|
1 Feynman, R. P. “There’s plenty of room at the bottom,” at the Annual Meeting of the American Physical Society on December 29th at the California Institute of Technology (1959). 2 Taniguchi, N. In On the basic concept of nanotechnology, Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering, 1974, 18-23. 3 M. Yazawa, M. Koguchi, A. Muto, M.Ozawa, and K. Hiruma. Effect of One Monolayer of Surface Gold Atoms on the Epitaxial Growth of InAs Nanowhiskers. Applied Physics Letters 1992, 61, 2051-2053. 4 J. H. Hah, S. Mayya, M. Hata, Y. K. Jang, H. W. Kim, M. Ryoo, S. G. Woo, H. K. Cho, and J. T. Moon. Converging Lithography by Combination of Electrostatic Layer-by-Layer Self-Assembly and 193 nm Photolithography: Top-Down Meets bottom-up. Journal of Vacuum Science & Technology B 2006, 24, 2209-2213 5 K. C. Chen, W. W. Wu, C. N. Liao, L. J. Chen, and K. N. Tu. Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper. Science 2008, 321, 1066-1069. 6 Z. H. Zhong, D. L. Wang, Y. Cui, M. W. Bockrath, and C. M. Lieber. Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems. Science 2003, 302, 1377-1379. 7 L. J. Chen. Metal Silicides: An Integral Part of Microelectronics. JOM 2005, 57(9), 24-30. 8 A. P. Alivisatos. Semiconductor Clusters, Nanocrystals, and Quantume Dots. Sceince 1996, 271, 933-937. 9 T. J. Trentler, K. M. Hickman, S. C. Goel, A. M.Viano, P. C. Gibbons, and W. E. Burhro. Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth. Science 1995, 270, 1791-1794. 10 Y. Wu and P. Yang. Germanium Nanowire Growth via Simple Vapor Transport. Chemistry of Materials 2000, 12, 605-607 11 A. M. Morales, and C. M. Lieber. A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires. Science 1998, 279, 208-211. 12 R. S. Wagner, and W. C. Ellis. Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Applied Physics Letter 1964, 4, 89-90. 13 J. Westwater, D. P. Gosain, S. Tomiya ,and S. Usui. Growth of Silicon Nanowires via Gold/Silane Vapor-Liquid-Solid Reaction. Journal of Vacuum Science & Technology B 1997, 15, 554-557. 14 C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng ,and Y. F. Chen. Catalytic Growth and Characterization of Gallium Nitride Nanowires. Journal of the American Chemical Society 2001, 123, 2791-2798. 15 Y. W. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, and X. S. Peng. Catalytic Growth and Photoluminescence Properties of Semiconductor Single-Crystal ZnS Nanowires. Chemical Physics Letters 2002, 357, 314-318. 16 Z.Grzesik, K. Przybylski, and W. Gao. Developments in High Temperature Corrosion and Protection of Materials: Sulfidation of Metallic Materials. Elsevier Science, Amsterdam 2008. 17 S. Mrowec, K. Przybylski. Defect and Transport Properties of Sulfides and Sulfidation of Metals. High Temp Mater Processes 1984, 1, 1–79. 18 J. Kim, E. Oh, R. Xiao, S. Ritter, Y. Yang, D. Yu, J. H. Im, S. H. Kim, W. J. Choi, and J. G. Park. Optical Properties and Bridge Photodetector Integration of Lead Sulfide Nanowires. Nanotechnology 2017, 28, 1-7. 19 Yu Huang, X. Duan, and Charles M. Lieber. Nanowires for Integrated Multicolor Nanophotonics. Small 2005, 1, 142-147. 20 M. J. Bierman and S. Jing. Potential Applications of Hierarchical Branching Nanowires in Solar Energy Conversion. Energy & Environmental Science 2009, 2, 1050-1059. 21 T. L. Li, Y. L. Lee ,and H. Teng. CuIn2 Quantum Dots coated with CdS as High-Performance Sensitizers for TiO2 Electrodes in Photoelectrochemical Cells. Journal of Materials Chemistry 2011, 21, 5089-5098. 22 A. A. K. Bakly, B. F. Spencer, and P. O’Brien. The Deposition of Thin Films of Cadmium Zinc Sulfide Cd1-xZnxS at 250℃ from Spin-coated Xanthato Complex: A Potential Route to Window Layers for Photovoltaic Cells. Journal of Materials Science 2018, 53, 4360-4370. 23 C. H. Lai, M. Y. Lu, and L. J. Chen. Metal Sulfide Nanostructures: Synthesis, Properties and Applications in Energy Conversion and Storage. Journal of Materials Chemistry 2012, 22, 19-30. 24 M. Y. Lu, M. H. Hong, Y. M. Ruan, and M. P. Lu. Probing the Photovaltic Properties of Ga-doped CdS-Cu2S Core-Shell Heterostructured Nanowire Device. Royal Society of Chemistry 2013, 00, 1-3. 25 F. Khodam, A. R. Amani-Ghadim, S. Aber. Mg Nanoparticles Core-CdS QDs Shell Heterostructures with ZnS Passivation Layer for Efficient Quantum Dot Sensitized Solar Cell. Electrochimica Acta 2019, 308, 25-34. 26 M. Sun, G. Cheng, X. Ge, M. Chen, C. Wang, L. Lou, X. Xu. Aqueous Hg(II) Immobilization by Chitosan Stabilized Magnetic Iron Sulfide Nanoparticles. Science of The Total Environment 2018, 621, 1074-1083. 27 D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, M. C. Hersam. Emerging Device Applications for Semi- conducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano 2014, 8, 1102–1120. 28 D. Moore and Z. L. Wang. Growth of Anisotropic One-Dimensional ZnS Nanostructures. Journal of Materials Chemistry 2006, 16, 3898-3905. 29 Z. W. Wang, L. L. Daemen, Y. S. Zhao, C. S. Zha, R. T. Downs, X. D. Wang, Z. L. Wang, and R. J. Hemley. Morphology-Tuned Wurtzite-Type ZnS Nanobelts. Nature Materials 2005, 4, 922-927. 30 J. S. Hu, L. L. Ren, Y. G. Guo, H. P. Liang, A. M. Cao, L. J. Wang, and C. L. Bai. Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles. A Journal of the German Chemical Society 2005, 44, 1269-1273. 31 C. Wu, J. Jie, L. Wang, Y. Yu, Q. Peng, X. Zhang, J. Cai, H. Guo, D. Wu, and Y. Jiang. Chlorine-Doped n-Type CdS Nanowires with Enhanced Photoconductivity. Nanotechnology 2010, 21, 505203-505210. 32 R. Banerjee, R. Jayakrishnan, and P. Ayyub. Effect of the Size-Induced Structural Transformation on the Band Gap in CdS Nanoparticles. Journal of Physics-Condensed Matter 2000, 12, 10647-10654. 33 H. Li, X. Wang, J. Xu, Q. Zhang, Y. Bando, D. Golberg, Y. Ma, and T. Zhai. One-dimensional CdS Nanostructures: A Promising Candidate for Optoelectronics. Advanced Materials 2013, 25, 3017-3037. 34 X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber. Single-Nanowire Electrically Driven Lasers. Nature 2003, 421, 241-245. 35 F. Capasso. Band-Gap Engineering: From Physics and Materials to New Semiconductor Devices. Science 1987, 235, 172-176. 36 V. A. Fedorov, V. A. Ganshin, and Y. N. Korkishko. Solid-State Phase Diagram of the Zinc Sulfide - Cadmium Sulfide System. Materials Research Bulletin 1993, 28, 59-66. 37 X. H. Zhong, Y. Y. Feng, W. Knoll, and M. Y. Han. Alloyed ZnxCd1-xS Nanocrystals with Highly Narrow Luminescence Spectral Width. Journal of the American Chemical Society 2003, 125, 13559-13563. 38 A. P. Gaikwad, D. Tyangi, C. A. Betty, and R. Sasikala. Photocatalytic and photo electrochemical properties of cadmium zinc sulfide solid solution in the presence of Pt and RuS2 dual co-catalysts. Applied Catalysis A: General 2016, 517, 91-99. 39 W. Li, D. Li, Z. Chen, H. Huang, M. Sun, Y. He, and X. Fu. High-Efficient Degradation of Dyes by ZnxCd1-xS Solid Solutions Under Visible Light Irradiation. Journal of Physical Chemistry C 2008, 112, 14943-14947. 40 S. Biswas, S. Kar, S. Santra, Y. Jomop, M. Arif, and S. I. Khondaker. Solvothermal Synthesis of High-Aspect Ratio Alloy Semiconductor Nanowires: Cd1-xZnxS, a Case Study. Journal of Physical Chemistry C 2009, 113, 3617-3624. 41 Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee. Wavelength-Controlled Lasing in ZnxCd1-xS Single-Crystal Nanoribbons. Advanced Materials 2005, 17, 1372-1377. 42 H. Raether. Surface-Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics 1988, 111, 1-133. 43 C. H. Chou and F. C. Chen. Plasmonic Nanostructures for Light Trapping in Organic Photovoltaic Device. Nanoscale 2014, 6, 8444-8458. 44 R. Jiang, B. Li, C. Fang, and J. Wang. Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications. Advanced Materials 2014, 26, 5274-5309. 45 S. Link and M. A. El-Sayed. Spectral Properties and Relaxation Dynamic of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. Journal of Physics Chemistry B 1999, 103, 8410-8426. 46 M. Fleischmann, P. J. Hendra, A. J. Mcquillan. Raman-Spectra of Pyridine adsorbed At a Silver Electrode. Chemical Physics Letters 1974, 26, 163-166. 47 S. W. Zeng, D. Baillargeat, H. P. Ho, K. T. Yong. Nanomaterials Enhanced Surface Plasmon Resonance for Biological and Chemical Sensing Application. Chemical Society Reviews 2014, 43, 3426-3452. 48 W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface Plasmon Subwavelength Optics. Nature 2003, 424, 824-830. 49 W. A. Murry, W. L. Barnes. Plasmonic Materials. Advanced Materials 2007, 19, 3771-3782. 50 G.V. Naik, V. M. Shalaev, A. Boltasseva. Alternative Plasmonic Materials: Beyond Gold and Silver. Advanced Materials 2013, 25, 3264-3294. 51 M. Rycenga, C. M. Cobley, J. Zeng, W. Y. Li, C. H. Moran, Q. Zhang, D. Qin, Y. N. Xia. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chemical Reviews 2011, 111, 3669-3712. 52 P. Zhang, J. Zhang, and J. L. Gong. Tantalum-Based Semiconductors for Solar Water Splitting. Chemical Society Reviews 2014, 43, 4395-4422. 53 A. Kudo and Y. Miseki. Heterogeneous Photocatalyst Materials for Water Splitting. The Royal Society of Chemistry 2009, 38, 253-278. 54 T. Ming, H. J. Chen, R.B. Jiang, Q. Li, and J. F. Wang. Plasmon-Controlled Fluorescence: Beyond the Intensity Enhancement. Journal of Physical Chemistry Letters 2012, 3, 191-202. 55 C. Sonnichsen, T. Franzl, T. Wilk, G. V. Plessen, J. Feldmann, O. Wilson, and P. Mulvaney. Drastic Reduction of Plasmon Damping in Gold Nanorods. Physical Review Letters 2002, 88, 077402. 56 S. J. Xu, S. J. Chua, B. Liu, L. M. Gan, C. H. Chew, and G. Q. Xu. Luminescence Characteristics of Impurities-Activated ZnS Nanocrystals Prepared in Microemulsion with Hydrothermal Treatment. Applied Physical. Letter 1998, 73, 478–480. 57 M. Y. Lu, J. Song, M. P. Lu, C. Y. Lee, L. J. Chen, and Z. L. Wang. ZnO-ZnS Heterojunction and ZnS Nanowire Arrays for Electricity Generation. ACS Nano 2009, 3, 357-362. 58 M. Li, J. Jiang, L. Guo. Synthesis, Characterization, and Photoelectrochemical study of Cd1-xZnxS Solid Solution Thin Films Deposited by Spray Pyrolysis for Water Splitting. International Journal of Hydrogen Energy 2010, 35, 7036-7042. 59 Q. Li, H. Meng, P. Zhou, Y. Zheng, J. Wang, J. Yu, J. R. Gong. Zn1-xCdxS Solid Solutions with Controlled Bandgap and Enhanced Visible-Light Photocatalytic H2-Production Activity. ACS Catalysis 2013, 3, 882-889. 60 Y. Xu, M. A. A. Schoonen. The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals. American Mineralogist 2000, 85, 543-556. 61 R. Shi, Y. Cao, Y.Bao, Y. Zhao, G. I. N. Waterhouse, Z. Fang, L. Z. Wu, C. H. Tung, Y. Yin, and T. Zhang. Self-Assembled Au/CdSe Nanocrystal Clusters for Plasmon-Mediated Photocatalytic Hydrogen Evolution. Advanced Materials 2017, 29, 1700803-1700810. 62 P. K. Jain and M. A. El-Sayed. Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing. Nano Letter 2008, 8, 12, 4347-4252. 63 B. H. Wu, W. T. Liu, T. Y. Chen, T. P. Perng, J. H. Huang, and L. J. Chen. Plasmon-enhanced Photocatalytic Hydrogen Production on Au/TiO2 Hybrid Nanocrystals Arrays. Nano Energy 2016, 27, 412-419. 64 J. Xu, W. M. Yang, S. J. Huang, H. Yin, H. Zhang, P. Radjevonic, Z. L. Yang, Z. Q. Tian, and J. F. Li. CdS Core-Au Plasmonic Satellites Nanostructure Enhanced Photocatalytic Hydrogen Evolution Reaction. Nano Energy 2018, 49, 363-371. 65 S. Link and M. A. El-Sayed. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. The Journal of Physical Chemistry B 1999, 103, 8410-8426. 66 C. Ren, B. Yang, M. Wu, J. Xu, Z. Fu, Y. Iv, T. Guo, Y. Zhao, and C. Zhu. Synthesis of Ag/ZnO Nanorods Array with Enhanced Photocatalytic Performance. Journal of Hazardous Materials 2010, 182, 123-129. 67 P. H. Liu, M. Wen, C. S. Tan, M. Navlani-Garcia, Y. Kuwahara, K. Mori, H. Yamashita, L. J. Chen. Surface Plasmon Resonance Enhancement of Production of H2 from Ammonia Borane Solution with Tunable Cu2-xS Nanowires Decorated by Pd Nanoparticles. Nano Energy 2017, 31, 57-63. 68 M. Luo, W. Yao, C. Huang, Q. Wu, and Q. Xu. Shape Effects of Pt Nanoparticles on hydrogen Production via Pt/CdS photocatalysts Under Visible Light. Journal of Materials Chemistry A 2015, 3, 13884-13891. 69 L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, T. W. Li, C. Shi, X. D. Wen, and D. Ma. Low-Temperature Hydrogen Production from Water and Methanol Using Pt/⍺-MoC Catalysts. Nature 2017, 544, 80-83. 70 R. F. Garcia, Y. Sonnefraud, A. I. Fernandez-Dominguez, V. Giannini, and S. A. Maier. Design Considerations for Near-Field Enhancement in Optical Antennas. Contemporary Physics 2014, 55, 1-11. 71 Q. Xiang, J. Yu, and M. Jaroniec. Synergetic Effect of MoS2 and Graphene as Cocatalysts for Enhanced Photocatalytic H2 Production Activity of TiO2 Nanoparticles. Journal of American Chemical Society 2012, 134, 6575-6578. 72 K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang, and J. Ye. MoS2/Graphene Cocatalyst for Efficient Photocatalytic H2 Evolution under Visible Light Irradiation. ACS Nano 2014, 8, 7078-7087. 73 P. Sriram, D. S. Su, A. P. Periasamy, A. Manikandan, S. W. Wang, H. T. Chang, Y. L. Chueh, and T. J. Yen. Hybridizing Strong Quadrupole Gap Plasmons Using Optimized Nanoantennas with Bilayer MoS2 for Excellent Photo-Electrochemical Hydrogen Evolution. Advanced Energy Materials 2018, 8, 1801184.
|