|
[1] Schaller RR. Moore's law: past, present and future. IEEE spectrum. 1997;34(6):52-9. [2] Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide Physical Review B. 2011;83(24):245213. [3] Chan T, Chen J, Ko P, Hu C, editors. The impact of gate-induced drain leakage current on MOSFET scaling. 1987 International Electron Devices Meeting; 1987: IEEE. [4] Schuegraf K, King C, Hu C, editors. Ultra-thin silicon dioxide leakage current and scaling limit. 1992 Symposium on VLSI technology digest of technical papers; 1992: IEEE. [5] Cros A, Romanjek K, Fleury D, Harrison S, Cerutti R, Coronel P, et al., editors. Unexpected mobility degradation for very short devices: A new challenge for CMOS scaling. 2006 International Electron Devices Meeting; 2006: IEEE. [6] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666-9. [7] Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, et al. Graphene and graphene oxide: synthesis, properties, and applications. Advanced materials. 2010;22(35):3906-24. [8] Pimenta MA, del Corro E, Carvalho BR, Fantini C, Malard LM. Comparative study of raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides. Accounts of Chemical Research. 2015;48(1):41-7. [9] Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology. 2012;7:699. [10] Zhou H, Wang C, Shaw JC, Cheng R, Chen Y, Huang X, et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano letters. 2015;15(1):709-13. [11] Jeon J, Jang SK, Jeon SM, Yoo G, Jang YH, Park JH, et al. Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale. 2015;7(5):1688-95. [12] Pumera M, Loo AH. Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. TrAC Trends in Analytical Chemistry. 2014;61:49-53. [13] Wang S, Rong Y, Fan Y, Pacios M, Bhaskaran H, He K, et al. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chemistry of Materials. 2014;26(22):6371-9. [14] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nature nanotechnology. 2011;6(3):147. [15] Lin YC, Dumcenco DO, Huang YS, Suenaga K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nature nanotechnology. 2014;9(5):391-6. [16] Jung Y, Shen J, Sun Y, Cha JJ. Chemically synthesized heterostructures of two-dimensional molybdenum/tungsten-based dichalcogenides with vertically aligned layers. ACS nano. 2014;8(9):9550-7. [17] Ubaldini A, Giannini E. Improved chemical vapor transport growth of transition metal dichalcogenides. Journal of Crystal Growth. 2014;401:878-82. [18] Island JO, Molina-Mendoza AJ, Barawi M, Biele R, Flores E, Clamagirand JM, et al. Electronics and optoelectronics of quasi-1D layered transition metal trichalcogenides. 2D Materials. 2017;4(2):022003. [19] Ikari T, Provencher R, Jandl S, Aubin M. Electrical properties of vapour grown ZrSe3 single crystals. Solid State Communications. 1983;45(2):113-6. [20] Guilmeau E, Berthebaud D, Misse PRN, Hébert S, Lebedev OI, Chateigner D, et al. ZrSe3-type variant of TiS3: structure and thermoelectric properties. Chemistry of Materials. 2014;26(19):5585-91. [21] Xiong W-W, Chen J-Q, Wu X-C, Zhu J-J. Individual HfS3 nanobelt for field-effect transistor and high performance visible-light detector. Journal of Materials Chemistry C. 2014;2(35):7392-5. [22] Jin Y, Li X, Yang J. Single layer of MX3 (M = Ti, Zr; X = S, Se, Te): a new platform for nano-electronics and optics. Physical Chemistry Chemical Physics. 2015;17(28):18665-9. [23] Xiong W-W, Chen J-Q, Wu X-C, Zhu J-J. Visible light detectors based on individual ZrSe3 and HfSe3 nanobelts. Journal of Materials Chemistry C. 2015;3(9):1929-34. [24] Dai J, Li M, Zeng XC. Group IVB transition metal trichalcogenides: a new class of 2D layered materials beyond graphene. Wiley Interdisciplinary Reviews: Computational Molecular Science. 2016;6(2):211-22. [25] Wang Y-Q, Wu X, Ge Y-F, Wang Y-L, Guo H, Shao Y, et al. Tunable electronic structures in wrinkled 2D transition-metal-trichalcogenide (TMT) HfTe3 films. Advanced Electronic Materials. 2016;2(12):1600324. [26] Srivastava SK, Avasthi BN. Preparation, structure and properties of transition metal trichalcogenides. Journal of Materials Science. 1992;27(14):3693-705. [27] Ferrer IJ, Maciá MD, Carcelén V, Ares JR, Sánchez C. On the photoelectrochemical properties of TiS3 films. Energy Procedia. 2012;22:48-52. [28] Yi H, Komesu T, Gilbert S, Hao G, Yost AJ, Lipatov A, et al. The band structure of the quasi-one-dimensional layered semiconductor TiS3(001). Applied Physics Letters. 2018;112(5):052102. [29] Molina-Mendoza AJ, Barawi M, Biele R, Flores E, Ares JR, Sánchez C, et al. Electronic bandgap and exciton binding energy of layered semiconductor TiS3. Advanced Electronic Materials. 2015;1(9):1500126. [30] Saeed Y, Kachmar A, Carignano MA. First-principles study of the transport properties in bulk and monolayer MX3 (M = Ti, Zr, Hf and X = S, Se) compounds. The Journal of Physical Chemistry C. 2017;121(3):1399-403. [31] Grüner G. The dynamics of charge-density waves. Reviews of Modern Physics. 1988;60(4):1129-81. [32] Gammie G. Surface structure studies of quasi-one-dimensional charge-density wave compounds by scanning tunneling microscopy. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. 1991;9(2):1027. [33] Thorne RE. Charge-density-wave conductors. Physics Today. 1996;49(5):42-8. [34] Gorlova IG, Pokrovskii VY, Zybtsev SG, Titov AN, Timofeev VN. Features of the conductivity of the quasi-one-dimensional compound TiS3. Journal of Experimental and Theoretical Physics. 2010;111(2):298-303. [35] Goli P, Khan J, Wickramaratne D, Lake RK, Balandin AA. Charge density waves in exfoliated films of van der Waals materials: evolution of Raman spectrum in TiSe2. Nano letters. 2012;12(11):5941-5. [36] Gorlova IG, Zybtsev SG, Pokrovskii VY, Bolotina NB, Verin IA, Titov AN. Nonlinear conductivity of quasi-one-dimensional layered compound TiS3. Physica B: Condensed Matter. 2012;407(11):1707-10. [37] Khan J, Nolen CM, Teweldebrhan D, Wickramaratne D, Lake RK, Balandin AA. Anomalous electron transport in back-gated field-effect transistors with TiTe2 semimetal thin-film channels. Applied Physics Letters. 2012;100(4):043109. [38] Gorlova IG, Zybtsev SG, Pokrovskii VY. Conductance anisotropy and the power-law current-voltage characteristics along and across the layers of the TiS3 quasi-one-dimensional layered semiconductor. JETP Letters. 2014;100(4):256-61. [39] Ugeda MM, Bradley AJ, Zhang Y, Onishi S, Chen Y, Ruan W, et al. Characterization of collective ground states in single-layer NbSe2. Nature Physics. 2015;12(1):92-7. [40] Huang C, Zhang E, Yuan X, Wang W, Liu Y, Zhang C, et al. Tunable charge density wave in TiS3 nanoribbons. Chinese Physics B. 2017;26(6):067302. [41] Island JO, Barawi M, Biele R, Almazan A, Clamagirand JM, Ares JR, et al. TiS3 transistors with tailored morphology and electrical properties. Advanced materials. 2015;27(16):2595-601. [42] Lipatov A, Wilson PM, Shekhirev M, Teeter JD, Netusil R, Sinitskii A. Few-layered titanium trisulfide (TiS3) field-effect transistors. Nanoscale. 2015;7(29):12291-6. [43] Molina-Mendoza AJ, Island JO, Paz WS, Clamagirand JM, Ares JR, Flores E, et al. High current density electrical breakdown of TiS3 nanoribbon-based field-effect transistors. Advanced Functional Materials. 2017;27(13):1605647. [44] Island JO, Buscema M, Barawi M, Clamagirand JM, Ares JR, Sánchez C, et al. Ultrahigh photoresponse of few-layer TiS3 nanoribbon transistors. Advanced Optical Materials. 2014;2(7):641-5. [45] Frisenda R, Giovanelli E, Mishra P, Gant P, Flores E, Sanchez C, et al. Dielectrophoretic assembly of liquid-phase-exfoliated TiS3 nanoribbons for photodetecting applications. Chemical communications. 2017;53(45):6164-7. [46] Niu Y, Frisenda R, Flores E, Ares JR, Jiao W, Perez de Lara D, et al. Polarization-sensitive and broadband photodetection based on a mixed-dimensionality TiS3/Si p-n junction. Advanced Optical Materials. 2018;6(19):1800351. [47] Liu S, Xiao W, Zhong M, Pan L, Wang X, Deng HX, et al. Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3). Nanotechnology. 2018;29(18):184002. [48] Barawi M, Flores E, Ferrer IJ, Ares JR, Sánchez C. Titanium trisulphide (TiS3) nanoribbons for easy hydrogen photogeneration under visible light. Journal of Materials Chemistry A. 2015;3(15):7959-65. [49] Yuan H, Liu X, Afshinmanesh F, Li W, Xu G, Sun J, et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nature nanotechnology. 2015;10(8):707-13. [50] Ho C-H, Li J-X. Polarized band-edge emission and dichroic optical behavior in thin multilayer GeS. Advanced Optical Materials. 2017;5(3):1600814. [51] Guillaumée M, Dunbar LA, Santschi C, Grenet E, Eckert R, Martin OJF, et al. Polarization sensitive silicon photodiodes using nanostructured metallic grids. Applied Physics Letters. 2009;94(19):193503. [52] Papadopoulos N, Frisenda R, Biele R, Flores E, Ares JR, Sanchez C, et al. Large birefringence and linear dichroism in TiS3 nanosheets. Nanoscale. 2018;10(26):12424-9. [53] Lipatov A, Loes MJ, Lu H, Dai J, Patoka P, Vorobeva NS, et al. Quasi-1D TiS3 nanoribbons: mechanical exfoliation and thickness-dependent raman spectroscopy. ACS nano. 2018;12(12):12713-20. [54] Island JO, Biele R, Barawi M, Clamagirand JM, Ares JR, Sanchez C, et al. Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties. Scientific reports. 2016;6:22214. [55] Ongun Özçelik V, Azadani JG, Yang C, Koester SJ, Low T. Band alignment of 2D semiconductors for designing heterostructures with momentum space matching. arXiv preprint arXiv:160302619 [Internet]. 2016. [56] Rasmussen FA, Thygesen KS. Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides. The Journal of Physical Chemistry C. 2015;119(23):13169-83. [57] Zhang C, Gong C, Nie Y, Min K-A, Liang C, Oh YJ, et al. Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in Van der Waals heterostructures. 2D Materials. 2016;4(1):015026. [58] Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature. 2013;499(7459):419-25. [59] Iyikanat F, Senger RT, Peeters FM, Sahin H. Quantum-transport characteristics of a p–n junction on single-layer TiS3. ChemPhysChem. 2016;17(23):3985-91. [60] Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology. 2012;7(11):699. [61] Randle M, Lipatov A, Kumar A, Kwan CP, Nathawat J, Barut B, et al. Gate-controlled metal-insulator transition in TiS3 nanowire field-effect transistors. ACS nano. 2018;13(1):803-11. [62] Pant Aea. Raman and Photoluminescence Studies of In-plane Anisotropic Layered Materials. ProQuest LLC: Ann Arbor, USA, 2016. [63] Schmidt P, Binnewies M, Glaum R, Schmidt M. Chemical vapor transport reactions–methods, materials, modeling. Advanced Topics on Crystal Growth: IntechOpen; 2013. [64] Lévy F, Berger H. Single crystals of transition metal trichalcogenides. Journal of Crystal Growth. 1983;61(1):61-8. [65] Ma J, Liu X, Cao X, Feng S, Fleet ME. Bundle of nanobelts up to 4 cm in length: one-step synthesis and preparation of titanium trisulfide (TiS3) nanomaterials. European Journal of Inorganic Chemistry. 2006;2006(3):519-22. [66] Chang HSW, Schleich DM. TiS2 and TiS3 thin films prepared by MOCVD. Journal of Solid State Chemistry. 1992;100(1):62-70. [67] Poltarak PA, Artemkina, S.B., Bulavchenko, A.I. . Colloidal dispersions of tantalum trisulfide: syntheses and characteristics. Russ Chem Bull. 2015;64(8):1850-6. [68] Wu L-M, Seo D-K. New solid−gas metathetical synthesis of binary metal polysulfides and sulfides at Intermediate temperatures: utilization of boron sulfides. Journal of the American Chemical Society. 2004;126(14):4676-81. [69] BRATTAS L, KJEKSHUS A. On the properties of compounds with the ZrSe3 type structure. Acta Chemica Scandinavica. 1972;26(9):3441-9. [70] Agarwal A, Qin Y, Chen B, Blei M, Wu K, Liu L, et al. Anomalous isoelectronic chalcogen rejection in 2D anisotropic vdW TiS3(1-x)Se3x trichalcogenides. Nanoscale. 2018;10(33):15654-60. [71] Wu K, Torun E, Sahin H, Chen B, Fan X, Pant A, et al. Unusual lattice vibration characteristics in whiskers of the pseudo-one-dimensional titanium trisulfide TiS3. Nature communications. 2016;7:12952. [72] Hsieh P-L, Jackson CM, Grüner G. Disorder effects in the linear chain compound TiS3. Solid State Communications. 1983;46(7):505-7. [73] Zhu W, Perebeinos V, Freitag M, Avouris P. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Physical Review B. 2009;80(23):235402. [74] Hwang E, Adam S, Sarma SD. Carrier transport in two-dimensional graphene layers. Physical Review Letters. 2007;98(18):186806. [75] Wu C-C, Lin C-J. Effect of electron–phonon scattering mechanisms on free-carrier absorption in quasi-one-dimensional structures. Physica B: Condensed Matter. 2002;316:346-9. [76] Sakaki H, Noda T, Hirakawa K, Tanaka M, Matsusue T. Interface roughness scattering in GaAs/AlAs quantum wells. Applied Physics Letters. 1987;51(23):1934-6. [77] Chen J-H, Jang C, Xiao S, Ishigami M, Fuhrer MS. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature nanotechnology. 2008;3:206. [78] Castro EV, Ochoa H, Katsnelson M, Gorbachev R, Elias D, Novoselov K, et al. Limits on charge carrier mobility in suspended graphene due to flexural phonons. Physical Review Letters. 2010;105(26):266601. [79] Brivio J, Alexander DTL, Kis A. Ripples and Layers in Ultrathin MoS2 Membranes. Nano letters. 2011;11(12):5148-53. [80] Ferry D. Scattering by polar-optical phonons in a quasi-two-dimensional semiconductor. Surface Science. 1978;75(1):86-91. [81] Yun WS, Han SW, Hong SC, Kim IG, Lee JD. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Physical Review B. 2012;85(3):033305. [82] Xia J, Yan J, Shen ZX. Transition metal dichalcogenides: structural, optical and electronic property tuning via thickness and stacking. FlatChem. 2017;4:1-19. [83] Chen RS, Tang CC, Shen WC, Huang YS. Thickness-dependent electrical conductivities and ohmic contacts in transition metal dichalcogenides multilayers. Nanotechnology. 2014;25(41):415706. [84] Jia J, Jang SK, Lai S, Xu J, Choi YJ, Park J-H, et al. Plasma-treated thickness-controlled two-dimensional black phosphorus and its electronic transport properties. ACS nano. 2015;9(9):8729-36. [85] Lin MW, Kravchenko, II, Fowlkes J, Li X, Puretzky AA, Rouleau CM, et al. Thickness-dependent charge transport in few-layer MoS2 field-effect transistors. Nanotechnology. 2016;27(16):165203. [86] Ciarrocchi A, Avsar A, Ovchinnikov D, Kis A. Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nature communications. 2018;9(1):919. [87] Siao MD, Shen WC, Chen RS, Chang ZW, Shih MC, Chiu YP, et al. Two-dimensional electronic transport and surface electron accumulation in MoS2. Nature communications. 2018;9(1):1442.
|