|
Chapter 1 [1.1] R. P. Feynman, There’s Plenty of Room at the Bottom at the Annual Meeting of the American Physical Society on December 29th at the California Institute of Technology (1959). [1.2] J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension synthesis and properties of nanowires and nanotubes. Accounts of chemical research 32, 435-445 (1999). [1.3] Y.Cui, C.M. Lieber, Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851-853 (2001). [1.4] Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, C.M. Lieber, Logic gates and computation from assembled nanowire building blocks. Science 294, 1313-1317 (2001). [1.5] J. Hu, L.-S. Li, W. Yang, L. Manna, L.-W. Wang, A.P. Alivisatos, Linearly polarized emission from colloidal semiconductor quantum rods. Science 292, 2060-2063 (2001) [1.6] W.I. Park, G.C. Yi, M. Kim, S.J. Pennycook, Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures. Advanced Materials 15, 526-529 (2003). [1.7] W. Han, S. Fan, Q. Li, Y. Hu, Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 277, 1287-1289 (1997). [1.8] Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, S. Iijima, Heterostructures of single-walled carbon nanotubes and carbide nanorods. Science 285, 1719-1722 (1999). [1.9] C. Dekker, Carbon nanotubes as molecular quantum wires. Physics Today 52, 22-28 (1999). [1.10] Y. Zhang, K. Suenaga, C. Colliex, S. Iijima, Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon. Science 281, 973-975 (1999). [1.11] X. Duan, C. M. Lieber, General synthesis of compound semiconductor nanowires. Advanced Materials 12, 298-302 (2001). [1.12] M. S. Gudiksen, J. Wang, C. M. Lieber, Synthetic control of the diameter and length of single crystal semiconductor nanowires. J. Phys. Chem. B 105, 4062-4064 (2001). [1.13] Y. Cui, X. Duan, J. Wang, C.M. Lieber, Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 104, 5213-5216 (2000). [1.14] C. A. Balzani, M. Venturi, The bottom-up approach to molecular-level devices and machines. Chem. Eur. J. 8, 5524-5532 (2002). [1.15] R. S. Wagner, W. C. Ellis, Vapor-Liquid-Solid mechanism of single crystal growth. Appl. Phys Lett. 4, 89-90 (1964). [1.16] J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction. J. Vac. Sci. Technol. B. 15, 554-557 (1997). [1.17] A. M. Morales, C. M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science. 279, 208-211 (1998). [1.18] R. Ghosh, P. K. Giri, Silicon nanowire heterostructures: growth strategies, novel properties and emerging applications. Sci. Adv. Today 2, 25230 (2016). [1.19] K. Yao, P. Chen, Z. Zhang, J. Li, R. Ai, H. Ma, B. Zhao, G. Sun, R. Wu, X. Tang, B. Li, J. Hu, X. Duan, Synthesis of ultrathin two-dimensional nanosheets and van der Waals heterostructures from non-layered γ-CuI. npj 2D Materials and Applications 2, 1-7 (2018). [1.20] S. Zhang, Y. Sunami, H. Hashimoto, Mini review: Nanosheet technology towards biomedical application. Nanomaterials 7, 246-253 (2017). [1.21] Z. Lu, Z. Chang, W. Zhu, X. Sun, Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chem. Commun. 47, 9651-9653 (2011). [1.22] J. He, Y. Chen, A. Manthiram, Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li–S batteries. Energy Environ. Sci. 11, 2560-2568 (2018). [1.23] O. Bashir, Z. Khan, Silver nano-disks: Synthesis, encapsulation, and role of water soluble starch. J. Mol. Liq. 199, 524-529 (2014). [1.24] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351-355 (2008). [1.25] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902-907 (2008). [1.26] A. K. Geim, Graphene: Status and prospects. Science 324, 1530-1534 (2009). [1.27] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nature Nanotech. 6, 147-150 (2011). [1.28] O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, Z. Mi, Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett. 15, 5302-5306 (2015). [1.29] D. J. Bergman, M. I. Stockman, Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003). [1.30] M. I. Stockman, The spaser as a nanoscale quantum generator and ultrafast amplifier. J. Opt. 12, 024004 (2010). [1.31] R.F. Oulton, V.J. Sorger, D. Genov, D. Pile, X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics 2, 496-500 (2008). [1.32] A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik 216, 398-410 (1968). [1.33] S.A. Maier, Plasmonics: fundamentals and applications. Springer Science & Business Media, (2007). [1.34] R. Ritchie, E. Arakawa, J. Cowan, R. Hamm, Surface-plasmon resonance effect in grating diffraction. Phys. Rev. Lett. 21, 1530-1533 (1968). [1.35] M. I. Stockman, Spasers explained. Nature Photon. 2, 327-329 (2008). [1.36] Z. L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter. 16, R829-R858 (2004). [1.37] X. Y. Kong, Z. L. Wang, Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 3, 1625-1631 (2003). [1.38] B. Ha, H. Ham, C. J. Lee, Photoluminescence of ZnO nanowires dependent on O2 and Ar annealing. J. Phys. Chem. Solids. 69, 2453-2456 (2008). [1.39] D. Gérard, S. K. Gray, Aluminium plasmonics. J. Phys. D: Appl. Phys. 48, 184001 (2015). Chapter 2 [2.1] A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S van der Zant, and G. A Steele, Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014). [2.2] F. Cheng, P.-H. Su, J. Choi, S. Gwo, X. Li, C.-K. Shih, Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties. ACS Nano. 10, 9852-9860 (2016). [2.3] B. Fultz, J. Howe, Transmission electron microscopy and diffractometry of materials. Springer-Verlag: Berlin, Germany, 1-118 (2001). [2.4] G. Binning, C. F. Quate, Ch. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930-933 (1986). [2.5] J. E. Jones, On the determination of molecular fields. —II. From the equation of state of a gas. Proc. R. Soc. Lond. A 106, 463-477 (1924). Chapter 3 [3.1] A. Travlos, N. Boukos, C. Chandrinou, H. S. Kwack, L. S. Dang, Zinc and oxygen vacancies in ZnO nanorods. J. Appl. Phys. 106, 104307 (2009). [3.2] R.F. Oulton, V.J. Sorger, D. Genov, D. Pile, X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics. 2, 496-500 (2008). Chapter 4 [4.1] A. Laturia, M. L. V. de Put, W. G. Vandenberghe, Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. npj 2D Materials and Applications 2, 1-7 (2018). Chapter 5 [5.1] C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, J. Leuthold, All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photonics 9, 525–528 (2015). [5.2] J. M. Jornet, I. F. Akyildiz, Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE JSAC 31, 685-694 (2013). [5.3] L. Ye, K. Sui, Y. Liu, M. Zhang, Q. H. Liu, Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation. Opt. Express 26, 15935-15947(2018). [5.4] Y. Xu, Z. Guo, H. Chen, Y. Yuan, J. Lou, X. Lin, H. Guo, H. Chen, B. Yu, In-plane and tunneling pressure sensors based on graphene/hexagonal boron nitride heterostructures. Appl. Phys. Lett. 99, 133109 (2011). [5.5] L. Fu, Y. Sun, N. Wu, R. G. Mendes, L. Chen, Z. Xu, T. Zhang, M. H. Rümmeli, B. Rellinghaus, D. Pohl, L. Zhuang, L. Fu, Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano 10, 2063-2070 (2016). [5.6] N. Flöry, A. Jain, P. Bharadwaj, M. Parzefall, T. Taniguchi, K. Watanabe, L. Novotny, A WSe2/MoSe2 heterostructure photovoltaic device. Appl. Phys. Lett. 107, 123106 (2015). [5.7] S. Glassner, H. Keshmiri, D. J. Hill, F. F. Cahoon, B. Fernandez, M. I. Hertog, A. Lugstein, Tuning electroluminescence from a plasmonic cavity-coupled silicon light source. Nano Lett. 18, 7230-7237 (2018).
|