帳號:guest(52.15.200.167)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳昱仁
作者(外文):Chen, Yu-Ren
論文名稱(中文):銅氧化物/氧化鋅光觸媒奈米複合材料於抗菌活性之探討
論文名稱(外文):Antibacterial Activity of Copper Oxide/Zinc Oxide Photocatalytic Nanocomposites
指導教授(中文):林鶴南
指導教授(外文):Lin, Heh-Nan
口試委員(中文):李紫原
廖建能
口試委員(外文):Lee, Chi-Young
Liao, Chien-Neng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031572
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:67
中文關鍵詞:氧化鋅奈米柱抗菌光觸媒
外文關鍵詞:zinc oxide nanorodsantibacterialphotocatalyst
相關次數:
  • 推薦推薦:0
  • 點閱點閱:37
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
本實驗製作銅氧化物與氧化鋅奈米複合材料,並應用於大腸桿菌的抑制上,探討不同形貌銅氧化物之抗菌能力。首先,先在矽晶圓基板上塗佈上氧化鋅晶種層,並使用低溫水熱法成長氧化鋅奈米柱,再將氧化鋅奈米柱放入硫酸銅水溶液,進行簡易光還原沉積,形成銅氧化物與氧化鋅複合材料。
使用掃描式電子顯微鏡觀察奈米複合材料的表面形貌,在30 ℃環境中進行光還原,得到立方體狀的銅氧化物,而在60 ℃環境中進行光還原,得到針刺及薄膜狀的銅氧化物。以能量色散X–射線光譜分析確認氧化鋅奈米柱、銅氧化物與氧化鋅複合材料之元素組成;以X–射線繞射分析確認氧化鋅晶格結構。
抗菌實驗中,所使用的試片尺寸皆為1.5 * 1.5 cm^2,並以100 μl的大腸桿菌菌液做為測試標的物。使用光強度約為1 mW/cm^2的藍光LED燈管,做為照光環境中的光源,並在暗環境與照光環境下,各進行10分鐘的測試。測試結果顯示,氧化鋅奈米柱試片(ZnO NRs)的大腸桿菌存活率分別為30%與15%;而具有最佳抗菌效果的銅氧化物與氧化鋅複合材料試片(CuxO/ZnO),其大腸桿菌存活率更下降至6.5%與0.5%。經過數據處理後,ZnO NRs與CuxO/ZnO試片的一階反應速率常數,在暗環境中分別為0.084 min^(–1)、0.097 min^(–1);照光環境中則分別為0.14 min^(–1)、0.25 min^(–1),顯示出銅氧化物與氧化鋅奈米複合材料,有著較佳的抗菌效果,具有相當的實用價值與發展潛力。

The present work describes the preparation of various CuxO/ZnO nanocomposites with different morphologies and their antibacterial activity. The antibacterial test is aimed at targeting gram negative bacteria (E.coli JM109) in dark and under light. ZnO nanorods (NRs) were first grown by a hydrothermal method on a Si substrate. CuxO nanostructures were then created on ZnO NRs using a photodeposition method.
The morphologies of the ZnO sample and six different CuxO/ZnO nanocomposites were characterized by scanning electron microscopy (SEM). It was found that the CuxO nanocubes were created at a photodeposition temperature of 30 ℃, whereas CuxO nanospikes or weblike structures were created at 60 ℃. Energy dispersive x–ray spectroscopy (EDS) confirmed the existence of Zn, O, Cu elements in the nanocomposites. X–ray diffraction (XRD) analysis validated the crystalline structure of ZnO.
For the antibacterial test, a low volume solution (100 μl) was deposited on a 1.5 * 1.5 cm^2 sample for a reaction of 10 min in dark or under the illumination of a blue LED lamp with an intensity of 1 mW/cm^2. The ZnO sample showed a survival ratio of 30% in dark and 15% under light. The CuxO/ZnO sample, which was prepared at 60 ℃ for 70 min, showed best results with a survival ratio of 6.5% in dark and 0.5% under light. The time-dependent survival ratios of the two samples were also measured. The calculated first-order kinetic constants of the ZnO and CuxO/ZnO samples are 0.084 min^(–1) and 0.097 min^(–1) in dark, respectively, and 0.14 min^(–1) and 0.25 min^(–1) under light, respectively. With its excellent antibacterial activity, the CuxO/ZnO nanocomposite has good potential for practical applications.
中文摘要 I
Abstract II
誌謝 III
總目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 氧化鋅概論 3
2.1.1 基本性質 3
2.1.2 奈米柱成長方法 4
2.1.3 氧化鋅缺陷 5
2.1.4 氧化鋅的光學性質 6
2.2 細菌簡介 8
2.2.1 細菌分類 8
2.2.2 細菌生長曲線 8
2.3 光觸媒回顧 9
2.3.1 水分解原理 11
2.3.2 光觸媒效率 12
2.4 光沉積與光化學法 14
2.5 自由基與活性氧化物 17
2.6 氧化鋅抗菌機制 18
2.6.1 生成活性氧化物 19
2.6.2 鋅離子釋出 21
2.6.3 表面形貌 21
2.6.4 表面缺陷 22
2.7 抗菌測試方法 23
2.7.1 日本工業標準Japanese industrial standard (JIS Z 2801:2000)53 23
2.7.2 抗菌效能評估 24
第三章 實驗儀器與方法 29
3.1 實驗設計 29
3.2 材料製備流程 30
3.2.1 氧化鋅奈米柱成長 30
3.2.2 銅氧化物的添加 32
3.2.3 瓊脂培養基製備 33
3.2.4 單一菌落之分離 33
3.2.5 隔夜菌液培養 34
3.3 分析儀器 35
3.3.1 掃描式電子顯微鏡 35
3.3.2 能量色散X–射線光譜 35
3.3.3 X–射線繞射分析 35
3.3.4 螢光光譜儀 35
3.4 光觸媒抗菌實驗 36
3.4.1 抗菌測試流程 36
3.4.2 大腸桿菌存活率與抗菌活性值計算 37
第四章 結果與討論 38
4.1材料分析 38
4.1.1 表面形貌 38
4.1.2 結構與組成 42
4.1.3 光致放光性質 45
4.2 抗菌測試結果 46
4.2.1 空白組與氧化鋅奈米柱試片抗菌測試結果 47
4.2.2 暗環境下銅氧化物與氧化鋅複合材料抗菌測試結果 49
4.2.3 照光環境銅氧化物與氧化鋅複合材料抗菌測試結果 51
4.3 光觸媒抗菌反應速率 53
第五章 結論與總結 57
參考文獻 59
1. Fujishima, A., Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 38–40 (1972).
2. Fan, S. W., Srivastava, A. K. & Dravid, V. P. UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl. Phys. Lett. 95, 142106 (2009).
3. Senthilnathan, J. & Philip, L. Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2. Chem. Eng. J. 161, 83–92 (2010).
4. Chen, H., Nanayakkara, C. E. & Grassian, V. H. Titanium dioxide photocatalysis in atmospheric chemistry. Chem. Rev. 112, 5919–5948 (2012).
5. Sayilkan, F. et al. Photocatalytic antibacterial performance of Sn4+ doped TiO2 thin films on glass substrate. J. Hazard. Mater. 162, 1309–1316 (2009).
6. Baruah, S., Jaisai, M., Imani, R., Nazhad, M. M. & Dutta, J. Photocatalytic paper using zinc oxide nanorods. Sci. Technol. Adv. Mater. 11, 055002 (2010).
7. Liu, Y. et al. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J. Appl. Microbiol. 107, 1193–1201 (2009).
8. Suresh, D. et al. EGCG assisted green synthesis of ZnO nanopowders: Photodegradative, antimicrobial and antioxidant activities. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 136, 1467–1474 (2015).
9. Hoseinpour, V. & Ghaemi, N. Novel ZnO-MnO2-Cu2O triple nanocomposite: Facial synthesis, characterization, antibacterial activity and visible light photocatalytic performance for dyes degradation-A comparative study. Mater. Res. Express 5, 085012 (2018).
10. Ghosh, S. et al. ZnO/Ag nanohybrid: Synthesis, characterization, synergistic antibacterial activity and its mechanism. RSC Adv. 2, 930–940 (2012).
11. Chang, Y. H., Chiang, M. Y., Chang, J. H. & Lin, H. N. Enhanced visible light photocatalysis of cuprous oxide nanoparticle modified zinc oxide nanowires. Mater. Lett. 138, 85–88 (2015).
12. Sahu, D. R., Liu, C. P., Wang, R. C., Kuo, C. L. & Huang, J. L. Growth and application of ZnO nanostructures. Int. J. Appl. Ceram. Technol. 10, 814–838 (2013).
13. Djurišić, A. B., Chen, X., Leung, Y. H. & Man Ching Ng, A. ZnO nanostructures: Growth, properties and applications. J. Mater. Chem. 22, 6526–6535 (2012).
14. Wang, Z. L., Mao, S. X. & Zhao, M. H. Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 4, 587–590 (2004).
15. Wagner, R. S. & Ellis, W. C. Vapor‐liquid‐solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).
16. Wang, J. & Gao, L. Hydrothermal synthesis and photoluminescence properties of ZnO nanowires. Solid State Commun. 132, 269–271 (2004).
17. Lu, C. et al. Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate. Chem. Commun. 3551–3553 (2006).
18. Ahn, S. E. et al. Origin of the slow photoresponse in an individual sol-gel synthesized ZnO nanowire. Appl. Phys. Lett. 90, 2005–2008 (2007).
19. Vayssieres, L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15, 464–466 (2003).
20. Baruah, S. & Dutta, J. Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10, 013001 (2009).
21. Schmidt-Mende, L. & MacManus-Driscoll, J. L. ZnO-nanostructures, defects, and devices. Mater. Today 10, 40–48 (2007).
22. Park, W. I., Jun, Y. H., Jung, S. W. & Yi, G. C. Excitonic emissions observed in ZnO single crystal nanorods. Appl. Phys. Lett. 82, 964–966 (2003).
23. Ahn, C. H., Kim, Y. Y., Kim, D. C., Mohanta, S. K. & Cho, H. K. A comparative analysis of deep level emission in ZnO layers deposited by various methods. J. Appl. Phys. 105, 013502 (2009).
24. Mehmood, S., Rehman, M. A., Ismail, H., Mirza, B. & Bhatti, A. S. Significance of postgrowth processing of ZnO nanostructures on antibacterial activity against gram-positive and gram-negative bacteria. Int. J. Nanomedicine 10, 4521–4533 (2015).
25. Berezin, S., Aviv, Y., Aviv, H., Goldberg, E. & Tischler, Y. R. Replacing a century old technique-modern spectroscopy can supplant gram staining. Sci. Rep. 7, 3810 (2017).
26. Wang, L., Fan, D., Chen, W. & Terentjev, E. M. Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces. Sci. Rep. 5, 15159 (2015).
27. Linsebigler, A. L., Lu, G. & Yates, J. T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995).
28. Liang, W., Li, J. & Jin, Y. Photo-catalytic degradation of gaseous formaldehyde by TiO2/UV, Ag/TiO2/UV and Ce/TiO2/UV. Build. Environ. 51, 345–350 (2012).
29. Pavasupree, S., Ngamsinlapasathian, S., Suzuki, Y. & Yoshikawa, S. Synthesis and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 from high surface area nanosheet TiO2. J. Nanosci. Nanotechnol. 6, 3685–3692 (2006).
30. 吳季珍。把太陽光轉成化學能:擺脫庫倫作用力的光觸媒。科學發展 10–16 (2015).
31. Michael Grätzel. Photoelectrochemical cells. Nature 414, 338–344 (2001).
32. Xu, X. et al. Antimicrobial mechanism based on H2O2 generation at oxygen vacancies in ZnO crystals. Langmuir 29, 5573–5580 (2013).
33. Wang, Y. et al. Cu2O nanoparticles sensitized ZnO nanorod arrays: Electrochemical synthesis and photocatalytic properties. Mater. Lett. 67, 110–112 (2012).
34. Lee, M. & Yong, K. Highly efficient visible light photocatalysis of novel CuS/ZnO heterostructure nanowire arrays. Nanotechnology 23, 194014 (2012).
35. Chiang, M. Y. & Lin, H. N. Enhanced photocatalysis of ZnO nanowires co-modified with cuprous oxide and silver nanoparticles. Mater. Lett. 160, 440–443 (2015).
36. Wenderich, K. & Mul, G. Methods, mechanism, and applications of photodeposition in photocatalysis : A review. Chem. Rev. 116, 14587–14619 (2016).
37. Kim, J., Kim, W. & Yong, K. CuO/ZnO heterostructured nanorods : Photochemical synthesis and the mechanism of H2S gas sensing. J. Phys. Chem. 116, 15682–15691 (2012).
38. Cudennec, Y. & Lecerf, A. The transformation of Cu(OH)2 into CuO, revisited. Solid State Sci. 5, 1471–1474 (2003).
39. Turrens, J. F. Mitochondrial formation of reactive oxygen species. J. Physiol. 552, 335–344 (2003).
40. Das, K. & Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2, 53 (2014).
41. Bojarska, M., Nowak, B., Skowroński, J., Piątkiewicz, W. & Gradoń, L. Growth of ZnO nanowires on polypropylene membrane surface characterization and reactivity. Appl. Surf. Sci. 391, 457–467 (2017).
42. Armstrong, D. A. et al. Standard electrode potentials involving radicals in aqueous solution: Inorganic radicals (IUPAC TechnicalReport). Pure Appl. Chem. 87, 1139–1150 (2015).
43. Nosaka, Y. & Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302–11336 (2017).
44. Mccloskey, J. T., Newman, M. C. & Clark, S. B. Predicting the relative toxicity of metal ions using ion characteristics: Microtox® bioluminescence assay. Environ. Toxicol. Chem. 15, 1730–1737 (1996).
45. Nies, D. H. Microbial heavy-metal resistance. App.l Microbiol. Biotechnol. 51, 730–750 (1999).
46. Hossain, M. I., Edwards, J., Tyler, J., Anderson, J. & Bandyopadhyay, S. Antimicrobial properties of nanorods: Chemical or physical kill? 2015 IEEE Nanotechnol. Mater. Devices Conf. 15886413 (2016).
47. Iftekhar Hossain, M., Edwards, J., Tyler, J., Anderson, J. & Bandyopadhyay, S. Antimicrobial properties of nanorods: killing bacteria via impalement. IET Nanobiotechnology 11, 501–505 (2017).
48. Wang, X., Yang, F., Yang, W. & Yang, X. A study on the antibacterial activity of one-dimensional ZnO nanowire arrays: Effects of the orientation and plane surface. Chem. Commun. 4419–4421 (2007).
49. Bandara, C. D. et al. Bactericidal effects of natural nanotopography of dragonfly wing on Escherichia coli. ACS Appl. Mater. Interfaces 9, 6746–6760 (2017).
50. Lakshmi Prasanna, V. & Vijayaraghavan, R. Insight into the mechanism of antibacterial activity of ZnO: Surface defects mediated reactive oxygen species even in the dark. Langmuir 31, 9155–9162 (2015).
51. Joe, A. et al. Antibacterial mechanism of ZnO nanoparticles under dark conditions. J. Ind. Eng. Chem. 45, 430–439 (2017).
52. Lakshmi Prasanna, V. & Vijayaraghavan, R. Chemical manipulation of oxygen vacancy and antibacterial activity in ZnO. Mater. Sci. Eng. C 77, 1027–1034 (2017).
53. Antimicrobial products test for antimicrobial activity and efficacy. Tokyo: Japanese Standards Association. JIS Z 2801 (2000).
54. Fine ceramics (advanced ceramics, advanced technical ceramics) test method for antibacterial activity of semiconducting photocatalytic materials. ISO 27447: 2009(E).
55. Alves, G. M. & Cruvinel, P. E. Customized computer vision and sensor system for colony recognition and live bacteria Counting in Agriculture. Sensors & Transducers 201, 65–77 (2016).
56. Karaman, D. Ş., Manner, S., Fallarero, A. & Rosenholm, J. M. Current approaches for exploration of nanoparticles as antibacterial agents. Antibact. Agents 61–85 (2017).
57. Rudilla, H. et al. New and old tools to evaluate new antimicrobial peptides. AIMS Microbiol. 4, 522–540 (2018).
58. 許慧珍。多壁奈米碳管之於大腸桿菌之影響研究。碩士論文,國立清華大學材料工程學系,(2008)。
59. Wang, D. et al. Large-scale growth and shape evolution of Cu2O cubes. Cryst. Growth Des. 3, 717–720 (2003).
60. 潘尹捷。合成不同大小之氧化亞銅奈米方塊及其應用。碩士論文,國立清華大學材料工程學系,(2014)。
61. Lipovsky, A., Nitzan, Y., Gedanken, A. & Lubart, R. Visible light-induced killing of bacteria as a function of wavelength: Implication for wound healing. Lasers Surg. Med. 42, 467–472 (2010).
62. Maclean, M., MacGregor, S. J., Anderson, J. G. & Woolsey, G. Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl. Environ. Microbiol. 75, 1932–1937 (2009).
63. Wei, C. et al. Bactericidal activity of TiO2 photocatalyst in aqueous media: Toward a solar-assisted water disinfection system. Environ. Sci. Technol. 28, 934–938 (1994).
64. Liu, H. L. & Yang, T. C. K. Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO2 activated with ultraviolet light. Process Biochem. 39, 475–481 (2003).
65. Sökmen, M., Candan, F. & Sümer, Z. Disinfection of E. coli by the Ag-TiO2/UV system: Lipidperoxidation. J. Photochem. Photobiol. A Chem. 143, 241–244 (2001).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *