框架,俾以新穎觀念應用於未來電極材料。
    Recently, the Li ions batteries (LIBs) market has expanded from consumer electronics to other areas including the automobile industry and large energy storage systems. There are tremendous obstacles for further development of LIBs, such as capital cost, energy density, durability, high safety, and environmental issues. Among a wide range of cathode materials, Ni-rich cathode materials, such as LiNi0.8Co0.15Al0.05O2 (NCA) and LiNi0.8Co0.1Mn0.1O2 (NCM), are the most practical candidate for the wide applications with respect to the reversible capacity, rate capability and capital cost. Currently, the Ni-rich cathodes with the amount of Ni less than 60% are commercialized. However, the unstable powder properties of Ni-rich materials with Ni contents higher than 60% still have difficulties in commercialization.
Therefore, a surface modification is applied to enhance the structural stability. First, a modified sol-gel method is developed in this study. The impurity-free LiNi0.8Co0.15Al0.05O2 with high crystallinity is successfully fabricated. In order to enhance the structural stability and rate capability, the Zn-substitution in the surface region is performed. It shows that the c-axis and lithium slab are expanded, and unwanted phase formation is suppressed. The capacity retention of the Zn-substitution sample at both 25°C and 55°C is higher than 80% after 100 cycles. It also provides 30 mAh/g higher than the pristine sample at a high rate of 5C.
In addition, this study is aimed to further understand the relationship between the surface structure and electrochemical properties. A novel material design method is also proposed to breakthrough the traditional framework. It is expected that this idea can be applied to LIBs in the future.
摘要 i
Abstract ii
Table Captions viii
Figure Captions ix
Chapter 1 Introduction 1
Chapter 2 Literature Review 5
Chapter 3 Experimental Details 36
Chapter 4 Results and Discussions 40
Chapter 5 Conclusions 58
Appendix I 59
References 62
AppendixⅡ (Li4Ti5O12) 66
References 93
1. M.S.Whittingham. Science 1976, 192, (4244), 1126-1127.
2. Whittingham, M. S. Chem. Rev 2004, 104, 4271-4301.
3. Fey, G. T. K.; Chen, J. G.; Subramanian, V.; Osaka, T. Journal of Power Sources 2002, 112, 384-394.
4. Yang-Kook Sun, S.-T. M., Ho-Suk Shin, Young Chan Bae, and Chong Seung Yoon. J. Phys. Chem. B 2006, 110, 6810-6815.
5. Seung-Taek Myung, S. K., Koutarou Kurihara, Kiyoharu Hosoya, Naoaki Kumagai, Yang-Kook Sun,Izumi Nakai,Masao Yonemura, and; Kamiyama, T. Chem. Mater. 2006, 18, 1658-1666.
6. Sun, Y. K.; Chen, Z.; Noh, H. J.; Lee, D. J.; Jung, H. G.; Ren, Y.; Wang, S.; Yoon, C. S.; Myung, S. T.; Amine, K. Nat Mater 2012, 11, (11), 942-7.
7. Mizushima, K., Jones, P.C., Wiseman, P.J., Goodenough, J.B. Materials Research Bulletin 1980, 15, (6), 783-789.
8. Aurbach, D. Journal of Power Sources 2000, 89, (200), 206-218.
9. Ellis, B. L.; Lee, K. T.; Nazar, L. F. Chemistry of Materials 2010, 22, (3), 691-714.
10. Liu, C.; Neale, Z. G.; Cao, G. Materials Today 2016, 19, (2), 109-123.
11. Churikov, A. V.; Ivanishchev, A. V.; Ivanishcheva, I. A.; Sycheva, V. O.; Khasanova, N. R.; Antipov, E. V. Electrochimica Acta 2010, 55, (8), 2939-2950.
12. Deng, Z.; Mo, Y.; Ong, S. P. NPG Asia Materials 2016, 8, (3), e254-e254.
13. Michel Armand, M. G., Jean-Francois , Magnan, Nathalie Ravet Google Patents US 2004.
14. Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat Mater 2002, 1, (2), 123-8.
15. Hayner, C. M.; Zhao, X.; Kung, H. H. Annu Rev Chem Biomol Eng 2012, 3, 445-71.
16. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G. Materials Today 2015, 18, (5), 252-264.
17. Dong H. Jang, Y. J. S., and Seung M. Oh. J. Electrochem. Soc. 1996, 143, (7), 2204-2211.
18. M.M. Thackeray, W. I. F. D., P.G. Bruce, and J.B. Goodenough Mat. Res. Bull. 1983, 18, 461-472.
19. Deng, B.; Nakamura, H.; Yoshio, M. Journal of Power Sources 2008, 180, (2), 864-868.
20. Tsutomu Ohzuku, S. T., Masato Iwanaga. Journal of Power Sources 1999, 81-82, 90-94.
21. Seung-Taek Myung, S. K., Naoaki Kumagai , Hitoshi Yashiro,Hoon-Taek Chung, Tae-Hyung Cho Electrochimica Acta 2002, 47, 2543-2549.
22. Takahashi, K.; Saitoh, M.; Sano, M.; Fujita, M.; Kifune, K. Journal of The Electrochemical Society 2004, 151, (1), A173.
23. Kunduraci, M.; Amatucci, G. G. Electrochimica Acta 2008, 53, (12), 4193-4199.
24. H. Xia, Y. S. M., L. Lu, and G. Ceder. Journal of The Electrochemical Society 2007, 154, (8), A737-A743.
25. Lee, K.-S.; Myung, S.-T.; Bang, H. J.; Chung, S.; Sun, Y.-K. Electrochimica Acta 2007, 52, (16), 5201-5206.
26. Molenda, J. Solid State Ionics 2004, 171, (3-4), 215-227.
27. Yosef Talyosef, B. M., Ronit Lavi, Gregory Salitra,Doron Aurbach, Daniela Kovacheva,Mila Gorova, Ekaterina Zhecheva, and Radostina Stoyanova. Journal of The Electrochemical Society 2007, 154, (7), A682-A691
28. Du Pasquier, A.; Plitz, I.; Menocal, S.; Amatucci, G. Journal of Power Sources 2003, 115, (1), 171-178.
29. M. GU, e. a. ACS Nano 2013, 7, (1), 760-767.
30. Tu, J.; Zhao, X. B.; Cao, G. S.; Zhuang, D. G.; Zhu, T. J.; Tu, J. P. Electrochimica Acta 2006, 51, (28), 6456-6462.
31. Zheng, H.; Sun, Q.; Liu, G.; Song, X.; Battaglia, V. S. Journal of Power Sources 2012, 207, 134-140.
32. Kisuk Kang, Y. S. M., Julien Bre´ger,Clare P. Grey,Gerbrand Ceder. SCIENCE 2019, 311, 977-980.
33. Z.H.Lu, L. Y. B., R.A. Donaberger, C.L.Thomas, J.R.Dahn. Journal of The Electrochemical Society 2002, 149 (6), A778-A791.
34. Xu, B.; Fell, C. R.; Chi, M.; Meng, Y. S. Energy & Environmental Science 2011, 4, (6), 2223.
35. Won-Sub Yoon, S. I., Clare P. Grey,Dany Carlier,John Gorman, John Reed, Gerbrand Ceder. Electrochemical and Solid-State Letters 2004, 7, (7), A167-A171.
36. Christopher R. Fell, K. J. C., Miaofang Chi,Ying Shirley Meng. Journal of The Electrochemical Society 2010, 157, (1), A1202-A1211.
37. Hajime Arai”, S. O., Yoji Sakurai, Jun-ichi Yamaki Solid State Ionics 1997, 95, 275-282.
38. Tsutomu Ohzuku, A. U., and Masatashi Nagayama J. Electrochem. Soc. 1993, 140, (7).
39. Hajime Arai , S. O., Yoji Sakurai, Jun-ichi Yamaki. Solid State Ionics 1998, 109, 295-302.
40. Stoyanova, E. Z. a. R. Solid State Ionics 1993, 66, 143-149.
41. Jaephil Cho , B. P. Journal of Power Sources 2001, 92, 35-39.
42. Dahn, D. D. M. a. J. R. Journal of The Electrochemical Society 2002, 149, A912-A919.
43. M. Guilmard, L. C., and C. Delmas. Chem. Mater. 2003, 15, 4484-4493.
44. Tsutomu Ohzuku, A. U., Masaru Kouguchi J. Electrochem. Soc. 1995, 142, (12), 4033-4039.
45. Myung, S.-T.; Maglia, F.; Park, K.-J.; Yoon, C. S.; Lamp, P.; Kim, S.-J.; Sun, Y.-K. ACS Energy Letters 2016, 2, (1), 196-223.
46. S. Madhavi, G. V. S. R., B.V.R. Chowdari, S.F.Y. Li. Journal of Power Sources 2001, 93, 156-162.
47. Lee, K. K.; Yoon, W. S.; Kim, K. B.; Lee, K. Y.; Hong, S. T. Journal of Power Sources 2001, 97-98, 308-312.
48. Jo, M.; Noh, M.; Oh, P.; Kim, Y.; Cho, J. Advanced Energy Materials 2014, 4, (13), 1301583.
49. Liang, M.; Song, D.; Zhang, H.; Shi, X.; Wang, Q.; Zhang, L. ACS Appl Mater Interfaces 2017, 9, (44), 38567-38574.
50. PengDong, P. International Journal of Electrochemical Science 2017, 561-575.
51. Dahn, Z. C. a. J. R. Electrochemical and Solid-State Letters 2002, 5, (10), A213-A216.
52. Tsuyoshi Sasaki; Takamasa Nonaka; Hideaki Oka; Chikaaki Okuda; Yuichi Itou; Yasuhito Kondo; Yoji Takeuchi; Yoshio Ukyo; Kazuyoshi Tatsumi; Muto, S. Journal of The Electrochemical Society 2009, 156, A289-A293.
53. Tsuyoshi Sasaki; Takamasa Nonaka; Hideaki Oka; Chikaaki Okuda; Yuichi Itou; Yasuhito Kondo; Yoji Takeuchi; Yoshio Ukyo; Kazuyoshi Tatsumi; Muto, S. Journal of The Electrochemical Society 2009, 156, A371-A377.
54. Shijian Zheng; Rong Huang; Yoshinari Makimura; Yoshio Ukyo; Craig A. J. Fisher; Tsukasa Hirayama; Ikuhara, a. Y. Journal of The Electrochemical Society 2011, 158, A357-A362.
55. Shizuka, K.; Kiyohara, C.; Shima, K.; Takeda, Y. Journal of Power Sources 2007, 166, (1), 233-238.
56. Xiong, X.; Wang, Z.; Yue, P.; Guo, H.; Wu, F.; Wang, J.; Li, X. Journal of Power Sources 2013, 222, 318-325.
57. Miller, D. J.; Proff, C.; Wen, J. G.; Abraham, D. P.; Bareño, J. Advanced Energy Materials 2013, 3, (8), 1098-1103.
58. Abraham, D. P.; Roth, E. P.; Kostecki, R.; McCarthy, K.; MacLaren, S.; Doughty, D. H. Journal of Power Sources 2006, 161, (1), 648-657.
59. Jo, C.-H.; Cho, D.-H.; Lee, J.-w.; Hitoshi, Y.; Myung, S.-T. Journal of Power Sources 2015, 282, 511-519.
60. Kondo, H.; Takeuchi, Y.; Sasaki, T.; Kawauchi, S.; Itou, Y.; Hiruta, O.; Okuda, C.; Yonemura, M.; Kamiyama, T.; Ukyo, Y. Journal of Power Sources 2007, 174, (2), 1131-1136.
61. Huang, B.; Li, X.; Wang, Z.; Guo, H.; Xiong, X. Ceramics International 2014, 40, (8), 13223-13230.
62. Lee, M.-J.; Noh, M.; Park, M.-H.; Jo, M.; Kim, H.; Nam, H.; Cho, J. Journal of Materials Chemistry A 2015, 3, (25), 13453-13460.
63. Gao, S.; Zhan, X.; Cheng, Y.-T. Journal of Power Sources 2019, 410-411, 45-52.
64. Li, X.; Xie, Z.; Liu, W.; Ge, W.; Wang, H.; Qu, M. Electrochimica Acta 2015, 174, 1122-1130.
65. Zhao, J.; Wang, Z.; Wang, J.; Guo, H.; Li, X.; Gui, W.; Chen, N.; Yan, G. Energy Technology 2018, 6, (12), 2358-2366.
66. Cho, Y.; Cho, J. Journal of The Electrochemical Society 2010, 157, A625-A629.
67. Lai, Y.-Q.; Xu, M.; Zhang, Z.-A.; Gao, C.-H.; Wang, P.; Yu, Z.-Y. Journal of Power Sources 2016, 309, 20-26.
68. Wang, J.; Du, C.; Yan, C.; He, X.; Song, B.; Yin, G.; Zuo, P.; Cheng, X. Electrochimica Acta 2015, 174, 1185-1191.
69. Kim, H. B.; Park, B. C.; Myung, S. T.; Amine, K.; Prakash, J.; Sun, Y. K. Journal of Power Sources 2008, 179, (1), 347-350.
70. Kim, Y.; Cho, J. Journal of The Electrochemical Society 2007, 154, A495-A499.
71. Wu, N.; Wu, H.; Liu, H.; Zhang, Y. Journal of Alloys and Compounds 2016, 665, 48-56.
72. Duan, J.; Wu, C.; Cao, Y.; Du, K.; Peng, Z.; Hu, G. Electrochimica Acta 2016, 221, 14-22.
73. Yang-Kook Sun, S.-T. M., Myung-Hoon Kim, Jai Prakash, Khalil Amine. J. AM. CHEM. SOC. 2005, 127, 13411-13418.
74. Lim, B.-B.; Yoon, S.-J.; Park, K.-J.; Yoon, C. S.; Kim, S.-J.; Lee, J. J.; Sun, Y.-K. Advanced Functional Materials 2015, 25, (29), 4673-4680.
75. Kim, U.-H.; Lee, E.-J.; Yoon, C. S.; Myung, S.-T.; Sun, Y.-K. Advanced Energy Materials 2016, 6, (22), 1601417.
76. Lee, J. H.; Yoon, C. S.; Hwang, J.-Y.; Kim, S.-J.; Maglia, F.; Lamp, P.; Myung, S.-T.; Sun, Y.-K. Energy & Environmental Science 2016, 9, (6), 2152-2158.
77. Yoon, C. S.; Jun, D.-W.; Myung, S.-T.; Sun, Y.-K. ACS Energy Letters 2017, 2, (5), 1150-1155.
78. Abraham, K. M. J Phys Chem Lett 2015, 6, (5), 830-44.
79. Goodenough, J. B.; Kim, Y. Chemistry of Materials 2010, 22, (3), 587-603.
80. Xu, B.; Qian, D.; Wang, Z.; Meng, Y. S. Materials Science and Engineering: R: Reports 2012, 73, (5-6), 51-65.
81. Kim, J.; Lee, H.; Cha, H.; Yoon, M.; Park, M.; Cho, J. Advanced Energy Materials 2018, 8, (6), 1702028.
-----------------------------------------------------
1. G. Xu, P. Han, S. Dong, H. Liu, G. Cui and L. Chen, Coordination Chemistry Reviews, 343, 139 (2017).
2. T. Yuan, Z. Tan, C. Ma, J. Yang, Z.-F. Ma and S. Zheng, Advanced Energy Materials, 7, 1601625 (2017).
3. X. Sun, M. Hegde, Y. Zhang, M. He, L. Gu, Y. Wang, J. Shu, Pavle, V. Radovanovic, B. Cui and International Journal of ELECTROCHEMICAL SCIENCE 9 1583 (2014).
4. X. Ji, Q. Lu, E. Guo, D. Li, L. Yao, H. Liu and X. Li, Journal of The Electrochemical Society, 165, A534 (2018).
5. Y. F. Tang, L. Yang, Z. Qiu and J. S. Huang, Electrochemistry Communications, 10, 1513 (2008).
6. J. Chen, L. Yang, S. Fang and Y. Tang, Electrochimica Acta, 55, 6596 (2010).
7. P. Martín, M. L. López, C. Pico and M. L. Veiga, Solid State Sciences, 9, 521 (2007).
8. H. Shiiba, M. Nakayama and M. Nogami, Solid State Ionics, 181, 994 (2010).
9. B. Tian, H. Xiang, L. Zhang, Z. Li and H. Wang, Electrochimica Acta, 55, 5453 (2010).
10. Z. Wang, G. Chen, J. Xu, Z. Lv and W. Yang, Journal of Physics and Chemistry of Solids, 72, 773 (2011).
11. T.-F. Yi, Y. Xie, Q. Wu, H. Liu, L. Jiang, M. Ye and R. Zhu, Journal of Power Sources, 214, 220 (2012).
12. X. Han, Z. Zhao, Y. Xu, D. Liu, H. Zhang and C. Zhao, RSC Adv., 4, 41968 (2014).
13. C.-K. Lan, S.-I. Chuang, Q. Bao, Y.-T. Liao and J.-G. Duh, Journal of Power Sources, 275, 660 (2015).
14. K. Kanamura, T. Chiba and K. Dokko, Journal of the European Ceramic Society, 26, 577 (2006).
15. Q. Guo, X. Cheng, Y. Shi, Z. Sheng and C. Chang, Journal of Alloys and Compounds, 710, 383 (2017).
16. L. Cheng, X.-L. Li, H.-J. Liu, H.-M. Xiong, P.-W. Zhang and Y.-Y. Xia, Journal of The Electrochemical Society, 154, A692 (2007).
17. H. Ni and L.-Z. Fan, Journal of Power Sources, 214, 195 (2012).
18. J. Shu, L. Hou, R. Ma, M. Shui, L. Shao, D. Wang, Y. Ren and W. Zheng, RSC Advances, 2, 10306 (2012).
19. H. Ni, W.-L. Song and L.-Z. Fan, Electrochemistry Communications, 40, 1 (2014).
20. C. Tendero, C. Tixier, P. Tristant, J. Desmaison and P. Leprince, Spectrochimica Acta Part B: Atomic Spectroscopy, 61, 2 (2006).
21. M. C. Kim, S. H. Yang, J. H. Boo and J. G. Han, Surface and Coatings Technology, 174-175, 839 (2003).
22. H.-H. Kim, Plasma Processes and Polymers, 1, 91 (2004).
23. M. G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk and J. L. Zimmermann, New Journal of Physics, 11, 115012 (2009).
24. B. H. Chen, S. I. Chuang, W. R. Liu and J. G. Duh, ACS Appl Mater Interfaces, 7, 28166 (2015).
25. S.-I. Chuang, H. Yang, H.-W. Chen and J.-G. Duh, Thin Solid Films, 596, 250 (2015).
26. C.-K. Lan, C.-C. Chang, C.-Y. Wu, B.-H. Chen and J.-G. Duh, RSC Advances, 5, 92554 (2015).
27. A. Qayyum, S. Zeb, M. A. Naveed, N. U. Rehman, S. A. Ghauri and M. Zakaullah, Journal of Quantitative Spectroscopy and Radiative Transfer, 107, 361 (2007).
28. M. M. Mansour, N. M. El-Sayed, O. F. Farag and M. H. Elghazaly, Arab Journal of Nuclear Science and Applications, 46, 116 (2013).
29. K. J. Clay, S. P. Speakman, G. A. J. Amaratunga and S. R. P. Silva, Journal of Applied Physics, 79, 7227 (1996).
30. P. J. Bruggeman, N. Sadeghi, D. C. Schram and V. Linss, Plasma Sources Science and Technology, 23, 023001 (2014).
31. M. Ruiz, F. Guzmán, M. Favre, S. Hevia, N. Correa, H. Bhuyan, E. S. Wynham and H. Chuaqui, Journal of Physics: Conference Series, 511, 012064 (2014).
32. S. F. Durrant, N. Margal, S. G. Castrob, R. C. G. Vinhasb, M. A. B. d. Moraes and J. H. Nicola, Thin Solid Films 259, 139 (1995).
33. S. Qiu, X. Wang, G. Lu, J. Liu and C. He, Materials Letters, 136, 289 (2014).
34. Y. Zhao, Y. Huang, Q. Wang, K. Wang, M. Zong, L. Wang and X. Sun, Ceramics International, 40, 2275 (2014).
35. W. Guanghui, L. Ruiyi, L. Zaijun, L. Junkang, G. Zhiguo and W. Guangli, Electrochimica Acta, 171, 156 (2015).
36. Y. Liu, X. Gao, Z. Hong and W. Shi, Journal of Materials Chemistry A, 4, 8983 (2016).
37. C. Chen, C. Ai, Y. He, S. Yang and Y. Wu, Journal of Alloys and Compounds, 705, 438 (2017).
38. J. Shen, W. Hu, Y. Li, L. Li, X.-J. Lv and L. Zhang, Journal of Alloys and Compounds, 701, 372 (2017).
39. F. Xie, L. Zhang, D. Su, M. Jaroniec and S. Z. Qiao, Adv Mater, 29 (2017).
40. J. Liu, A. X. Wei, M. Chen and X. Xia, Journal of Materials Chemistry A, 6, 3857 (2018).
41. C.-Y. Wu, H. Yang, C.-Y. Wu and J.-G. Duh, Journal of Alloys and Compounds, 750, 23 (2018).
42. G. Xu, X. Quan, H. Gao, J. Li, Y. Cai, X. Cheng and L. Guo, Solid State Ionics, 304, 40 (2017).
43. H. C. Choi, J. Park and B. Kim, J. Phys. Chem., 109, , 4333 (2005).
44. L. Roldan, S. Armenise, Y. Marco and E. Garcia-Bordeje, Phys Chem Chem Phys, 14, 3568 (2012).
45. R. S. Weatherup, B. Eren, Y. Hao, H. Bluhm and M. B. Salmeron, J Phys Chem Lett, 7, 1622 (2016).
46. L. G. Bulusheva, A. V. Okotrub, I. A. Kinloch, I. P. Asanov, A. G. Kurenya, A. G. Kudashov, X. Chen and H. Song, physica status solidi (b), 245, 1971 (2008).
47. T. Hang, D. Mukoyama, H. Nara, N. Takami, T. Momma and T. Osaka, Journal of Power Sources, 222, 442 (2013).
48. H. Li, L. Shen, K. Yin, J. Ji, J. Wang, X. Wang and X. Zhang, Journal of Materials Chemistry A, 1, 7270 (2013).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *