帳號:guest(3.145.84.208)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):歐祖豪
作者(外文):Ou, Tsu-Hao
論文名稱(中文):以三功能硫氰酸亞銅製作之高效率有機發光二極體
論文名稱(外文):Highly Efficient Organic Light Emitting Diode with Trifunctional Copper(I) Thiocyanate
指導教授(中文):周卓煇
指導教授(外文):Jou, Jwo-Huei
口試委員(中文):王欽戊
岑尚仁
薛景中
蔡永誠
口試委員(外文):Wang, Ching-Wu
Chen, Sun-Zen
Shyue, Jing-Jong
Tsai, Yung-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031564
出版年(民國):108
畢業學年度:108
語文別:中文
論文頁數:89
中文關鍵詞:有機發光二極體硫氰酸亞銅電洞注入層電洞傳輸層電子侷限層
外文關鍵詞:Organic Light Emitting DiodeCopper(I) ThiocyanateHole injection layerHole transporting layerElectron blocking layer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:471
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
有機發光二極體 (Organic Light Emitting Diode, OLED) 具有多項侵入性特
質,如面光源、可撓曲、高對比、廣視角、全彩化、低驅動電壓、節能和超高 顯色指數等優點,被譽為終極的顯示技術。
然而,目前 OLED 的發展,其發光效率仍有很大的進步空間,而改善元件 效率的方式,可透過低的注入能障、載子有效侷限、增加再結合區和有效的激 子產生,以研製出高效率 OLED,進而達到節能之效果。
本研究使用三功能硫氰酸亞銅(copper(I) thiocyanate, CuSCN),此材料可 同時作為電洞注入、傳輸層(HIL/HTL)和電子侷限層(EBL),4,4′-Bis(N- carbazolyl)-1,1′-biphenyl (CBP)為主體,摻雜綠色染料 bis[2-(2-pyridinyl-N)-phe- nyl-C](acetylacetonato)iridium(III) [(ppy)2Ir(acac)],透過濕式製程研製出一高效 率綠光有機發光二極體;在 100 cd/m2 和 1,000 cd/m2 時,元件效率為 51.7 lm/W 和 40.3 lm/W,相較於一般以 PEDOT:PSS 作為電洞注入、傳輸層(HIL/HTL) 元件時,效率為 45.6 lm/W 和 25.1 lm/W,高出 13%和 60%;此外,當亮度由 100 cd/m2 升至 1,000 cd/m2 時,以 CuSCN 作為 HIL/HTL/EBL 的元件,效率下 降 22%;以 PEDOT:PSS 作為 HIL/HTL 的元件,效率則下降 45%;因此,以 CuSCN 作為 HIL/HTL/EBL 的元件時,在高亮度下,效率有更顯著的提升;此 外,當亮度提升時,也可減緩效率滾降。

此元件之高效率及減緩效率滾降,可歸因於 CuSCN 具有(1)較 PEDOT:PSS 淺的最低未填滿分子軌域(lowest unoccupied molecular orbital, LUMO)(-1.8eV),施加電壓增強時,有效將電子侷限在發光層,與電洞再 結合,產生更多的激子;(2)較 PEDOT:PSS 深的最高填滿分子軌域(highest occupied molecular orbital, HOMO)(-5.5eV),促進電洞注入發光層,提升電 子與電洞於發光層形成激子的機率;(3)較 PEDOT:PSS 高的可見光穿透率, 能有效提升出光效率;(4)減少薄膜表面粗糙度,降低元件漏電流機率。
Organic Light Emitting Diode (OLED) has many disruptive characteristics, such as surface light source, flexible, high contrast, wide viewing angle, full color, low driving voltage, energy saving and ultra-high color rendering index. , known as the ultimate display technology.
However, the development of OLEDs still has a lot of space for improvement in luminous efficiency, and the way to improve device power efficiency can be achieved through low injection energy barrier, effective carrier limitation, increased recombination zone and effective exciton generation. To develop high-efficiency OLEDs to achieve energy savings.
In this study, Trifunction copper (I) thiocyanate (CuSCN) was used as a hole
injection, transporting layer (HIL/HTL) and electron Blocking layer (EBL), 4,4'-Bis
(N-carbazolyl)-1,1'-biphenyl (CBP) as the host, doped with green dye bis[2-(2-
pyridinyl-N)-phenyl-C](acetylacetonato)iridium(III) [(ppy)2Ir (acac)], a high-
efficiency green organic light-emitting diode was developed through a wet process;
The power efficacies for the CuSCN based devices are found to be 51.7 and 40.3
lm/W at 100 and 1000 cd/m2, respectively, which are 13 and 60% higher than the PE-
DOT:PSS based counterparts, when PEDOT:PSS is used as a hole injection and
transporting layer (HIL/HTL), the power efficiency is 45.6 lm/W and 25.1 lm/W; In

addition, when the brightness is increased from 100 cd/m2 to 1,000 cd/m2, with CuSCN as the HIL/HTL/EBL device, the efficacy is reduced by 22%; with PEDOT:PSS as the HIL/HTL device, the efficacy is reduced by 45%; Therefore, CuSCN is used as the HIL/HTL/EBL In the case of high-brightness, the efficiency is more significantly improved; In addition, when the brightness is increased, the efficiency roll-off can also be slowed down.
The high efficacy of this device and the mitigating efficacy roll-off are attributable to the fact that CuSCN has (1) lower unoccupied molecular orbital (LUMO) (-1.8 eV), which is shallower than PEDOT:PSS. Effectively confine the electrons to the emissive layer and recombine with the holes to generate more excitons with applied voltage enhancement; (2) the highest occupied molecular orbital (HOMO) (-5.5eV) deeper than PEDOT:PSS , promoting the injection of holes into the emissive layer, increasing the probability of electrons and holes forming excitons in the emissive layer; (3) higher visible light transmittance than PEDOT:PSS, which can effectively improve light extraction efficacy; (4) reducing film surface roughness degree, reduce the probability of device leakage current.
摘要 ................................................................................................................................................. I Abstract ........................................................................................................................................ III 獻.................................................................................................................................................... V 致謝 ............................................................................................................................................ VI 目錄 ............................................................................................................................................. XI 表目錄 ......................................................................................................................................... XV 圖目錄 ........................................................................................................................................XVI 壹、緒論 ......................................................................................................................................... 1 貳、文獻回顧 ................................................................................................................................. 3
2-1、OLED 之發展歷史 ............................................................................................................... 3 2-2、OLED 之基本結構 ............................................................................................................. 22 2-3、OLED 的發光原理與能量轉移機制 ........................................................................... 23
2-4、OLED 材料之發展 ............................................................................................................. 29
2-4-1、陽極材料 ........................................................................................................................ 30 2-4-2、電洞注入材料............................................................................................................... 30 2-4-3、電洞傳輸材料............................................................................................................... 31
2-4-4、發光層材料 ................................................................................................................... 32 2-4-5、電子傳輸材料............................................................................................................... 33 2-4-6、電子注入材料............................................................................................................... 33 2-4-7、陰極材料 ........................................................................................................................ 34
2-5、高效率 OLED 的製作技術 ............................................................................................. 34
2-6、高效率 OLED 的發展 ....................................................................................................... 41
2-7、電洞注入層的功用與發展.............................................................................................. 42
2-8、電洞傳輸層的功用與發展.............................................................................................. 43
2-9、電子侷限層的功用與發展.............................................................................................. 45
參、理論計算 ............................................................................................................................. 47 3-1、元件效率之計算 ................................................................................................................. 47 3-2、光通量的定義 ...................................................................................................................... 47 3-3、發光強度的定義 ................................................................................................................. 48
肆、實驗方法 .............................................................................................................................. 48 4-1、使用材料...............................................................................................................................48 4-2、元件設計與製備 ................................................................................................................. 53
4-2-1、元件電路設計............................................................................................................... 53
4-2-2、ITO 基材清潔與表面前處理..................................................................................54
4-2-3、旋轉塗佈電洞注入層 ................................................................................................ 55
4-2-4、發光層之製備............................................................................................................... 56 4-2-5、成膜鍍率測定............................................................................................................... 57 4-2-6、有機材料之製備..........................................................................................................58
4-2-7、無機層之製備............................................................................................................... 58
4-3、元件光電特性之量測 ....................................................................................................... 58
4-4、電性模擬...............................................................................................................................60 伍、結果與討論............................................................................................................................. 61 5-1 元件結構..................................................................................................................................61 5-1-1、典型元件結構............................................................................................................... 61
5-1-2、三功能硫氰酸亞銅元件結構 ................................................................................. 62
5-2、電場對元件壽命預期的影響.........................................................................................64
5-3、再結合率對元件效率的影響.........................................................................................67
5-4、高效率元件之效率表現................................................................................................... 70
5-4-1、綠光染料濃度對元件效率的影響........................................................................70
5-4-2、三功能硫氰酸亞銅對元件效率的影響 .............................................................. 72
陸、結論 ..................................................................................................................................... 80 柒、參考資料 ............................................................................................................................... 82 附錄、個人著作目錄 ................................................................................................................... 88
(A)期刊論文 ............................................................................................................................. 88 (B)研討會論文.........................................................................................................................89
(C)得獎紀錄 .............................................................................................................................. 89
[1] A. R. Duggal, J. Shiang, C. M. Heller, and D. F. Foust, "Organic light-emitting devices for illumination quality white light," Applied physics letters, vol. 80, no. 19, pp. 3470-3472, 2002.
[2] A. R. Duggal, J. Shiang, C. M. Heller, and D. F. J. A. p. l. Foust, "Organic light-emitting devices for illumination quality white light," vol. 80, no. 19, pp. 3470-3472, 2002.
[3] H. Lim et al., "Flexible Organic Electroluminescent Devices Based on Fluorine-Containing Colorless Polyimide Substrates," Advanced Materials, vol. 14, no. 18, pp. 1275-1279, 2002.
[4] M. Pope, H. Kallmann, and P. Magnante, "Electroluminescence in organic crystals," The Journal of Chemical Physics, vol. 38, no. 8, pp. 2042-2043, 1963.
[5] C. Tang, S. VanSlyke, and C. Chen, "Electroluminescence of doped organic thin films," Journal of Applied Physics, vol. 65, no. 9, pp. 3610-3616, 1989.
[6] J. H. Burroughes et al., "Light-emitting diodes based on conjugated polymers," nature, vol. 347, no. 6293, p. 539, 1990.
[7] M. Era, C. Adachi, T. Tsutsui, and S. Saito, "Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter," Chemical physics letters, vol. 178, no. 5-6, pp. 488-490, 1991.
[8] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, "Organic electroluminescent device with a three-layer structure," Japanese journal of applied physics, vol. 27, no. 4A, p. L713, 1988.
[9] J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, "White light-emitting organic electroluminescent devices using the poly (N-vinylcarbazole) emitter layer doped with three fluorescent dyes," Applied Physics Letters, vol. 64, no. 7, pp. 815-817, 1994.
[10] J. Kido, M. Kimura, and K. Nagai, "Multilayer white light-emitting organic electroluminescent device," Science, vol. 267, no. 5202, pp. 1332-1334, 1995.
[11] L. Hung, C. Tang, and M. Mason, "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode," Applied Physics Letters, vol. 70, no. 2, pp. 152-154, 1997.
[12] M. A. Baldo et al., "Highly efficient phosphorescent emission from organic electroluminescent devices," Nature, vol. 395, no. 6698, p. 151, 1998.
[13] C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, "Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,"
82
Journal of Applied Physics, vol. 90, no. 10, pp. 5048-5051, 2001.
[14] J. Blochwitz, M. Pfeiffer, T. Fritz, and K. Leo, "Low voltage organic light
emitting diodes featuring doped phthalocyanine as hole transport material,"
Applied Physics Letters, vol. 73, no. 6, pp. 729-731, 1998.
[15] J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, and S. Liu, "Low- voltage organic electroluminescent devices using pin structures," Applied
Physics Letters, vol. 80, no. 1, pp. 139-141, 2002.
[16] T. Matsumoto et al., "27.5 L: Late-News Paper: Multiphoton Organic EL
device having Charge Generation Layer," in SID Symposium Digest of
Technical Papers, 2003, vol. 34, no. 1: Wiley Online Library, pp. 979-981.
[17] L.-S. Liao, K. P. Klubek, D. L. Comfort, and C. W. Tang, "Cascaded organic
electroluminescent devices with improved voltage stability," ed: Google
Patents, 2004.
[18] L. Liao, K. Klubek, and C. Tang, "High-efficiency tandem organic light-
emitting diodes," Applied physics letters, vol. 84, no. 2, pp. 167-169, 2004.
[19] Y. Shao and Y. Yang, "White organic light-emitting diodes prepared by a fused
organic solid solution method," Applied Physics Letters, vol. 86, no. 7, p.
073510, 2005.
[20] J.-H. Jou, Y.-S. Chiu, C.-P. Wang, R.-Y. Wang, and H.-C. Hu, "Efficient, color-
stable fluorescent white organic light-emitting diodes with single emission layer by vapor deposition from solvent premixed deposition source," Applied physics letters, vol. 88, no. 19, p. 193501, 2006.
[21] Y. Sun and S. R. Forrest, "Enhanced light out-coupling of organic light- emitting devices using embedded low-index grids," Nature photonics, vol. 2, no. 8, p. 483, 2008.
[22] S. Reineke et al., "White organic light-emitting diodes with fluorescent tube efficiency," Nature, vol. 459, no. 7244, p. 234, 2009.
[23] H. Terui and M. Kobayashi, "Refractive-index-adjustable SiO2-Ta2O5 films for integrated optical circuits," Applied Physics Letters, vol. 32, no. 10, pp. 666-668, 1978.
[24] Z. Wang et al., "Unlocking the full potential of organic light-emitting diodes on flexible plastic," Nature Photonics, vol. 5, no. 12, p. 753, 2011.
[25] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, "Highly efficient organic light-emitting diodes from delayed fluorescence," Nature, vol. 492, no. 7428, p. 234, 2012.
[26] J. H. Jou et al., "Candle Light-Style Organic Light-Emitting Diodes," Advanced Functional Materials, vol. 23, no. 21, pp. 2750-2757, 2013.
[27] Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, "Efficient blue organic light-emitting diodes employing thermally activated delayed
83

fluorescence," Nature Photonics, vol. 8, no. 4, p. 326, 2014.
[28] T. A. Lin et al., "Sky-blue organic light emitting diode with 37% external
quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid," Advanced Materials, vol. 28, no. 32, pp. 6976- 6983, 2016.
[29] G. Méhes, H. Nomura, Q. Zhang, T. Nakagawa, and C. Adachi, "Enhanced electroluminescence efficiency in a spiro-acridine derivative through thermally activated delayed fluorescence," Angewandte Chemie International Edition, vol. 51, no. 45, pp. 11311-11315, 2012.
[30] B. Zhao et al., "Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host," Scientific reports, vol. 5, p. 10697, 2015.
[31] K. T. Ly et al., "Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance," Nature Photonics, vol. 11, no. 1, p. 63, 2017.
[32] J. Jwo-Huei, OLED Introdcution. 2015.
[33] L. G. Thompson and S. Webber, "External heavy atom effect on the
phosphorescence spectra of some halonaphthalenes," The Journal of Physical
Chemistry, vol. 76, no. 2, pp. 221-224, 1972.
[34] A. Dodabalapur, "Organic light emitting diodes," Solid State Communications,
vol. 102, no. 2-3, pp. 259-267, 1997.
[35] T. Förster, "Zwischenmolekulare energiewanderung und fluoreszenz," Annalen
der physik, vol. 437, no. 1-2, pp. 55-75, 1948.
[36] D. L. Dexter, "A theory of sensitized luminescence in solids," The Journal of
Chemical Physics, vol. 21, no. 5, pp. 836-850, 1953.
[37] M. Klessinger and J. Michl, Excited states and photochemistry of organic
molecules. Wiley-VCH, 1995.
[38] R. H. Friend, J. H. Burroughes, and D. D. Bradley, "Electroluminescent
devices," ed: Google Patents, 1993.
[39] H. S. Nalwa, Handbook of nanostructured materials and nanotechnology, five-
volume set. Academic Press, 1999.
[40] J.-S. Kim et al., "Indium–tin oxide treatments for single-and double-layer
polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance," Journal of Applied Physics, vol. 84, no. 12, pp. 6859-6870, 1998.
[41] M. Mason, L. S. Hung, C. Tang, S. Lee, K. Wong, and M. Wang, "Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices," Journal of Applied Physics, vol. 86, no. 3, pp. 1688-1692, 1999.
84

[42] S. So, W. Choi, C. Cheng, L. Leung, and C. Kwong, "Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices," Applied Physics A: Materials Science & Processing, vol. 68, no. 4, pp. 447-450, 1999.
[43] M. Ishii, T. Mori, H. Fujikawa, S. Tokito, and Y. Taga, "Improvement of organic electroluminescent device performance by in situ plasma treatment of indium–tin-oxide surface," Journal of Luminescence, vol. 87, pp. 1165-1167, 2000.
[44] S. A. Van Slyke, C. Chen, and C. W. Tang, "Organic electroluminescent devices with improved stability," Applied physics letters, vol. 69, no. 15, pp. 2160-2162, 1996.
[45] A. Elschner et al., "PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes," Synthetic metals, vol. 111, pp. 139-143, 2000.
[46] K. A. Higginson, X.-M. Zhang, and F. Papadimitrakopoulos, "Thermal and morphological effects on the hydrolytic stability of aluminum tris (8-
hydroxyquinoline)(Alq3)," Chemistry of Materials, vol. 10, no. 4, pp. 1017-
1020, 1998.
[47] J. Kido, M. Kohda, K. Okuyama, and K. Nagai, "Organic electroluminescent
devices based on molecularly doped polymers," Applied physics letters, vol.
61, no. 7, pp. 761-763, 1992.
[48] C. Hosokawa, H. Higashi, and T. Kusumoto, "Novel structure of organic
electroluminescence cells with conjugated oligomers," Applied physics letters,
vol. 62, no. 25, pp. 3238-3240, 1993.
[49] W. Gao and A. Kahn, "Controlled p-doping of zinc phthalocyanine by
coevaporation with tetrafluorotetracyanoquinodimethane: A direct and inverse photoemission study," Applied Physics Letters, vol. 79, no. 24, pp. 4040-4042, 2001.
[50] C. Ganzorig, K. Suga, and M. Fujihira, "Alkali metal acetates as effective electron injection layers for organic electroluminescent devices," Materials Science and Engineering: B, vol. 85, no. 2-3, pp. 140-143, 2001.
[51] S. Sudheendran Swayamprabha et al., "An Approach for Measuring the Dielectric Strength of OLED Materials," Materials, vol. 11, no. 6, p. 979, 2018.
[52] J.-H. Jou et al., "Nearly non-roll-off high efficiency fluorescent yellow organic light-emitting diodes," Journal of Materials Chemistry, vol. 21, no. 34, pp. 12613-12618, 2011.
[53] P. Rajamalli et al., "A new molecular design based on thermally activated delayed fluorescence for highly efficient organic light emitting diodes," Journal of the American Chemical Society, vol. 138, no. 2, pp. 628-634, 2016.
85

[54] Y. Yang, X. Yang, W. Yang, S. Li, J. Xu, and Y. Jiang, "Ordered and ultrathin reduced graphene oxide LB films as hole injection layers for organic light- emitting diode," Nanoscale research letters, vol. 9, no. 1, p. 537, 2014.
[55] G. W. Kim, R. Lampande, D. C. Choe, H. W. Bae, and J. H. Kwon, "Efficient hole injection material for low operating voltage blue fluorescent organic light emitting diodes," Thin Solid Films, vol. 589, pp. 105-110, 2015.
[56] X. Zhang et al., "Solution-processed MoOx hole injection layer towards efficient organic light-emitting diode," Organic Electronics, vol. 39, pp. 43-49, 2016.
[57] T. Ding et al., "Solution-processed inorganic copper (i) thiocyanate as a hole injection layer for high-performance quantum dot-based light-emitting diodes," RSC Advances, vol. 7, no. 42, pp. 26322-26327, 2017.
[58] M. Park, T. P. Nguyen, K. S. Choi, J. Park, A. Ozturk, and S. Y. Kim, "MoS 2- nanosheet/graphene-oxide composite hole injection layer in organic light- emitting diodes," Electronic Materials Letters, vol. 13, no. 4, pp. 344-350, 2017.
[59] Y. Zhang et al., "The feasibility of using solution-processed aqueous La2O3 as effective hole injection layer in organic light-emitting diode," Solid-State Electronics, vol. 139, pp. 54-59, 2018.
[60] J. Lee, H. Han, J. Lee, S. C. Yoon, and C. Lee, "Utilization of “thiol–ene” photo cross-linkable hole-transporting polymers for solution-processed multilayer organic light-emitting diodes," Journal of Materials Chemistry C, vol. 2, no. 8, pp. 1474-1481, 2014.
[61] Z. a. Li, T. Ye, S. Tang, C. Wang, D. Ma, and Z. Li, "Triphenylamine-based π- conjugated dendrimers: convenient synthesis, easy solution processability, and good hole-transporting properties," Journal of Materials Chemistry C, vol. 3, no. 9, pp. 2016-2023, 2015.
[62] J. W. Jung, C. C. Chueh, and A. K. Y. Jen, "High-Performance Semitransparent Perovskite Solar Cells with 10% Power Conversion Efficiency and 25% Average Visible Transmittance Based on Transparent CuSCN as the Hole- Transporting Material," Advanced Energy Materials, vol. 5, no. 17, p. 1500486, 2015.
[63] Y. Tian et al., "A Solution-Processed Organometal Halide Perovskite Hole Transport Layer for Highly Efficient Organic Light-Emitting Diodes," Advanced Electronic Materials, vol. 2, no. 7, p. 1600165, 2016.
[64] S. Kumar et al., "Solution-processable naphthalene and phenyl substituted carbazole core based hole transporting materials for efficient organic light- emitting diodes," Journal of Materials Chemistry C, vol. 5, no. 38, pp. 9854- 9864, 2017.
86

[65] D. K. Dubey, R. A. K. Yadav, D. Tavgeniene, S. Grigalevicius, and J.-H. Jou, "Crosslinkable hole-transporting small molecule as a mixed host for efficient solution-processed red organic light emitting diodes," Thin Solid Films, vol. 660, pp. 956-960, 2018.
[66] V. I. Adamovich et al., "New charge-carrier blocking materials for high efficiency OLEDs," Organic electronics, vol. 4, no. 2-3, pp. 77-87, 2003.
[67] J. A. Hagen, W. Li, A. Steckl, and J. Grote, "Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer," Applied Physics Letters, vol. 88, no. 17, p. 171109, 2006.
[68] C.-H. Gao, D.-Y. Zhou, W. Gu, X.-B. Shi, Z.-K. Wang, and L.-S. Liao, "Enhancement of electroluminescence efficiency and stability in phosphorescent organic light-emitting diodes with double exciton-blocking layers," Organic Electronics, vol. 14, no. 4, pp. 1177-1182, 2013.
[69] Q. Wei, M. Mukaida, and T. Ishida, "Extracting Carrier Mobility in Conducting Polymers Using a Photoinduced Charge Transfer Reaction," The Journal of Physical Chemistry C, vol. 122, no. 28, pp. 15922-15928, 2018.
[70] N. Wijeyasinghe et al., "p-Doping of Copper (I) Thiocyanate (CuSCN) Hole- Transport Layers for High-Performance Transistors and Organic Solar Cells," Advanced Functional Materials, vol. 28, no. 31, p. 1802055, 2018.
[71] S. Sahoo, D. K. Dubey, M. Singh, V. Joseph, K. J. Thomas, and J.-H. Jou, "Highly efficient deep-blue organic light emitting diode with a carbazole based fluorescent emitter," Japanese Journal of Applied Physics, vol. 57, no. 4S, p. 04FL08, 2018.
[72] W.-Y. Hung et al., "Employing ambipolar oligofluorene as the charge- generation layer in time-of-flight mobility measurements of organic thin films," Applied physics letters, vol. 88, no. 6, p. 064102, 2006.
[73] J.-H. Jou et al., "Plausible degradation mechanisms in organic light-emitting diodes," Organic Electronics, vol. 67, pp. 222-231, 2019.
[74] S. D. Chavhan, T. H. Ou, M.-R. Jiang, C.-W. Wang, and J.-H. Jou, "Enabling High-Efficiency Organic Light-Emitting Diode with Trifunctional Solution- Processable Copper (I) Thiocyanate," The Journal of Physical Chemistry C, vol. 122, no. 33, pp. 18836-18840, 2018.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *