帳號:guest(3.147.68.25)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳昱誠
作者(外文):Chen, Yu-Cheng
論文名稱(中文):金奈米顆粒/三元硫化鎘鋅奈米線之異質結構增益光催化產氫應用之研究
論文名稱(外文):Enhanced Photocatalytic Hydrogen Production with Au Nanoparticles / ZnxCd1-xS Nanowires
指導教授(中文):陳力俊
指導教授(外文):Chen, Lih-Juann
口試委員(中文):吳文偉
呂明諺
口試委員(外文):Wu, Wen-Wei
Lu, Ming-Yen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031574
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:73
中文關鍵詞:產氫光催化硫化鎘鋅奈米線金奈米顆粒電漿子性質
外文關鍵詞:Hydrogen productionPhotocatalyticZnxCd1-xS nanowiresAu nanoparticlesPlasmonic properties
相關次數:
  • 推薦推薦:2
  • 點閱點閱:272
  • 評分評分:*****
  • 下載下載:44
  • 收藏收藏:0
隨著能源的耗竭與環保意識的高漲,作為一種乾淨且可再生的能源,以及近幾十年來的發展,氫能源已被視為解決全球能源危機的主要能源之一,而氫能源的發展已成為全球矚目的焦點。
在本論文中,利用了金奈米顆粒/三元硫化鎘鋅奈米線之組合可以形成優異的光催化產氫性能,並證實了不同化學組成比例的三元硫化鎘鋅奈米線將會具有不同特性的產氫效率表現。在模擬太陽光下(使用AM1.5G的濾光片),硫化鎘鋅奈米線之光催化劑對於產氫的催化活性比純硫化鋅和硫化鎘奈米線高。當鋅與鎘含量的比例接近1:1時,此時樣品的最高的產氫率為57.07 mmol·h-1·g-1,超過純硫化鎘和硫化鋅樣品的各3倍與50倍以上。這種高效的光催化產氫之活性主要歸因於適當的能隙大小和合適的導帶邊緣電位。
此外,以電漿體作為媒介的光催化反應可以增強光激發並改善半導體光催化劑系統中的電荷分離。利用金奈米顆粒附著在不同化學組成比例之硫化鎘鋅奈米線上,在可見或近紅外波長處具有局部表面電漿共振效應產生。在此研究中通過電子束熱蒸鍍沉積2.5-, 3.5-, 5- 和10奈米的金薄膜於三元硫化鎘鋅奈米線上然後再進行熱退火處理形成金奈米顆粒/奈米線異質結構。發現產氫效率最高的異質結構是鍍上3.5奈米的金隨後進行退火處理而形成。當在模擬太陽光之情況下,適當大小的金奈米顆粒以及平均的金奈米顆粒局部分佈可以使金-硫化鎘鋅奈米之異質結構的產氫效率表現再提升至將近1.7倍。 
The production of hydrogen energy, a clean and renewable energy source, has been one of the prominent subjects in recent decades as a result of the global fossil energy shortage as well as environmental degradation crisis. In most reports on hydrogen production, photocatalysts play the key role to enhance the production rate.
In this thesis, excellent photocatalytic properties for hydrogen production with Au nanoparticles (NPs) / ternary zinc cadmium sulfide (ZnxCd1-xS) nanowires (NWs) have been demonstrated. The ZnxCd1-xS NWs photocatalyst shows much higher catalytic activity for H2-production than ZnS and CdS NWs under simulated solar light (with AM1.5G filter). When the x ratio of Zn approaches 0.5, the Zn0.5Cd0.5S sample exhibits the highest H2-production rate, exceeding that of the pure CdS and ZnS samples by more than 3 times and 50 times, respectively, by using 1.4 M Na2S and 1.0 M Na2SO3 as sacrificial reagents in water under a 300 W xenon arc lamp. This high photocatalytic H2-production activity is attributed predominantly to appropriate band gap width and suitable conduction band edge potential of the ZnxCd1-xS NWs.
Additionally, plasmon-mediated photocatalysis may enhance photoexcitation and improve charge separation in semiconductor photocatalyst system. The ZnxCd1-xS NWs attached with Au NPs exhibit localized surface plasmon resonance (LSPR) at visible or near-infrared wavelengths to enhance the hydrogen production.
The NPs/NWs heterostructure were formed by depositing 2.5-, 3.5-, 5- and 10-nm gold films using electron bean evaporation followed by annealing. The H2-production efficiency of the heterogeneous structure with 3.5 nm Au film was found to be the highest. Under simulated solar light, appropriate Au NPs size and distribution can increase H2-production rate by nearly 1.7 times with Au NPs / Zn0.5Cd0.5S NWs heterostructure. The efficiency of H2-production of the ZnxCd1-xS NWs with Au NPs was significantly improved by the localized surface plasmon resonance effect.
Abstract I
摘要 III
致謝 IV
Contents VI
Chapter 1 Introduction 1
1.1 Overview of Nanotechnology 1
1.2 Nanostructures 2
1.2.1 One-Dimensional Nanostructures 2
1.2.2 Vapor-Liquid-Solid (VLS) Growth Mechanism 3
1.3 Metal Sulfides 4
1.3.1 Zinc Sulfide: Structure, Properties and Applications 6
1.3.2 Cadmium Sulfide: Structure, Properties and Applications 7
1.4 Plasmonic Properties of Nanomaterials 10
1.5 Photocatalytic Water Splitting 15
1.6 Mechanisms of Photocatalytic Plasmon Enhancement 17
1.7 Motivations 19
Chapter 2 Experimental Section 21
2.1 Experimental Flowchart 21
2.2 Experimental Procedures 21
2.2.1 Preparation of Substrates 22
2.2.2 Synthesis of ZnxCd1-xS Nanowires 22
2.2.3 Fabrication of Au Nanoparticles / ZnxCd1-xS Nanowires Heterostructure 24
2.2.4 Measurement of Hydrogen Production Efficiency with ZnxCd1-xS NWs and Au NPs / ZnxCd1-xS NWs Heterostructure 25
2.3 Experimental Details 26
2.3.1 Electron Beam Gun Evaporation (E-Gun Evaporation) 26
2.3.2 Furnace Setup 26
2.3.3 Scanning Electron Microscopy 27
2.3.4 Field Emission - Electron Probe Micro-analyzer (FE-EPMA) 27
2.3.5 Transmission Electron Microscopy 28
2.3.6 X-ray Diffractometry 29
2.3.7 Raman Spectroscopy 29
2.3.8 Ultraviolet-Visible Spectrophotometry 30
2.3.9 Photoluminescence 30
2.3.10 Gas Chromatography 31
Chapter 3 Results and Discussion 32
3.1 Properties and Characteristics of ZnxCd1-xS Nanowires 32
3.1.1 Morphology and Structure 32
3.1.1.1 SEM, EDS and WDS Observation 32
3.1.1.2 TEM and EDS Observation 36
3.1.1.3 X-ray Diffraction Analysis 38
3.1.1.4 Raman Spectroscopy Analysis 42
3.1.2 Optical Properties 43
3.1.2.1 Ultraviolet-Visible Spectroscopy (UV-Vis) Analysis 43
3.1.2.2 Photoluminescence (PL) Measurements 44
3.1.3 Photocatalytic Hydrogen Production 47
3.2 Properties and Characteristics of Au Nanoparticles / ZnxCd1-xS Nanowires Heterostructure 49
3.2.1 Morphology and Structure 49
3.2.1.1 SEM and TEM Observation 49
3.2.1.2 X-ray Diffraction Analysis 53
3.2.2 Photoluminescence Measurements 54
3.2.3 Plasmon-Enhanced Photocatalytic Hydrogen Production 55
Chapter 4 Summary and Conclusions 58
Chapter 5 Future Prospects 60
5.1 Plasmon Enhancement of Photocatalytic Hydrogen Production on Plasmonic Metals: Ag/ Cu/ Li/ Pd/ Pt 60
5.2 Cocatalysts of 2D materials for enhanced photocatalytic hydrogen production 62
References 64
1 Feynman, R. P. “There’s plenty of room at the bottom,” at the Annual Meeting of the American Physical Society on December 29th at the California Institute of Technology (1959).
2 Taniguchi, N. In On the basic concept of nanotechnology, Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering, 1974, 18-23.
3 M. Yazawa, M. Koguchi, A. Muto, M.Ozawa, and K. Hiruma. Effect of One Monolayer of Surface Gold Atoms on the Epitaxial Growth of InAs Nanowhiskers. Applied Physics Letters 1992, 61, 2051-2053.
4 J. H. Hah, S. Mayya, M. Hata, Y. K. Jang, H. W. Kim, M. Ryoo, S. G. Woo, H. K. Cho, and J. T. Moon. Converging Lithography by Combination of Electrostatic Layer-by-Layer Self-Assembly and 193 nm Photolithography: Top-Down Meets bottom-up. Journal of Vacuum Science & Technology B 2006, 24, 2209-2213
5 K. C. Chen, W. W. Wu, C. N. Liao, L. J. Chen, and K. N. Tu. Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper. Science 2008, 321, 1066-1069.
6 Z. H. Zhong, D. L. Wang, Y. Cui, M. W. Bockrath, and C. M. Lieber. Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems. Science 2003, 302, 1377-1379.
7 L. J. Chen. Metal Silicides: An Integral Part of Microelectronics. JOM 2005, 57(9), 24-30.
8 A. P. Alivisatos. Semiconductor Clusters, Nanocrystals, and Quantume Dots. Sceince 1996, 271, 933-937.
9 T. J. Trentler, K. M. Hickman, S. C. Goel, A. M.Viano, P. C. Gibbons, and W. E. Burhro. Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth. Science 1995, 270, 1791-1794.
10 Y. Wu and P. Yang. Germanium Nanowire Growth via Simple Vapor Transport. Chemistry of Materials 2000, 12, 605-607
11 A. M. Morales, and C. M. Lieber. A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires. Science 1998, 279, 208-211.
12 R. S. Wagner, and W. C. Ellis. Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Applied Physics Letter 1964, 4, 89-90.
13 J. Westwater, D. P. Gosain, S. Tomiya ,and S. Usui. Growth of Silicon Nanowires via Gold/Silane Vapor-Liquid-Solid Reaction. Journal of Vacuum Science & Technology B 1997, 15, 554-557.
14 C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng ,and Y. F. Chen. Catalytic Growth and Characterization of Gallium Nitride Nanowires. Journal of the American Chemical Society 2001, 123, 2791-2798.
15 Y. W. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, and X. S. Peng. Catalytic Growth and Photoluminescence Properties of Semiconductor Single-Crystal ZnS Nanowires. Chemical Physics Letters 2002, 357, 314-318.
16 Z.Grzesik, K. Przybylski, and W. Gao. Developments in High Temperature Corrosion and Protection of Materials: Sulfidation of Metallic Materials. Elsevier Science, Amsterdam 2008.
17 S. Mrowec, K. Przybylski. Defect and Transport Properties of Sulfides and Sulfidation of Metals. High Temp Mater Processes 1984, 1, 1–79.
18 J. Kim, E. Oh, R. Xiao, S. Ritter, Y. Yang, D. Yu, J. H. Im, S. H. Kim, W. J. Choi, and J. G. Park. Optical Properties and Bridge Photodetector Integration of Lead Sulfide Nanowires. Nanotechnology 2017, 28, 1-7.
19 Yu Huang, X. Duan, and Charles M. Lieber. Nanowires for Integrated Multicolor Nanophotonics. Small 2005, 1, 142-147.
20 M. J. Bierman and S. Jing. Potential Applications of Hierarchical Branching Nanowires in Solar Energy Conversion. Energy & Environmental Science 2009, 2, 1050-1059.
21 T. L. Li, Y. L. Lee ,and H. Teng. CuIn2 Quantum Dots coated with CdS as High-Performance Sensitizers for TiO2 Electrodes in Photoelectrochemical Cells. Journal of Materials Chemistry 2011, 21, 5089-5098.
22 A. A. K. Bakly, B. F. Spencer, and P. O’Brien. The Deposition of Thin Films of Cadmium Zinc Sulfide Cd1-xZnxS at 250℃ from Spin-coated Xanthato Complex: A Potential Route to Window Layers for Photovoltaic Cells. Journal of Materials Science 2018, 53, 4360-4370.
23 C. H. Lai, M. Y. Lu, and L. J. Chen. Metal Sulfide Nanostructures: Synthesis, Properties and Applications in Energy Conversion and Storage. Journal of Materials Chemistry 2012, 22, 19-30.
24 M. Y. Lu, M. H. Hong, Y. M. Ruan, and M. P. Lu. Probing the Photovaltic Properties of Ga-doped CdS-Cu2S Core-Shell Heterostructured Nanowire Device. Royal Society of Chemistry 2013, 00, 1-3.
25 F. Khodam, A. R. Amani-Ghadim, S. Aber. Mg Nanoparticles Core-CdS QDs Shell Heterostructures with ZnS Passivation Layer for Efficient Quantum Dot Sensitized Solar Cell. Electrochimica Acta 2019, 308, 25-34.
26 M. Sun, G. Cheng, X. Ge, M. Chen, C. Wang, L. Lou, X. Xu. Aqueous Hg(II) Immobilization by Chitosan Stabilized Magnetic Iron Sulfide Nanoparticles. Science of The Total Environment 2018, 621, 1074-1083.
27 D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, M. C. Hersam. Emerging Device Applications for Semi- conducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano 2014, 8, 1102–1120.
28 D. Moore and Z. L. Wang. Growth of Anisotropic One-Dimensional ZnS Nanostructures. Journal of Materials Chemistry 2006, 16, 3898-3905.
29 Z. W. Wang, L. L. Daemen, Y. S. Zhao, C. S. Zha, R. T. Downs, X. D. Wang, Z. L. Wang, and R. J. Hemley. Morphology-Tuned Wurtzite-Type ZnS Nanobelts. Nature Materials 2005, 4, 922-927.
30 J. S. Hu, L. L. Ren, Y. G. Guo, H. P. Liang, A. M. Cao, L. J. Wang, and C. L. Bai. Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles. A Journal of the German Chemical Society 2005, 44, 1269-1273.
31 C. Wu, J. Jie, L. Wang, Y. Yu, Q. Peng, X. Zhang, J. Cai, H. Guo, D. Wu, and Y. Jiang. Chlorine-Doped n-Type CdS Nanowires with Enhanced Photoconductivity. Nanotechnology 2010, 21, 505203-505210.
32 R. Banerjee, R. Jayakrishnan, and P. Ayyub. Effect of the Size-Induced Structural Transformation on the Band Gap in CdS Nanoparticles. Journal of Physics-Condensed Matter 2000, 12, 10647-10654.
33 H. Li, X. Wang, J. Xu, Q. Zhang, Y. Bando, D. Golberg, Y. Ma, and T. Zhai. One-dimensional CdS Nanostructures: A Promising Candidate for Optoelectronics. Advanced Materials 2013, 25, 3017-3037.
34 X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber. Single-Nanowire Electrically Driven Lasers. Nature 2003, 421, 241-245.
35 F. Capasso. Band-Gap Engineering: From Physics and Materials to New Semiconductor Devices. Science 1987, 235, 172-176.
36 V. A. Fedorov, V. A. Ganshin, and Y. N. Korkishko. Solid-State Phase Diagram of the Zinc Sulfide - Cadmium Sulfide System. Materials Research Bulletin 1993, 28, 59-66.
37 X. H. Zhong, Y. Y. Feng, W. Knoll, and M. Y. Han. Alloyed ZnxCd1-xS Nanocrystals with Highly Narrow Luminescence Spectral Width. Journal of the American Chemical Society 2003, 125, 13559-13563.
38 A. P. Gaikwad, D. Tyangi, C. A. Betty, and R. Sasikala. Photocatalytic and photo electrochemical properties of cadmium zinc sulfide solid solution in the presence of Pt and RuS2 dual co-catalysts. Applied Catalysis A: General 2016, 517, 91-99.
39 W. Li, D. Li, Z. Chen, H. Huang, M. Sun, Y. He, and X. Fu. High-Efficient Degradation of Dyes by ZnxCd1-xS Solid Solutions Under Visible Light Irradiation. Journal of Physical Chemistry C 2008, 112, 14943-14947.
40 S. Biswas, S. Kar, S. Santra, Y. Jomop, M. Arif, and S. I. Khondaker. Solvothermal Synthesis of High-Aspect Ratio Alloy Semiconductor Nanowires: Cd1-xZnxS, a Case Study. Journal of Physical Chemistry C 2009, 113, 3617-3624.
41 Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee. Wavelength-Controlled Lasing in ZnxCd1-xS Single-Crystal Nanoribbons. Advanced Materials 2005, 17, 1372-1377.
42 H. Raether. Surface-Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics 1988, 111, 1-133.
43 C. H. Chou and F. C. Chen. Plasmonic Nanostructures for Light Trapping in Organic Photovoltaic Device. Nanoscale 2014, 6, 8444-8458.
44 R. Jiang, B. Li, C. Fang, and J. Wang. Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications. Advanced Materials 2014, 26, 5274-5309.
45 S. Link and M. A. El-Sayed. Spectral Properties and Relaxation Dynamic of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. Journal of Physics Chemistry B 1999, 103, 8410-8426.
46 M. Fleischmann, P. J. Hendra, A. J. Mcquillan. Raman-Spectra of Pyridine adsorbed At a Silver Electrode. Chemical Physics Letters 1974, 26, 163-166.
47 S. W. Zeng, D. Baillargeat, H. P. Ho, K. T. Yong. Nanomaterials Enhanced Surface Plasmon Resonance for Biological and Chemical Sensing Application. Chemical Society Reviews 2014, 43, 3426-3452.
48 W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface Plasmon Subwavelength Optics. Nature 2003, 424, 824-830.
49 W. A. Murry, W. L. Barnes. Plasmonic Materials. Advanced Materials 2007, 19, 3771-3782.
50 G.V. Naik, V. M. Shalaev, A. Boltasseva. Alternative Plasmonic Materials: Beyond Gold and Silver. Advanced Materials 2013, 25, 3264-3294.
51 M. Rycenga, C. M. Cobley, J. Zeng, W. Y. Li, C. H. Moran, Q. Zhang, D. Qin, Y. N. Xia. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chemical Reviews 2011, 111, 3669-3712.
52 P. Zhang, J. Zhang, and J. L. Gong. Tantalum-Based Semiconductors for Solar Water Splitting. Chemical Society Reviews 2014, 43, 4395-4422.
53 A. Kudo and Y. Miseki. Heterogeneous Photocatalyst Materials for Water Splitting. The Royal Society of Chemistry 2009, 38, 253-278.
54 T. Ming, H. J. Chen, R.B. Jiang, Q. Li, and J. F. Wang. Plasmon-Controlled Fluorescence: Beyond the Intensity Enhancement. Journal of Physical Chemistry Letters 2012, 3, 191-202.
55 C. Sonnichsen, T. Franzl, T. Wilk, G. V. Plessen, J. Feldmann, O. Wilson, and P. Mulvaney. Drastic Reduction of Plasmon Damping in Gold Nanorods. Physical Review Letters 2002, 88, 077402.
56 S. J. Xu, S. J. Chua, B. Liu, L. M. Gan, C. H. Chew, and G. Q. Xu. Luminescence Characteristics of Impurities-Activated ZnS Nanocrystals Prepared in Microemulsion with Hydrothermal Treatment. Applied Physical. Letter 1998, 73, 478–480.
57 M. Y. Lu, J. Song, M. P. Lu, C. Y. Lee, L. J. Chen, and Z. L. Wang. ZnO-ZnS Heterojunction and ZnS Nanowire Arrays for Electricity Generation. ACS Nano 2009, 3, 357-362.
58 M. Li, J. Jiang, L. Guo. Synthesis, Characterization, and Photoelectrochemical study of Cd1-xZnxS Solid Solution Thin Films Deposited by Spray Pyrolysis for Water Splitting. International Journal of Hydrogen Energy 2010, 35, 7036-7042.
59 Q. Li, H. Meng, P. Zhou, Y. Zheng, J. Wang, J. Yu, J. R. Gong. Zn1-xCdxS Solid Solutions with Controlled Bandgap and Enhanced Visible-Light Photocatalytic H2-Production Activity. ACS Catalysis 2013, 3, 882-889.
60 Y. Xu, M. A. A. Schoonen. The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals. American Mineralogist 2000, 85, 543-556.
61 R. Shi, Y. Cao, Y.Bao, Y. Zhao, G. I. N. Waterhouse, Z. Fang, L. Z. Wu, C. H. Tung, Y. Yin, and T. Zhang. Self-Assembled Au/CdSe Nanocrystal Clusters for Plasmon-Mediated Photocatalytic Hydrogen Evolution. Advanced Materials 2017, 29, 1700803-1700810.
62 P. K. Jain and M. A. El-Sayed. Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing. Nano Letter 2008, 8, 12, 4347-4252.
63 B. H. Wu, W. T. Liu, T. Y. Chen, T. P. Perng, J. H. Huang, and L. J. Chen. Plasmon-enhanced Photocatalytic Hydrogen Production on Au/TiO2 Hybrid Nanocrystals Arrays. Nano Energy 2016, 27, 412-419.
64 J. Xu, W. M. Yang, S. J. Huang, H. Yin, H. Zhang, P. Radjevonic, Z. L. Yang, Z. Q. Tian, and J. F. Li. CdS Core-Au Plasmonic Satellites Nanostructure Enhanced Photocatalytic Hydrogen Evolution Reaction. Nano Energy 2018, 49, 363-371.
65 S. Link and M. A. El-Sayed. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. The Journal of Physical Chemistry B 1999, 103, 8410-8426.
66 C. Ren, B. Yang, M. Wu, J. Xu, Z. Fu, Y. Iv, T. Guo, Y. Zhao, and C. Zhu. Synthesis of Ag/ZnO Nanorods Array with Enhanced Photocatalytic Performance. Journal of Hazardous Materials 2010, 182, 123-129.
67 P. H. Liu, M. Wen, C. S. Tan, M. Navlani-Garcia, Y. Kuwahara, K. Mori, H. Yamashita, L. J. Chen. Surface Plasmon Resonance Enhancement of Production of H2 from Ammonia Borane Solution with Tunable Cu2-xS Nanowires Decorated by Pd Nanoparticles. Nano Energy 2017, 31, 57-63.
68 M. Luo, W. Yao, C. Huang, Q. Wu, and Q. Xu. Shape Effects of Pt Nanoparticles on hydrogen Production via Pt/CdS photocatalysts Under Visible Light. Journal of Materials Chemistry A 2015, 3, 13884-13891.
69 L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, T. W. Li, C. Shi, X. D. Wen, and D. Ma. Low-Temperature Hydrogen Production from Water and Methanol Using Pt/⍺-MoC Catalysts. Nature 2017, 544, 80-83.
70 R. F. Garcia, Y. Sonnefraud, A. I. Fernandez-Dominguez, V. Giannini, and S. A. Maier. Design Considerations for Near-Field Enhancement in Optical Antennas. Contemporary Physics 2014, 55, 1-11.
71 Q. Xiang, J. Yu, and M. Jaroniec. Synergetic Effect of MoS2 and Graphene as Cocatalysts for Enhanced Photocatalytic H2 Production Activity of TiO2 Nanoparticles. Journal of American Chemical Society 2012, 134, 6575-6578.
72 K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang, and J. Ye. MoS2/Graphene Cocatalyst for Efficient Photocatalytic H2 Evolution under Visible Light Irradiation. ACS Nano 2014, 8, 7078-7087.
73 P. Sriram, D. S. Su, A. P. Periasamy, A. Manikandan, S. W. Wang, H. T. Chang, Y. L. Chueh, and T. J. Yen. Hybridizing Strong Quadrupole Gap Plasmons Using Optimized Nanoantennas with Bilayer MoS2 for Excellent Photo-Electrochemical Hydrogen Evolution. Advanced Energy Materials 2018, 8, 1801184.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *