|
1. IDC. New Product Launches Drive Double-Digit growth in the wearables Market, Says IDC. 2018; Available from: https://www.idc.com/getdoc.jsp?containerId=prUS44500418. 2. GrandViewResearch, Flexible Electronics Market By Components (Display, Battery, Sensors, Memory), By Application (Consumer Electronics, Automotive, Healthcare, Industrial) And Segment Forecast To 2024. 2016. p. 70. 3. Han, S.T., et al., An overview of the development of flexible sensors. Advanced Materials, 2017. 29(33): p. 1700375. 4. MarketsAndMarkets. Wearable Sensors Market by Type (Accelerometers, Magnetometers, Gyroscopes, Image Sensors, Inertial Sensors, Temperature & Humidity Sensors, Pressure & Force Sensors, Touch Sensors and Motion Sensors), Application (Wristwear, Eyewear, Bodywear), Vertical, and Geography - Global Forecast to 2022. 2017; Available from: https://www.marketsandmarkets.com/Market-Reports/wearable-sensor-market-158101489.html?gclid=Cj0KCQjwvdXpBRCoARIsAMJSKqLPGDHFAFHl-7Z5UIwDbkO-byMQ4PaDcCLjkOot9zUT03_LbosNswQaAthIEALw_wcB. 5. Ha, M., S. Lim, and H. Ko, Wearable and flexible sensors for user-interactive health-monitoring devices. Journal of Materials Chemistry B, 2018. 6(24): p. 4043-4064. 6. Someya, T., et al., A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proceedings of the National Academy of Sciences, 2004. 101(27): p. 9966-9970. 7. Choi, W., et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 2017. 20(3): p. 116-130. 8. Yang, S., C. Jiang, and S.-h. Wei, Gas sensing in 2D materials. Applied Physics Reviews, 2017. 4(2): p. 021304. 9. Hsueh, F.-K., et al. Ultra-Low Power 3D NC-FinFET-based Monolithic 3D+-IC with Computing-in-Memory for Intelligent IoT Devices. in 2018 IEEE International Electron Devices Meeting (IEDM). 2018. IEEE. 10. Wong, W.S. and A. Salleo, Flexible electronics: materials and applications. Vol. 11. 2009: Springer Science & Business Media. 11. Son, D., et al., Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nature nanotechnology, 2014. 9(5): p. 397. 12. Xie, M., et al., Flexible Multifunctional Sensors for Wearable and Robotic Applications. Advanced Materials Technologies, 2019. 4(3): p. 1800626. 13. Ghoneim, M. and M. Hussain, Review on physically flexible nonvolatile memory for internet of everything electronics. Electronics, 2015. 4(3): p. 424-479. 14. Shahrjerdi, D. and S.W. Bedell, Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic. Nano letters, 2012. 13(1): p. 315-320. 15. Menard, E., et al., A printable form of silicon for high performance thin film transistors on plastic substrates. Applied Physics Letters, 2004. 84(26): p. 5398-5400. 16. Kim, S., et al., Flexible Crossbar‐Structured Resistive Memory Arrays on Plastic Substrates via Inorganic‐Based Laser Lift‐Off. Advanced Materials, 2014. 26(44): p. 7480-7487. 17. Lu, Q.-H. and F. Zheng, Polyimides for Electronic Applications, in Advanced Polyimide Materials. 2018, Elsevier. p. 195-255. 18. Wager, J.F., et al., An amorphous oxide semiconductor thin-film transistor route to oxide electronics. Current Opinion in Solid State and Materials Science, 2014. 18(2): p. 53-61. 19. Huang, W.-H., et al., Junction-less poly-Ge FinFET and charge-trap NVM fabricated by laser-enabled low thermal budget processes. Applied Physics Letters, 2016. 108(24): p. 243502. 20. Kao, M.-H., et al., A sandwiched buffer layer enabling pulsed ultraviolet-and visible-laser annealings for direct fabricating poly-Si field-effect transistors on the polyimide. Applied Physics Letters, 2017. 111(2): p. 024101. 21. Xie, C. and F. Yan, Flexible photodetectors based on novel functional materials. Small, 2017. 13(43): p. 1701822. 22. Yokota, T., et al., Ultraflexible organic photonic skin. Science advances, 2016. 2(4): p. e1501856. 23. Park, S.I., et al., Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates. Advanced Functional Materials, 2008. 18(18): p. 2673-2684. 24. Wu, Y.-C., et al., Extrinsic origin of persistent photoconductivity in monolayer MoS 2 field effect transistors. Scientific reports, 2015. 5: p. 11472. 25. Shao, D., et al., Flexible, thorn-like ZnO-multiwalled carbon nanotube hybrid paper for efficient ultraviolet sensing and photocatalyst applications. Nanoscale, 2014. 6(22): p. 13630-13636. 26. Dang, V.Q., et al., High-performance flexible ultraviolet (UV) phototransistor using hybrid channel of vertical ZnO nanorods and graphene. ACS applied materials & interfaces, 2015. 7(20): p. 11032-11040. 27. Zhou, Y., et al., Thin-film Sb 2 Se 3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nature Photonics, 2015. 9(6): p. 409. 28. Li, G., et al., Self-powered, high-speed Sb2Se3/Si heterojunction photodetector with close spaced sublimation processed Sb2Se3 layer. Journal of Alloys and Compounds, 2018. 737: p. 67-73. 29. Wen, X., et al., Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nature communications, 2018. 9(1): p. 2179. 30. Chen, C., et al., Characterization of basic physical properties of Sb 2 Se 3 and its relevance for photovoltaics. Frontiers of Optoelectronics, 2017. 10(1): p. 18-30. 31. Konstantatos, G. and E.H. Sargent, Nanostructured materials for photon detection. Nature nanotechnology, 2010. 5(6): p. 391. 32. Chen, B.-W., et al., Impact of repeated uniaxial mechanical strain on p-type flexible polycrystalline thin film transistors. Applied Physics Letters, 2015. 106(18): p. 183503. 33. Chu, M., et al., Strain: A solution for higher carrier mobility in nanoscale MOSFETs. Annual Review of Materials Research, 2009. 39: p. 203-229. 34. Song, H., et al., Highly anisotropic Sb2Se3 nanosheets: gentle exfoliation from the bulk precursors possessing 1D crystal structure. Advanced Materials, 2017. 29(29): p. 1700441. 35. Liang, N., et al., Surface effects on Raman scattering from Sb deposited on Ag-island films. Optics letters, 1983. 8(7): p. 374-376. 36. Shongalova, A., et al., On the identification of Sb 2 Se 3 using Raman scattering. MRS Communications, 2018. 8(3): p. 865-870. 37. Chen, C., et al., Optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation. Applied Physics Letters, 2015. 107(4): p. 043905. 38. Hasan, M.R., et al., An antimony selenide molecular ink for flexible broadband photodetectors. Advanced electronic materials, 2016. 2(9): p. 1600182. 39. Chen, G., et al., Controlled synthesis of ultrathin Sb2Se3 nanowires and application for flexible photodetectors. Advanced science, 2015. 2(10): p. 1500109.
|