|
1. Fujishima, A., Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 38–40 (1972). 2. Fan, S. W., Srivastava, A. K. & Dravid, V. P. UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl. Phys. Lett. 95, 142106 (2009). 3. Senthilnathan, J. & Philip, L. Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2. Chem. Eng. J. 161, 83–92 (2010). 4. Chen, H., Nanayakkara, C. E. & Grassian, V. H. Titanium dioxide photocatalysis in atmospheric chemistry. Chem. Rev. 112, 5919–5948 (2012). 5. Sayilkan, F. et al. Photocatalytic antibacterial performance of Sn4+ doped TiO2 thin films on glass substrate. J. Hazard. Mater. 162, 1309–1316 (2009). 6. Baruah, S., Jaisai, M., Imani, R., Nazhad, M. M. & Dutta, J. Photocatalytic paper using zinc oxide nanorods. Sci. Technol. Adv. Mater. 11, 055002 (2010). 7. Liu, Y. et al. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J. Appl. Microbiol. 107, 1193–1201 (2009). 8. Suresh, D. et al. EGCG assisted green synthesis of ZnO nanopowders: Photodegradative, antimicrobial and antioxidant activities. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 136, 1467–1474 (2015). 9. Hoseinpour, V. & Ghaemi, N. Novel ZnO-MnO2-Cu2O triple nanocomposite: Facial synthesis, characterization, antibacterial activity and visible light photocatalytic performance for dyes degradation-A comparative study. Mater. Res. Express 5, 085012 (2018). 10. Ghosh, S. et al. ZnO/Ag nanohybrid: Synthesis, characterization, synergistic antibacterial activity and its mechanism. RSC Adv. 2, 930–940 (2012). 11. Chang, Y. H., Chiang, M. Y., Chang, J. H. & Lin, H. N. Enhanced visible light photocatalysis of cuprous oxide nanoparticle modified zinc oxide nanowires. Mater. Lett. 138, 85–88 (2015). 12. Sahu, D. R., Liu, C. P., Wang, R. C., Kuo, C. L. & Huang, J. L. Growth and application of ZnO nanostructures. Int. J. Appl. Ceram. Technol. 10, 814–838 (2013). 13. Djurišić, A. B., Chen, X., Leung, Y. H. & Man Ching Ng, A. ZnO nanostructures: Growth, properties and applications. J. Mater. Chem. 22, 6526–6535 (2012). 14. Wang, Z. L., Mao, S. X. & Zhao, M. H. Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 4, 587–590 (2004). 15. Wagner, R. S. & Ellis, W. C. Vapor‐liquid‐solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964). 16. Wang, J. & Gao, L. Hydrothermal synthesis and photoluminescence properties of ZnO nanowires. Solid State Commun. 132, 269–271 (2004). 17. Lu, C. et al. Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate. Chem. Commun. 3551–3553 (2006). 18. Ahn, S. E. et al. Origin of the slow photoresponse in an individual sol-gel synthesized ZnO nanowire. Appl. Phys. Lett. 90, 2005–2008 (2007). 19. Vayssieres, L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15, 464–466 (2003). 20. Baruah, S. & Dutta, J. Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10, 013001 (2009). 21. Schmidt-Mende, L. & MacManus-Driscoll, J. L. ZnO-nanostructures, defects, and devices. Mater. Today 10, 40–48 (2007). 22. Park, W. I., Jun, Y. H., Jung, S. W. & Yi, G. C. Excitonic emissions observed in ZnO single crystal nanorods. Appl. Phys. Lett. 82, 964–966 (2003). 23. Ahn, C. H., Kim, Y. Y., Kim, D. C., Mohanta, S. K. & Cho, H. K. A comparative analysis of deep level emission in ZnO layers deposited by various methods. J. Appl. Phys. 105, 013502 (2009). 24. Mehmood, S., Rehman, M. A., Ismail, H., Mirza, B. & Bhatti, A. S. Significance of postgrowth processing of ZnO nanostructures on antibacterial activity against gram-positive and gram-negative bacteria. Int. J. Nanomedicine 10, 4521–4533 (2015). 25. Berezin, S., Aviv, Y., Aviv, H., Goldberg, E. & Tischler, Y. R. Replacing a century old technique-modern spectroscopy can supplant gram staining. Sci. Rep. 7, 3810 (2017). 26. Wang, L., Fan, D., Chen, W. & Terentjev, E. M. Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces. Sci. Rep. 5, 15159 (2015). 27. Linsebigler, A. L., Lu, G. & Yates, J. T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995). 28. Liang, W., Li, J. & Jin, Y. Photo-catalytic degradation of gaseous formaldehyde by TiO2/UV, Ag/TiO2/UV and Ce/TiO2/UV. Build. Environ. 51, 345–350 (2012). 29. Pavasupree, S., Ngamsinlapasathian, S., Suzuki, Y. & Yoshikawa, S. Synthesis and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 from high surface area nanosheet TiO2. J. Nanosci. Nanotechnol. 6, 3685–3692 (2006). 30. 吳季珍。把太陽光轉成化學能:擺脫庫倫作用力的光觸媒。科學發展 10–16 (2015). 31. Michael Grätzel. Photoelectrochemical cells. Nature 414, 338–344 (2001). 32. Xu, X. et al. Antimicrobial mechanism based on H2O2 generation at oxygen vacancies in ZnO crystals. Langmuir 29, 5573–5580 (2013). 33. Wang, Y. et al. Cu2O nanoparticles sensitized ZnO nanorod arrays: Electrochemical synthesis and photocatalytic properties. Mater. Lett. 67, 110–112 (2012). 34. Lee, M. & Yong, K. Highly efficient visible light photocatalysis of novel CuS/ZnO heterostructure nanowire arrays. Nanotechnology 23, 194014 (2012). 35. Chiang, M. Y. & Lin, H. N. Enhanced photocatalysis of ZnO nanowires co-modified with cuprous oxide and silver nanoparticles. Mater. Lett. 160, 440–443 (2015). 36. Wenderich, K. & Mul, G. Methods, mechanism, and applications of photodeposition in photocatalysis : A review. Chem. Rev. 116, 14587–14619 (2016). 37. Kim, J., Kim, W. & Yong, K. CuO/ZnO heterostructured nanorods : Photochemical synthesis and the mechanism of H2S gas sensing. J. Phys. Chem. 116, 15682–15691 (2012). 38. Cudennec, Y. & Lecerf, A. The transformation of Cu(OH)2 into CuO, revisited. Solid State Sci. 5, 1471–1474 (2003). 39. Turrens, J. F. Mitochondrial formation of reactive oxygen species. J. Physiol. 552, 335–344 (2003). 40. Das, K. & Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2, 53 (2014). 41. Bojarska, M., Nowak, B., Skowroński, J., Piątkiewicz, W. & Gradoń, L. Growth of ZnO nanowires on polypropylene membrane surface characterization and reactivity. Appl. Surf. Sci. 391, 457–467 (2017). 42. Armstrong, D. A. et al. Standard electrode potentials involving radicals in aqueous solution: Inorganic radicals (IUPAC TechnicalReport). Pure Appl. Chem. 87, 1139–1150 (2015). 43. Nosaka, Y. & Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302–11336 (2017). 44. Mccloskey, J. T., Newman, M. C. & Clark, S. B. Predicting the relative toxicity of metal ions using ion characteristics: Microtox® bioluminescence assay. Environ. Toxicol. Chem. 15, 1730–1737 (1996). 45. Nies, D. H. Microbial heavy-metal resistance. App.l Microbiol. Biotechnol. 51, 730–750 (1999). 46. Hossain, M. I., Edwards, J., Tyler, J., Anderson, J. & Bandyopadhyay, S. Antimicrobial properties of nanorods: Chemical or physical kill? 2015 IEEE Nanotechnol. Mater. Devices Conf. 15886413 (2016). 47. Iftekhar Hossain, M., Edwards, J., Tyler, J., Anderson, J. & Bandyopadhyay, S. Antimicrobial properties of nanorods: killing bacteria via impalement. IET Nanobiotechnology 11, 501–505 (2017). 48. Wang, X., Yang, F., Yang, W. & Yang, X. A study on the antibacterial activity of one-dimensional ZnO nanowire arrays: Effects of the orientation and plane surface. Chem. Commun. 4419–4421 (2007). 49. Bandara, C. D. et al. Bactericidal effects of natural nanotopography of dragonfly wing on Escherichia coli. ACS Appl. Mater. Interfaces 9, 6746–6760 (2017). 50. Lakshmi Prasanna, V. & Vijayaraghavan, R. Insight into the mechanism of antibacterial activity of ZnO: Surface defects mediated reactive oxygen species even in the dark. Langmuir 31, 9155–9162 (2015). 51. Joe, A. et al. Antibacterial mechanism of ZnO nanoparticles under dark conditions. J. Ind. Eng. Chem. 45, 430–439 (2017). 52. Lakshmi Prasanna, V. & Vijayaraghavan, R. Chemical manipulation of oxygen vacancy and antibacterial activity in ZnO. Mater. Sci. Eng. C 77, 1027–1034 (2017). 53. Antimicrobial products test for antimicrobial activity and efficacy. Tokyo: Japanese Standards Association. JIS Z 2801 (2000). 54. Fine ceramics (advanced ceramics, advanced technical ceramics) test method for antibacterial activity of semiconducting photocatalytic materials. ISO 27447: 2009(E). 55. Alves, G. M. & Cruvinel, P. E. Customized computer vision and sensor system for colony recognition and live bacteria Counting in Agriculture. Sensors & Transducers 201, 65–77 (2016). 56. Karaman, D. Ş., Manner, S., Fallarero, A. & Rosenholm, J. M. Current approaches for exploration of nanoparticles as antibacterial agents. Antibact. Agents 61–85 (2017). 57. Rudilla, H. et al. New and old tools to evaluate new antimicrobial peptides. AIMS Microbiol. 4, 522–540 (2018). 58. 許慧珍。多壁奈米碳管之於大腸桿菌之影響研究。碩士論文,國立清華大學材料工程學系,(2008)。 59. Wang, D. et al. Large-scale growth and shape evolution of Cu2O cubes. Cryst. Growth Des. 3, 717–720 (2003). 60. 潘尹捷。合成不同大小之氧化亞銅奈米方塊及其應用。碩士論文,國立清華大學材料工程學系,(2014)。 61. Lipovsky, A., Nitzan, Y., Gedanken, A. & Lubart, R. Visible light-induced killing of bacteria as a function of wavelength: Implication for wound healing. Lasers Surg. Med. 42, 467–472 (2010). 62. Maclean, M., MacGregor, S. J., Anderson, J. G. & Woolsey, G. Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl. Environ. Microbiol. 75, 1932–1937 (2009). 63. Wei, C. et al. Bactericidal activity of TiO2 photocatalyst in aqueous media: Toward a solar-assisted water disinfection system. Environ. Sci. Technol. 28, 934–938 (1994). 64. Liu, H. L. & Yang, T. C. K. Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO2 activated with ultraviolet light. Process Biochem. 39, 475–481 (2003). 65. Sökmen, M., Candan, F. & Sümer, Z. Disinfection of E. coli by the Ag-TiO2/UV system: Lipidperoxidation. J. Photochem. Photobiol. A Chem. 143, 241–244 (2001).
|