帳號:guest(3.15.228.0)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張永廷
作者(外文):Chang, Yung-Ting
論文名稱(中文):三硫化鈦奈米帶的電子傳導檢測與機制探討
論文名稱(外文):Probing the electronic properties and transport mechanism of TiS3 nanoribbons
指導教授(中文):呂明諺
指導教授(外文):Lu, Ming-Yen
口試委員(中文):呂明霈
張育誠
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031577
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:71
中文關鍵詞:三硫化鈦非等向性線性二色性表面主導傳導機制
外文關鍵詞:metal-to-insulator transitionpolar optical phonon
相關次數:
  • 推薦推薦:0
  • 點閱點閱:259
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究主要探討三硫化鈦的厚度以及表面形貌對其材料特性所造成的影響,讓我們更了解層狀結構材料的基本傳導機制。
首先我們針對利用化學氣相傳輸法合成出的三硫化鈦進行成分與結構的分析,利用光學顯微鏡和掃描式電子顯微鏡觀察材料形貌,透過顯微拉曼光譜儀了解原子振盪模式,最後使用X光繞射儀與穿透式電子顯微鏡得知材料的晶體結構與成分比例。其中,又會使用顯微拉曼光譜儀來特別探討三硫化鈦的線性二色性特徵。
緊接著,在完成元件的製備後,我們會透過變溫電性量測來偵測三硫化鈦導電度與溫度的關係,並因此發現了metal-to-insulator transition ( MIT )的特殊現象。而後我們也量測數個不同厚度的元件,並彙整了導電度與厚度的關聯,進而推導出三硫化鈦表面主導的傳導機制。接著我們更深入探討表面形貌對於電性表現的影響,發現表面的平滑/完整與否,會大幅影響表面原子的集體激發,也就跟著影響polar optical phonon的強弱,於是我們便會在粗糙度較大的元件特性中看到MIT的消失。
In this study, we mainly discuss the influence of thickness and surface morphology on TiS3’s electrical properties and the basic transport mechanism.
First of all, we synthesized TiS3 by chemical vapor transport method. And then optical microscope and scanning electron microscope were utilized to observe the morphology of the material. We also proceeded the Raman and TEM analysis to confirm the atomic vibration modes and the crystal structure of TiS3. Especially, Raman spectroscopy was applied to detect the linear dichroism in TiS3.
After the fabrication of TiS3 devices, the temperature-dependent measurements were conducted to measure the conductivity within different temperature, we therefore explored the metal-to-insulator transition (MIT) in TiS3 during the experiments. After that, thickness-dependent measurements whose results deduced the surface-dominant transport mechanism in TiS3 were followed. Because of this special phenomenon, the effect of surface morphology on TiS3 electrical properties was investigated. We then discover the roughness of devices surfaces will significantly affect the collective excitation of the surface atoms, so-called phonon. The decline of the phonon will hence cause the absence of MIT in TiS3.
摘要.....I
Abstract.....II
致謝.....III
目錄.....IV
圖目錄.....VII
表目錄.....XI
第1章 緒論與文獻回顧.....1
1-1 奈米科技.....1
1-1-1 奈米科技的興起與發展.....1
1-1-2 過渡金屬三硫族化物的崛起.....2
1-2 三硫化鈦 (TiS3).....3
1-2-1 三硫化鈦的基本性質.....3
1-2-2 線性二色性 (Linear Dichroism, LD).....5
1-2-3 三硫化鈦的層數檢測.....6
1-3 三硫化鈦的相關應用.....8
1-3-1 場效電晶體 (Field-Effect Transistor, FET).....8
1-3-2 光偵測器 (Photodetectors).....11
1-3-3 極化光感測器 (Polarized Photosensors).....13
1-3-4 異質結構 (Heterostructures).....14
1-4 層狀材料內的載子散射機制.....16
1-5 研究動機.....20
第2章 實驗步驟與儀器介紹.....21
2-1 實驗步驟.....21
2-1-1 利用化學氣相傳輸法成長三硫化鈦.....22
2-1-2 以機械剝離法與乾式轉印法製備少層數之三硫化鈦.....24
2-1-3 三硫化鈦元件之製備.....26
2-1-4 元件之電性量測.....28
2-2 儀器.....29
2-2-1 單區加熱爐管 (Single Zone Furnace).....29
2-2-2 光學顯微鏡 (Optical Microscope, OM).....30
2-2-3 顯微拉曼光譜儀 (Micro-Raman Spectroscope).....31
2-2-4 X光繞射儀 (X-Ray Diffractometer, XRD).....32
2-2-5 原子力顯微鏡 (Atomic Force Microscope, AFM).....33
2-2-6 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM).....34
2-2-7 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM).....35
2-2-8 X光能量散佈分析儀(Energy Dispersive X-ray Spectrometer, EDS).....36
2-2-9 電子束微影系統 (Electron Beam Lithography).....37
2-2-10 電子束蒸鍍系統 (Electron Beam Evaporator).....38
2-2-11 電性量測系統 (Electrical Property Measurement System).....39
第3章 結果與討論.....40
3-1 三硫化鈦的結構檢測與成分分析.....40
3-1-1 三硫化鈦表面形貌分析.....41
3-1-2 三硫化鈦結構分析.....43
3-1-3 顯微拉曼光譜分析.....45
3-1-4 三硫化鈦的線性二色性.....47
3-2 三硫化鈦電晶體元件電性量測.....49
3-2-1 變溫電性量測.....49
3-2-2 材料厚度與導電性的關係.....54
3-2-3 表面形貌與傳導機制.....58
第4章 結論.....62
第5章 未來展望.....64
參考文獻.....65
[1] Schaller RR. Moore's law: past, present and future. IEEE spectrum. 1997;34(6):52-9.
[2] Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide Physical Review B. 2011;83(24):245213.
[3] Chan T, Chen J, Ko P, Hu C, editors. The impact of gate-induced drain leakage current on MOSFET scaling. 1987 International Electron Devices Meeting; 1987: IEEE.
[4] Schuegraf K, King C, Hu C, editors. Ultra-thin silicon dioxide leakage current and scaling limit. 1992 Symposium on VLSI technology digest of technical papers; 1992: IEEE.
[5] Cros A, Romanjek K, Fleury D, Harrison S, Cerutti R, Coronel P, et al., editors. Unexpected mobility degradation for very short devices: A new challenge for CMOS scaling. 2006 International Electron Devices Meeting; 2006: IEEE.
[6] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666-9.
[7] Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, et al. Graphene and graphene oxide: synthesis, properties, and applications. Advanced materials. 2010;22(35):3906-24.
[8] Pimenta MA, del Corro E, Carvalho BR, Fantini C, Malard LM. Comparative study of raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides. Accounts of Chemical Research. 2015;48(1):41-7.
[9] Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology. 2012;7:699.
[10] Zhou H, Wang C, Shaw JC, Cheng R, Chen Y, Huang X, et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano letters. 2015;15(1):709-13.
[11] Jeon J, Jang SK, Jeon SM, Yoo G, Jang YH, Park JH, et al. Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale. 2015;7(5):1688-95.
[12] Pumera M, Loo AH. Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. TrAC Trends in Analytical Chemistry. 2014;61:49-53.
[13] Wang S, Rong Y, Fan Y, Pacios M, Bhaskaran H, He K, et al. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chemistry of Materials. 2014;26(22):6371-9.
[14] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nature nanotechnology. 2011;6(3):147.
[15] Lin YC, Dumcenco DO, Huang YS, Suenaga K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nature nanotechnology. 2014;9(5):391-6.
[16] Jung Y, Shen J, Sun Y, Cha JJ. Chemically synthesized heterostructures of two-dimensional molybdenum/tungsten-based dichalcogenides with vertically aligned layers. ACS nano. 2014;8(9):9550-7.
[17] Ubaldini A, Giannini E. Improved chemical vapor transport growth of transition metal dichalcogenides. Journal of Crystal Growth. 2014;401:878-82.
[18] Island JO, Molina-Mendoza AJ, Barawi M, Biele R, Flores E, Clamagirand JM, et al. Electronics and optoelectronics of quasi-1D layered transition metal trichalcogenides. 2D Materials. 2017;4(2):022003.
[19] Ikari T, Provencher R, Jandl S, Aubin M. Electrical properties of vapour grown ZrSe3 single crystals. Solid State Communications. 1983;45(2):113-6.
[20] Guilmeau E, Berthebaud D, Misse PRN, Hébert S, Lebedev OI, Chateigner D, et al. ZrSe3-type variant of TiS3: structure and thermoelectric properties. Chemistry of Materials. 2014;26(19):5585-91.
[21] Xiong W-W, Chen J-Q, Wu X-C, Zhu J-J. Individual HfS3 nanobelt for field-effect transistor and high performance visible-light detector. Journal of Materials Chemistry C. 2014;2(35):7392-5.
[22] Jin Y, Li X, Yang J. Single layer of MX3 (M = Ti, Zr; X = S, Se, Te): a new platform for nano-electronics and optics. Physical Chemistry Chemical Physics. 2015;17(28):18665-9.
[23] Xiong W-W, Chen J-Q, Wu X-C, Zhu J-J. Visible light detectors based on individual ZrSe3 and HfSe3 nanobelts. Journal of Materials Chemistry C. 2015;3(9):1929-34.
[24] Dai J, Li M, Zeng XC. Group IVB transition metal trichalcogenides: a new class of 2D layered materials beyond graphene. Wiley Interdisciplinary Reviews: Computational Molecular Science. 2016;6(2):211-22.
[25] Wang Y-Q, Wu X, Ge Y-F, Wang Y-L, Guo H, Shao Y, et al. Tunable electronic structures in wrinkled 2D transition-metal-trichalcogenide (TMT) HfTe3 films. Advanced Electronic Materials. 2016;2(12):1600324.
[26] Srivastava SK, Avasthi BN. Preparation, structure and properties of transition metal trichalcogenides. Journal of Materials Science. 1992;27(14):3693-705.
[27] Ferrer IJ, Maciá MD, Carcelén V, Ares JR, Sánchez C. On the photoelectrochemical properties of TiS3 films. Energy Procedia. 2012;22:48-52.
[28] Yi H, Komesu T, Gilbert S, Hao G, Yost AJ, Lipatov A, et al. The band structure of the quasi-one-dimensional layered semiconductor TiS3(001). Applied Physics Letters. 2018;112(5):052102.
[29] Molina-Mendoza AJ, Barawi M, Biele R, Flores E, Ares JR, Sánchez C, et al. Electronic bandgap and exciton binding energy of layered semiconductor TiS3. Advanced Electronic Materials. 2015;1(9):1500126.
[30] Saeed Y, Kachmar A, Carignano MA. First-principles study of the transport properties in bulk and monolayer MX3 (M = Ti, Zr, Hf and X = S, Se) compounds. The Journal of Physical Chemistry C. 2017;121(3):1399-403.
[31] Grüner G. The dynamics of charge-density waves. Reviews of Modern Physics. 1988;60(4):1129-81.
[32] Gammie G. Surface structure studies of quasi-one-dimensional charge-density wave compounds by scanning tunneling microscopy. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. 1991;9(2):1027.
[33] Thorne RE. Charge-density-wave conductors. Physics Today. 1996;49(5):42-8.
[34] Gorlova IG, Pokrovskii VY, Zybtsev SG, Titov AN, Timofeev VN. Features of the conductivity of the quasi-one-dimensional compound TiS3. Journal of Experimental and Theoretical Physics. 2010;111(2):298-303.
[35] Goli P, Khan J, Wickramaratne D, Lake RK, Balandin AA. Charge density waves in exfoliated films of van der Waals materials: evolution of Raman spectrum in TiSe2. Nano letters. 2012;12(11):5941-5.
[36] Gorlova IG, Zybtsev SG, Pokrovskii VY, Bolotina NB, Verin IA, Titov AN. Nonlinear conductivity of quasi-one-dimensional layered compound TiS3. Physica B: Condensed Matter. 2012;407(11):1707-10.
[37] Khan J, Nolen CM, Teweldebrhan D, Wickramaratne D, Lake RK, Balandin AA. Anomalous electron transport in back-gated field-effect transistors with TiTe2 semimetal thin-film channels. Applied Physics Letters. 2012;100(4):043109.
[38] Gorlova IG, Zybtsev SG, Pokrovskii VY. Conductance anisotropy and the power-law current-voltage characteristics along and across the layers of the TiS3 quasi-one-dimensional layered semiconductor. JETP Letters. 2014;100(4):256-61.
[39] Ugeda MM, Bradley AJ, Zhang Y, Onishi S, Chen Y, Ruan W, et al. Characterization of collective ground states in single-layer NbSe2. Nature Physics. 2015;12(1):92-7.
[40] Huang C, Zhang E, Yuan X, Wang W, Liu Y, Zhang C, et al. Tunable charge density wave in TiS3 nanoribbons. Chinese Physics B. 2017;26(6):067302.
[41] Island JO, Barawi M, Biele R, Almazan A, Clamagirand JM, Ares JR, et al. TiS3 transistors with tailored morphology and electrical properties. Advanced materials. 2015;27(16):2595-601.
[42] Lipatov A, Wilson PM, Shekhirev M, Teeter JD, Netusil R, Sinitskii A. Few-layered titanium trisulfide (TiS3) field-effect transistors. Nanoscale. 2015;7(29):12291-6.
[43] Molina-Mendoza AJ, Island JO, Paz WS, Clamagirand JM, Ares JR, Flores E, et al. High current density electrical breakdown of TiS3 nanoribbon-based field-effect transistors. Advanced Functional Materials. 2017;27(13):1605647.
[44] Island JO, Buscema M, Barawi M, Clamagirand JM, Ares JR, Sánchez C, et al. Ultrahigh photoresponse of few-layer TiS3 nanoribbon transistors. Advanced Optical Materials. 2014;2(7):641-5.
[45] Frisenda R, Giovanelli E, Mishra P, Gant P, Flores E, Sanchez C, et al. Dielectrophoretic assembly of liquid-phase-exfoliated TiS3 nanoribbons for photodetecting applications. Chemical communications. 2017;53(45):6164-7.
[46] Niu Y, Frisenda R, Flores E, Ares JR, Jiao W, Perez de Lara D, et al. Polarization-sensitive and broadband photodetection based on a mixed-dimensionality TiS3/Si p-n junction. Advanced Optical Materials. 2018;6(19):1800351.
[47] Liu S, Xiao W, Zhong M, Pan L, Wang X, Deng HX, et al. Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3). Nanotechnology. 2018;29(18):184002.
[48] Barawi M, Flores E, Ferrer IJ, Ares JR, Sánchez C. Titanium trisulphide (TiS3) nanoribbons for easy hydrogen photogeneration under visible light. Journal of Materials Chemistry A. 2015;3(15):7959-65.
[49] Yuan H, Liu X, Afshinmanesh F, Li W, Xu G, Sun J, et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nature nanotechnology. 2015;10(8):707-13.
[50] Ho C-H, Li J-X. Polarized band-edge emission and dichroic optical behavior in thin multilayer GeS. Advanced Optical Materials. 2017;5(3):1600814.
[51] Guillaumée M, Dunbar LA, Santschi C, Grenet E, Eckert R, Martin OJF, et al. Polarization sensitive silicon photodiodes using nanostructured metallic grids. Applied Physics Letters. 2009;94(19):193503.
[52] Papadopoulos N, Frisenda R, Biele R, Flores E, Ares JR, Sanchez C, et al. Large birefringence and linear dichroism in TiS3 nanosheets. Nanoscale. 2018;10(26):12424-9.
[53] Lipatov A, Loes MJ, Lu H, Dai J, Patoka P, Vorobeva NS, et al. Quasi-1D TiS3 nanoribbons: mechanical exfoliation and thickness-dependent raman spectroscopy. ACS nano. 2018;12(12):12713-20.
[54] Island JO, Biele R, Barawi M, Clamagirand JM, Ares JR, Sanchez C, et al. Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties. Scientific reports. 2016;6:22214.
[55] Ongun Özçelik V, Azadani JG, Yang C, Koester SJ, Low T. Band alignment of 2D semiconductors for designing heterostructures with momentum space matching. arXiv preprint arXiv:160302619 [Internet]. 2016.
[56] Rasmussen FA, Thygesen KS. Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides. The Journal of Physical Chemistry C. 2015;119(23):13169-83.
[57] Zhang C, Gong C, Nie Y, Min K-A, Liang C, Oh YJ, et al. Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in Van der Waals heterostructures. 2D Materials. 2016;4(1):015026.
[58] Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature. 2013;499(7459):419-25.
[59] Iyikanat F, Senger RT, Peeters FM, Sahin H. Quantum-transport characteristics of a p–n junction on single-layer TiS3. ChemPhysChem. 2016;17(23):3985-91.
[60] Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology. 2012;7(11):699.
[61] Randle M, Lipatov A, Kumar A, Kwan CP, Nathawat J, Barut B, et al. Gate-controlled metal-insulator transition in TiS3 nanowire field-effect transistors. ACS nano. 2018;13(1):803-11.
[62] Pant Aea. Raman and Photoluminescence Studies of In-plane Anisotropic Layered Materials. ProQuest LLC: Ann Arbor, USA, 2016.
[63] Schmidt P, Binnewies M, Glaum R, Schmidt M. Chemical vapor transport reactions–methods, materials, modeling. Advanced Topics on Crystal Growth: IntechOpen; 2013.
[64] Lévy F, Berger H. Single crystals of transition metal trichalcogenides. Journal of Crystal Growth. 1983;61(1):61-8.
[65] Ma J, Liu X, Cao X, Feng S, Fleet ME. Bundle of nanobelts up to 4 cm in length: one-step synthesis and preparation of titanium trisulfide (TiS3) nanomaterials. European Journal of Inorganic Chemistry. 2006;2006(3):519-22.
[66] Chang HSW, Schleich DM. TiS2 and TiS3 thin films prepared by MOCVD. Journal of Solid State Chemistry. 1992;100(1):62-70.
[67] Poltarak PA, Artemkina, S.B., Bulavchenko, A.I. . Colloidal dispersions of tantalum trisulfide: syntheses and characteristics. Russ Chem Bull. 2015;64(8):1850-6.
[68] Wu L-M, Seo D-K. New solid−gas metathetical synthesis of binary metal polysulfides and sulfides at Intermediate temperatures:  utilization of boron sulfides. Journal of the American Chemical Society. 2004;126(14):4676-81.
[69] BRATTAS L, KJEKSHUS A. On the properties of compounds with the ZrSe3 type structure. Acta Chemica Scandinavica. 1972;26(9):3441-9.
[70] Agarwal A, Qin Y, Chen B, Blei M, Wu K, Liu L, et al. Anomalous isoelectronic chalcogen rejection in 2D anisotropic vdW TiS3(1-x)Se3x trichalcogenides. Nanoscale. 2018;10(33):15654-60.
[71] Wu K, Torun E, Sahin H, Chen B, Fan X, Pant A, et al. Unusual lattice vibration characteristics in whiskers of the pseudo-one-dimensional titanium trisulfide TiS3. Nature communications. 2016;7:12952.
[72] Hsieh P-L, Jackson CM, Grüner G. Disorder effects in the linear chain compound TiS3. Solid State Communications. 1983;46(7):505-7.
[73] Zhu W, Perebeinos V, Freitag M, Avouris P. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Physical Review B. 2009;80(23):235402.
[74] Hwang E, Adam S, Sarma SD. Carrier transport in two-dimensional graphene layers. Physical Review Letters. 2007;98(18):186806.
[75] Wu C-C, Lin C-J. Effect of electron–phonon scattering mechanisms on free-carrier absorption in quasi-one-dimensional structures. Physica B: Condensed Matter. 2002;316:346-9.
[76] Sakaki H, Noda T, Hirakawa K, Tanaka M, Matsusue T. Interface roughness scattering in GaAs/AlAs quantum wells. Applied Physics Letters. 1987;51(23):1934-6.
[77] Chen J-H, Jang C, Xiao S, Ishigami M, Fuhrer MS. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature nanotechnology. 2008;3:206.
[78] Castro EV, Ochoa H, Katsnelson M, Gorbachev R, Elias D, Novoselov K, et al. Limits on charge carrier mobility in suspended graphene due to flexural phonons. Physical Review Letters. 2010;105(26):266601.
[79] Brivio J, Alexander DTL, Kis A. Ripples and Layers in Ultrathin MoS2 Membranes. Nano letters. 2011;11(12):5148-53.
[80] Ferry D. Scattering by polar-optical phonons in a quasi-two-dimensional semiconductor. Surface Science. 1978;75(1):86-91.
[81] Yun WS, Han SW, Hong SC, Kim IG, Lee JD. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Physical Review B. 2012;85(3):033305.
[82] Xia J, Yan J, Shen ZX. Transition metal dichalcogenides: structural, optical and electronic property tuning via thickness and stacking. FlatChem. 2017;4:1-19.
[83] Chen RS, Tang CC, Shen WC, Huang YS. Thickness-dependent electrical conductivities and ohmic contacts in transition metal dichalcogenides multilayers. Nanotechnology. 2014;25(41):415706.
[84] Jia J, Jang SK, Lai S, Xu J, Choi YJ, Park J-H, et al. Plasma-treated thickness-controlled two-dimensional black phosphorus and its electronic transport properties. ACS nano. 2015;9(9):8729-36.
[85] Lin MW, Kravchenko, II, Fowlkes J, Li X, Puretzky AA, Rouleau CM, et al. Thickness-dependent charge transport in few-layer MoS2 field-effect transistors. Nanotechnology. 2016;27(16):165203.
[86] Ciarrocchi A, Avsar A, Ovchinnikov D, Kis A. Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nature communications. 2018;9(1):919.
[87] Siao MD, Shen WC, Chen RS, Chang ZW, Shih MC, Chiu YP, et al. Two-dimensional electronic transport and surface electron accumulation in MoS2. Nature communications. 2018;9(1):1442.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *