帳號:guest(18.116.8.148)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):胡於庭
作者(外文):Hu, Yu-Ting
論文名稱(中文):高靈敏之X型超材料吸收體折射係數感測器
論文名稱(外文):Highly sensitive X-shaped metamaterials absorber for refractometric sensing
指導教授(中文):嚴大任
指導教授(外文):Yen, Ta-Jen
口試委員(中文):饒達仁
鄭兆珉
口試委員(外文):Yao, Da-Jeng
Cheng, Chao-Min
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031557
出版年(民國):108
畢業學年度:108
語文別:英文
論文頁數:97
中文關鍵詞:超材料折射係數感測吸收體
外文關鍵詞:Metamaterialrefractometricsensorabsorber
相關次數:
  • 推薦推薦:0
  • 點閱點閱:423
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
表面電漿共振為存在於金屬及介電層介面之自由電子集體震盪,此現象之共振條件隨週遭折射率改變,透過共振條件改變我們可以判斷介電層之折射係數變化,當介電質之折射係數增加,共振光譜便會產生紅移,因此可將表面電漿共振應用於折射係數感測器上,表面電漿共振具有即時性以及無須標定等特性在感測方面有十分廣泛的應用。應用奈米級等離子體超材料之折射係數感測器可透過局域表面電漿共振的方式產生更強之局域電磁場增益,使其靈敏度大幅提升。
我們設計一個 X 型超材料吸收體折射係數感測器,並透過 CST 軟體模擬和實際樣品偵測定義其靈敏度。X 型金屬共振器可產生高階之四級共振,此共振模式具高靈敏度和高吸收率。金屬-介電層-金屬之高吸收率吸收體也能大幅提升共振之靈敏度和品質因子,同時將其介電層設計為不連續結構使其間隙共振能與目標物更有效接觸。本篇論文中,為了探討我們所設計的折射係數感測器之偵測能力,我們將其與其他三種結構:係環共振器不連續吸收體、X 型共振器連續吸收體及單層X 型共振器進行靈敏度之比較。在模擬中我們得到 X 型超材料不連續吸收體其靈敏度可達1527.3nm/RIU,此一靈敏度數值遠高於其他結構。在實驗中,我們使用聚甲基丙基酸甲酯(PMMA)作為固態量測樣品來定義其實驗上之靈敏度,其實驗結果之靈敏度可達 1886.9nm/RIU 並呈現良好線性關係。我們進而使用氣態丁烷做為目標物以觀察其對氣態樣品之靈敏度,結果發現儘管在光譜上有明顯紅移,但再現性以及線性關係不佳,無法達到定量分析的目的。總結來說,我們所設計之X型非連續超材料共振器具有相當高之折射係數靈敏度及固態樣品偵測能力,然而若要使其具氣態樣品之偵測能力仍需改良其樣品吸附力。
Surface plasmon resonance (SPR) is the collective oscillation of free electrons at the interface between metal and dielectric layers. The resonant condition of SPR is dominated by refractive index of surrounding environment. Once the refractive index of surrounding dielectric increase, resonance in optical spectrum will red shift, thus SPR can be applied on refractometric sensor. SPR refractometric sensor can provide a real-time and label-free platform that has wide applications of sensing. Nano-scale plasmonic metamaterial based refractometric sensor utilize localized surface plasmon resonance (LSPR) to generate stronger localized electromagnetic field enhancement that significantly increase the sensitivity of the sensor.
We design a X-shaped metamaterials absorber for refractometric sensing purpose and demonstrate its sensitivity through CST software simulation and sample detection. X-shaped metallic resonator (XPS) induce high order quadrupole resonance mode with high absorption and high sensitivity. Absorber with metal-insulator-metal (MIM) structure provide ultrahigh absorption to increase both sensitivity and quality factor of the resonance. Meanwhile we design a discrete MIM structure that enable the gap resonance can directly contact with target sample effectively. In this thesis, to investigate the sensing ability of our purposed refractometric sensor, we compare the sensitivity with other four kinds of structure: single-ring resonator (SRR) discrete MIM absorber, XPS continuous MIM absorber, single layer XPS and single layer SRR. From simulation result the sensitivity of discrete MIM-XPS can reach 1527.3nm/RIU which
is the highest among all the structures. For experiment, we take PMMA as our solid state detection target to demonstrate the experimental sensitivity, the experiment results show high sensitivity of 1886.9nm/RIU and exhibit well linear relationship. We further take gaseous butane as our sensing target. The experiment results show evident resonance red shift, however the results show poor reproducibility and linear relationship, the device lack of ability of quantitative measurement for gaseous sample. In conclusion, we demonstrate a X-shaped metamaterial absorber with high sensitivity based on refractometric sensing and ability of solid state sample detection. However, the improvement of adhesion is still required for gaseous state sample detection
demand.
摘要 I
Abstract II
Acknowledgements IV
Table of contents V
List of figures VII
List of tables X
Chapter 1 11
Introduction 11
1.1. Localized surface plasmon resonator for bio-sensing application 11
1.2. Motivation 11
1.3. Thesis Organization 12
Chapter 2 13
Literature Review 13
2.1. Surface plasmon polaritons 14
2.2. Localized surface plasmon resonance 17
2.3. Plasmonic Metamaterials sensor 21
2.4. X-shaped plasmon sensor (XPS) 25
2.5. Metal-insulator-metal structure 28
2.6. Refractive index sensing 34
Chapter 3 39
Simulation 39
3.1. Simulation setup 39
3.1.1 Environment setting 39
3.1.2. Device Design 40
3.2. Simulation Result 44
3.2.1. Contribution of each layer of MIM structure 44
3.2.2. Characteristic of Resonance 53
3.2.3. Refractive index sensing 56
3.2.4. Detection length 59
Chapter 4 63
Fabrication & Detection 63
4.1. Experimental procedure 63
4.2. E-beam lithography 65
4.3. Physical vapor evaporation (E-beam evaporator) 68
4.4. Fourier-transform Infrared Spectroscopy (FTIR) 70
Chapter 5 74
Results and Discussion 74
5.1. Morphology & IR spectrum 74
5.2. Detection length & Sensitivity 77
5.3. Refractive index sensing of butane 83
5.4. Comparison & Improvement 90
Chapter 6 92
Conclusion 92
Reference 93
1. Anker, J.N., et al., Biosensing with plasmonic nanosensors, in Nanoscience and Technology: A Collection of Reviews from Nature Journals. 2010, World Scientific. p. 308-319.
2. Kabashin, A., et al., Plasmonic nanorod metamaterials for biosensing. Nature materials, 2009. 8(11): p. 867.
3. Liedberg, B., C. Nylander, and I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sensors and actuators, 1983. 4: p. 299-304.
4. Pumera, M., Graphene in biosensing. Materials today, 2011. 14(7-8): p. 308-315.
5. Enderle, J. and J. Bronzino, Introduction to biomedical engineering. 2012: Academic press.
6. Hutter, E. and J.H. Fendler, Exploitation of localized surface plasmon resonance. Advanced materials, 2004. 16(19): p. 1685-1706.
7. Mayer, K.M. and J.H. Hafner, Localized surface plasmon resonance sensors. Chem Rev, 2011. 111(6): p. 3828-57.
8. Willets, K.A. and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem, 2007. 58: p. 267-97.
9. Lee, H.C., et al., Demonstration of an ultrasensitive refractive-index plasmonic sensor by enabling its quadrupole resonance in phase interrogation. Opt Lett, 2015. 40(22): p. 5152-5.
10. .
11. .
12. Simmons, J.G., Poole-Frenkel Effect and Schottky Effect in Metal-Insulator-Metal Systems. Physical Review, 1967. 155(3): p. 657-660.
13. Kurokawa, Y. and H.T. Miyazaki, Metal-insulator-metal plasmon nanocavities: Analysis of optical properties. Physical Review B, 2007. 75(3).
14. Chen, Y.B. and F.C. Chiu, Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon near zero mode, and magnetic polaritons. Opt Express, 2013. 21(18): p. 20771-85.
15. Ogawa, S. and M. Kimata, Metal-Insulator-Metal-Based Plasmonic Metamaterial Absorbers at Visible and Infrared Wavelengths: A Review. Materials (Basel), 2018. 11(3).
16. Marques, R., et al., Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides. Physical review letters, 2002. 89(18): p. 183901.
17. Le Bolzer, F., et al., Dielectric resonator type antennas. 2007, Google Patents.
18. Nielsen, M.G., et al., Efficient absorption of visible radiation by gap plasmon resonators. Optics express, 2012. 20(12): p. 13311-13319.
19. Nielsen, M.G., et al., Continuous layer gap plasmon resonators. Optics express, 2011. 19(20): p. 19310-19322.
20. Jung, J., T. Søndergaard, and S.I. Bozhevolnyi, Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons. Physical Review B, 2009. 79(3): p. 035401.
21. Lai, Y.C., et al., Label-free, coupler-free, scalable and intracellular bio-imaging by multimode plasmonic resonances in split-ring resonators. Adv Mater, 2012. 24(23): p. OP148-52.
22. Martın, F., et al., Split ring resonator-based left-handed coplanar waveguide. Applied Physics Letters, 2003. 83(22): p. 4652-4654.
23. Hardy, W. and L. Whitehead, Split‐ring resonator for use in magnetic resonance from 200–2000 MHz. Review of Scientific Instruments, 1981. 52(2): p. 213-216.
24. Niehusmann, J., et al., Ultrahigh-quality-factor silicon-on-insulator microring resonator. Optics letters, 2004. 29(24): p. 2861-2863.
25. Brown, A. and G. Rebeiz, High quality-factor tunable resonator. 2002, Google Patents.
26. Fan, Z., et al., High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance. IEEE Photonics Journal, 2015. 7(3): p. 1-9.
27. Choi, H.W., et al., Reflectometric interference spectroscopy-based immunosensing using immobilized antibody via His-tagged recombinant protein A. J Biosci Bioeng, 2015. 119(2): p. 195-9.
28. Zhou, J., et al., Intensity modulated refractive index sensor based on optical fiber Michelson interferometer. Sensors and Actuators B: Chemical, 2015. 208: p. 315-319.
29. Reinhard, B., et al., Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range. Applied Physics Letters, 2012. 100(22).
30. .
31. <1-s2.0-0250687483850367-main.pdf>.
32. .
33. .
34. Yang, Y., et al., Luminescent chemodosimeters for bioimaging. Chemical reviews, 2012. 113(1): p. 192-270.
35. Sharma, P., et al., Nanoparticles for bioimaging. Advances in colloid and interface science, 2006. 123: p. 471-485.
36. Han, M., et al., 3D microfabrication with inclined/rotated UV lithography. Sensors and Actuators A: Physical, 2004. 111(1): p. 14-20.
37. Altissimo, M., E-beam lithography for micro-nanofabrication. Biomicrofluidics, 2010. 4(2).
38. .
39. Nguyen, H.H., et al., Surface plasmon resonance: a versatile technique for biosensor applications. Sensors (Basel), 2015. 15(5): p. 10481-510.
40. .
41. Liang, G., et al., Plasma enhanced label-free immunoassay for alpha-fetoprotein based on a U-bend fiber-optic LSPR biosensor. RSC Advances, 2015. 5(31): p. 23990-23998.
42. Zhang, J., et al., Electrofocusing-enhanced localized surface plasmon resonance biosensors. Nanoscale, 2015. 7(41): p. 17244-8.
43. Adato, R. and H. Altug, In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat Commun, 2013. 4: p. 2154.
44. Tadepalli, S., et al., Peptide Functionalized Gold Nanorods for the Sensitive Detection of a Cardiac Biomarker Using Plasmonic Paper Devices. Sci Rep, 2015. 5: p. 16206.
45. Maier, S.A., et al., Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy. Physical Review B, 2002. 65(19): p. 193408.
46. Garnica, J., R.A. Chinga, and J. Lin, Wireless power transmission: From far field to near field. Proceedings of the IEEE, 2013. 101(6): p. 1321-1331.
47. Rechberger, W., et al., Optical properties of two interacting gold nanoparticles. Optics communications, 2003. 220(1-3): p. 137-141.
48. Auguié, B. and W.L. Barnes, Diffractive coupling in gold nanoparticle arrays and the effect of disorder. Optics letters, 2009. 34(4): p. 401-403.
49. Englebienne, P., Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst, 1998. 123(7): p. 1599-1603.
50. Nikoobakht, B. and M.A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials, 2003. 15(10): p. 1957-1962.
51. Lahiri, J., et al., A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study. Analytical chemistry, 1999. 71(4): p. 777-790.
52. Shalaev, V.M., Optical negative-index metamaterials. Nature photonics, 2007. 1(1): p. 41.
53. Engheta, N. and R.W. Ziolkowski, Metamaterials: physics and engineering explorations. 2006: John Wiley & Sons.
54. Smith, D.R., J.B. Pendry, and M.C. Wiltshire, Metamaterials and negative refractive index. Science, 2004. 305(5685): p. 788-792.
55. Lei, L., et al., Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Opt Express, 2018. 26(5): p. 5686-5693.
56. .
57. Danilov, A., et al., Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications. Biosens Bioelectron, 2018. 104: p. 102-112.
58. Chen, X. and W. Fan, Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon. Sci Rep, 2017. 7(1): p. 2092.
59. Veselago, V., Electrodynamics of substances with simultaneously negative and. Usp. Fiz. Nauk, 1967. 92: p. 517.
60. Pacifici, D., et al., Universal optical transmission features in periodic and quasiperiodic hole arrays. Optics Express, 2008. 16(12): p. 9222-9238.
61. Zhang, C., et al., Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor. Applied Physics Letters, 2016. 108(24).
62. Geng, Z., et al., A Route to Terahertz Metamaterial Biosensor Integrated with Microfluidics for Liver Cancer Biomarker Testing in Early Stage. Sci Rep, 2017. 7(1): p. 16378.
63. Sá, J., et al., Direct observation of charge separation on Au localized surface plasmons. Energy & Environmental Science, 2013. 6(12): p. 3584-3588.
64. Wu, C., et al., Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat Mater, 2011. 11(1): p. 69-75.
65. .
66. Le, T.H.H. and T. Tanaka, Plasmonics-Nanofluidics Hydrid Metamaterial: An Ultrasensitive Platform for Infrared Absorption Spectroscopy and Quantitative Measurement of Molecules. ACS Nano, 2017. 11(10): p. 9780-9788.
67. Singh, R., et al., Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces. Applied Physics Letters, 2014. 105(17).
68. Chao, J., et al., Nanostructure-based surface-enhanced Raman scattering biosensors for nucleic acids and proteins. Journal of Materials Chemistry B, 2016. 4(10): p. 1757-1769.
69. Wang, H., et al., Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced Raman scattering multifunctional chip. Angew Chem Int Ed Engl, 2015. 54(17): p. 5132-6.
70. Zhang, B., et al., Large-Area Silver-Coated Silicon Nanowire Arrays for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. Advanced Functional Materials, 2008. 18(16): p. 2348-2355.
71. Sheridan, A.K., et al., Phase interrogation of an integrated optical SPR sensor. Sensors and Actuators B: Chemical, 2004. 97(1): p. 114-121.
72. Landy, N.I., et al., Perfect metamaterial absorber. Physical review letters, 2008. 100(20): p. 207402.
73. Guo, Z., et al., Active-Tuning and Polarization-Independent Absorber and Sensor in the Infrared Region Based on the Phase Change Material of Ge2Sb2Te5 (GST). Sci Rep, 2018. 8(1): p. 12433.
74. Neutens, P., et al., Electrical detection of confined gap plasmons in metal–insulator–metal waveguides. Nature Photonics, 2009. 3(5): p. 283-286.
75. Tittl, A., et al., Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. Nano Lett, 2011. 11(10): p. 4366-9.
76. Berenger, J.-P., A perfectly matched layer for the absorption of electromagnetic waves. Journal of computational physics, 1994. 114(2): p. 185-200.
77. <1-s2.0-S1369702109703189-main.pdf>.
78. Pendry, J., L. Martin-Moreno, and F. Garcia-Vidal, Mimicking surface plasmons with structured surfaces. science, 2004. 305(5685): p. 847-848.
79. Smith, P. and E. Turner, A bistable Fabry‐Perot resonator. Applied Physics Letters, 1977. 30(6): p. 280-281.
80. .
81. Cuadrado, A., et al. Material dependence of the distributed bolometric effect in resonant metallic nanostructures. in Plasmonics: Metallic Nanostructures and Their Optical Properties X. 2012. International Society for Optics and Photonics.
82. Markel, V.A., Introduction to the Maxwell Garnett approximation: tutorial. J Opt Soc Am A Opt Image Sci Vis, 2016. 33(7): p. 1244-56.
83. Su, D.-S., et al., Ultrasensitive and Selective Gas Sensor Based on a Channel Plasmonic Structure with an Enormous Hot-spot Region. ACS sensors, 2019.
(此全文20241127後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *