帳號:guest(3.15.29.119)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):傅浩瑋
作者(外文):Fu, Hao-Wei
論文名稱(中文):多壁奈米碳管/碳黑/羰基鐵及玻璃纖維強化之抗 X-band 匿蹤複合材之研究
論文名稱(外文):Novel Anti-X-band Materials : Multi walled Carbon Nanotubes/Carbon Black/Carbonyl Iron with Glass Fiber Based Composites
指導教授(中文):徐文光
指導教授(外文):Hsu, Wen-Kuang
口試委員(中文):游萃蓉
羅釗國
口試委員(外文):Yu, Tsui-Jung
Lo, Chao-Kuo
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031556
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:72
中文關鍵詞:奈米碳管碳黑羰基鐵吸波材匿蹤科技玻璃纖維
外文關鍵詞:Carbon NanotubesCarbon BlackCarbonyl IronRadar Absorbing MaterialsStealth TechnologyGlass Fiber
相關次數:
  • 推薦推薦:0
  • 點閱點閱:48
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究 嘗試 開發抗 X band 8~12 GHz 波段的匿蹤材料,利用玻璃纖
維 Glass fiber 作為 強化基 材,並加入 多壁奈米碳管 (multi walled
carbon nanotubes, MWCNTs) 、碳黑 (carbon black, 、羰基鐵
(carbonyl iron, 與 環氧樹脂 ( 形成 多層之 複合材料,以美
國海軍實驗室所發展的 NRL arch method 進行電磁波吸收性能量測,研
究各種成份 、層數、幾何形狀等不同 組合在 X band 的電磁波吸收特性,
並利用向量網路分析儀量測介電係數、導磁率、阻抗等材料電磁特性參
數,以分析其電磁波吸收機制。 玻璃纖維具有高強度比及高耐熱性,加
上 纖維間空隙可 作為良好的 導波 結構; 多壁奈米碳管及碳黑 藉由與環氧
樹脂的均勻混合,形成 介電損耗及電阻損耗 的材料 ,而羰基鐵 對於電磁
波屏蔽 的貢獻則主要來自磁損耗 及造成材料內部的多重反射 ,將三者以
各種不同的比例、成份混合, 並搭配不同層數之玻璃纖維 可 改變電磁波
最大反射損耗 值 及出現的波段 ,再透過不同幾何形狀的設計,增加電磁
波散射及破壞性干涉的效果,成為一厚度薄、質輕且吸波高達 90% 以上的
匿蹤複合材 。
In this thesis, composites made of glass fibers (GFs), carbon nanotubes (CNTs), carbon blacks (CBs), carbonyl iron (CI) and epoxy are used as radar absorbing materials (RAMs) of X-band (8-12 GHz). X-band is commonly used in military communications as well as defense technology; a new type of composites capable of absorbing electromagnetic (EM) energy is developed thereof. To achieve this goal, RAMs should have a good absorption rather than reflection. In addition, it should also possess a mechanical strength to overcome harsh conditions. There are three major mechanisms in absorbing EM wave :(1) dielectric loss, (2) magnetic loss and (3) resistive loss. CNTs and CBs are of good dielectric materials. CI on the other hand exerts magnetic loss. By mixing these materials in appropriate ratio with addition of high tensile strength GFs, we have designed RAM composites capable of operating at X-band. The reflection loss of EM wave is measured by using NRL arch method and the permittivity and permeability by programmable network analyzer. The maximum reflection loss is measured and verified.
目錄
摘要
…………………………………………………………………………………………………………………………..Ⅰ
Abstract…………………………………………………………………………………………………………………...Ⅱ
致謝
………………………………………………………………………………………………………………………..Ⅲ
目錄
…………………………………………………………………………………………………………………………Ⅴ
圖目錄
……………………………………………………………………………….………………………………..Ⅷ
表目錄
……………………………………………………………………………….…………………………………….Ⅹ
第一章
文獻回顧 …………………………………………………………………………………………………….1
1.1電磁波吸收材料簡介 ……………………………………………………………………...…………1
1.1.1介電損耗型材料 ………………………………………………………………………………1
1.1.2磁損耗型材料 …………………………………………………………………………………. 4
1.1.3電阻損耗型材料 …………………………………….….………………………………….4
1.2電磁波屏蔽理論 ……………………………….………………………………………………………..5
1.2.1反射損耗 ……………………………………………………………………………………….…6
1.2.2吸收損耗 ………………………………………………………………………………………….7
1.2.3多重反射損耗 ………………………………………………………………………………….7
1.2.4干涉型損耗 ………………………………………………………………………………………8
1.2.5電磁波屏蔽效率 …………………………………………………………….………………10
1.3奈米碳管簡介 …………………………………………………………………………………………..11
1.3.1奈米碳管 結構 ………………………………….…………………………………………….12
1.3.2奈米碳管電磁性 ……………………………………………………………….………..….13
1.4碳黑簡介 …………………………………………………….…………………………………………….17
1.5羰基鐵簡介 ………………………………………………………………………………………………19
1.6玻璃纖維 …………………………………………………………………………………………….…….21
1.7複合材料 …………………………………………………………………………………………….…….22
1.7.1 複合材料之結構強化 ……………….………………………………………….……… 23
1.7.2 複合材料之功能強化 ………………………………..……………………………..…..25
1.8 熱障現象 ……………………………………………………………………………………………..….29第二章 研究動機 …………………………………………………………………………………………………..30
第三章
實驗步驟與原理 ………………………………………………………………………………… ……31
3.1藥品與儀器 ……………………………………………………………………………………………… 31
3.1.1藥品與耗材 …………………………………………………………………………………… 31
3.1.2製程設備與量測儀器 …………………………………………………………………….32
3.2實驗流程 …………………………………………………………………………………………………33
3.3實驗步驟 …………………………………………………………………………………………………..34
3.3.1 MWCNTs/CB/CI/Epoxy與玻纖複合材料之製備 ………………………….34
VI
3.3.1.1 均勻塗抹法均勻塗抹法………………………………………………………………………..34
3.3.1.2分層塗抹法分層塗抹法………………………………….………………………………….….36
3.3.1.3凸字型塗法凸字型塗法……………………………………………………………….…..……38
3.3.1.4 電容式交替塗法電容式交替塗法……………………………………………………………..….39
3.3.2掃描掃描式電子顯微鏡分析式電子顯微鏡分析(SEM) ……………………………………………………. 40
3.3.3電磁波吸收性能量測電磁波吸收性能量測…………………………………………………………………….41
3.3.4 熱重量分析儀熱重量分析儀…………………………………………………………………………….…44
第四章
第四章 結果與討論結果與討論………………………………………………………………………………………………46
4.1掃描式電子顯微鏡影像掃描式電子顯微鏡影像(SEM) ………………………………………………………………..46
4.2 X射線能量散布分析儀射線能量散布分析儀(EDX) ………………………………………………………………. 50
4.3反射損耗量測反射損耗量測…………………………………………………………………………………………. 52
4.3.1樣品厚度與反射損耗之關係樣品厚度與反射損耗之關係…………………………………………………………54
4.3.2 MWCNTs/CB/CI濃度與反射損耗之關係濃度與反射損耗之關係…………………………………… 56
4.3.3 反射損耗之難題與方法創新反射損耗之難題與方法創新………………………………………………………. 59
4.3.3.1 分層塗抹圖法分層塗抹圖法………………………………………………...………..………..60
4.3.3.2 凸字型塗法凸字型塗法…………………………………………………………………………62
4.3.3.3 電容式交替塗法電容式交替塗法…………………………………………………………………64
4.4 熱重量分析儀熱重量分析儀………………………………………………………………………………………….66
第五章
第五章 結論結論………………………………………………………………………………………………………… 68
參考文獻
參考文獻………………………………………………………………………………………………………………..69
參考文獻
1. White, D.R., A handbook on electromagnetic shielding materials and performance. 1980: Don White Consultants.
2. Chen, L.-F., Ong, C., Neo, C., Varadan, V. & Varadan, V. K., Microwave electronics: measurement and materials characterization. 2004: John Wiley & Sons.
3. Vinoy, K.J.J., R. M., Radar absorbing materials- From theory to design and characterization. 1996.
4. Liu, H.T., Liu, Y., Wang, B. S. & Li, C. S. , Microwave Absorption Properties of Polyester Composites Incorporated with Heterostructure Nanofillers with Carbon Nanotubes as Carriers. 2015: Chin. Phys. Lett. 32, 5.
5. 邢麗英, 隱形材料. 2006: 新文京開發.
6. Callister, W.D.R., D. G., Materials science and engineering: an introduction. 2010: John Wiley & Sons, Inc.
7. Zhang, H., et al., Electromagnetic characteristic and microwave absorption properties of carbon nanotubes/epoxy composites in the frequency range from 2 to 6 GHz. Journal of Applied Physics, 2009. 105(5): p. 054314.
8. Fan, Z., et al., Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Materials Science and Engineering: B, 2006. 132(1): p. 85-89.
9. Xu, Y., et al., Effects of Multi-walled Carbon Nanotubes on the Electromagnetic Absorbing Characteristics of Composites Filled with Carbonyl Iron Particles. Journal of Materials Science & Technology, 2012. 28(1): p. 34-40.
10. Yang, R.B., et al., Synthesis and microwave absorbing characteristics of functionally graded carbonyl iron/polyurethane composites. AIP Advances, 2016. 6(5): p. 055910.
11. White, D.R., Electromagnetic interference and compatibility. 1974.
12. Schelkunoff, S.A., Electromagnetic waves. 1951.
13. Paul, C.R., Introduction to electromagnetic compatibility
2006. Vol. 184.
14. Singh, K., Ohlan, A. & Dhawan, S., Nanocomposites - New Trends and Developments. 2012: INTECH Open Access Publisher.
15. David Cheng, K., Field and wave electromagnetic. 4th Printing ed. 1991: Addison-Wesley Publishing Company.
16. Kaiser, K.L., Electromagnetic shielding. 2005: Crc Press.
17. Wang, B., et al., Investigation on peak frequency of the microwave absorption for carbonyl iron/epoxy resin composite. Journal of Magnetism and Magnetic Materials, 2011. 323(8): p. 1101-1103.
18. Tong, G., et al., Enhanced electromagnetic characteristics of carbon nanotubes/carbonyl iron powders complex absorbers in 2–18GHz ranges. Journal of Alloys and Compounds, 2011. 509(2): p. 451-456.
19. 吳志勇., 羰基鐵粉之吸波特性研究. 2012, 國防大學理工學院.
20. 程雋, 電磁波理論. 2009: 文笙.
21. 李長綱, 電磁學與電磁波的理論及應用. 2007: 鼎茂.
22. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354(6348): p. 56-58.
23. Thess, A., et al., Crystalline Ropes of Metallic Carbon Nanotubes. Science, 1996. 273(5274): p. 483.
24. Hone, J., et al., Thermal properties of carbon nanotubes and nanotube-based materials. Applied Physics A, 2002. 74(3): p. 339-343.
25. De Heer, W.A., Nanotubes and the Pursuit of Applications. MRS Bulletin, 2004. 29(4): p. 281-285.
26. Nikolaev, P., et al., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chemical Physics Letters, 1999. 313(1): p. 91-97.
27. Baughman, R.H., A.A. Zakhidov, and W.A. de Heer, Carbon Nanotubes--the Route Toward Applications. Science, 2002. 297(5582): p. 787.
28. Smalley, R.E., Dresselhaus, M. S., Dresselhaus, G. & Avouris, P. , Carbon nanotubes: synthesis, structure, properties, and applications. Vol. Vol. 80. 2003: Springer Science & Business Media.
29. Odom, T.W., et al., Structure and Electronic Properties of Carbon Nanotubes. The Journal of Physical Chemistry B, 2000. 104(13): p. 2794-2809.
30. Dresselhaus, M.S., et al., Carbon Nanotubes, in The Physics of Fullerene-Based and Fullerene-Related Materials, W. Andreoni, Editor. 2000, Springer Netherlands: Dordrecht. p. 331-379.
31. Saito, R., et al., Electronic structure of chiral graphene tubules. Applied Physics Letters, 1992. 60(18): p. 2204-2206.
32. Wilder, J.W.G., et al., Electronic structure of atomically resolved carbon nanotubes. Nature, 1998. 391(6662): p. 59-62.
33. Saito, R., Dresselhaus, G. & Dresselhaus, M. S., Physical properties of carbon nanotubes. 1998: World scientific.
34. Dresselhaus, M.S., Dresselhaus, G. & Eklund, P. C. , Science of fullerenes and carbon nanotubes: their properties and applications. 1996: Academic press.
35. Dresselhaus, M.S. and P.C. Eklund, Phonons in carbon nanotubes. Advances in Physics, 2000. 49(6): p. 705-814.
36. Hamada, N., S.-i. Sawada, and A. Oshiyama, New one-dimensional conductors: Graphitic microtubules. Physical Review Letters, 1992. 68(10): p. 1579-1581.
37. Dresselhaus, M.S., G. Dresselhaus, and A. Jorio, UNUSUAL PROPERTIES AND STRUCTURE OF CARBON NANOTUBES. Annual Review of Materials Research, 2004. 34(1): p. 247-278.
38. Dai, H., Carbon nanotubes: opportunities and challenges. Surface Science, 2002. 500(1): p. 218-241.
39. 成會明, 奈米碳管. 2004: 五南.
40. Klüppel, M., The Role of Disorder in Filler Reinforcement of Elastomers on Various Length Scales, in Filler-Reinforced Elastomers/Sanning Force Microscopy, B. Capella, et al., Editors. 2003, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 1-86.
41. Tsubokawa, N., Functionalization of carbon black by surface grafting of polymers. Progress in Polymer Science, 1992. 17(3): p. 417-470.
42. 賴耿陽., 碳材料化學與工學. 2001: 復漢.
43. Abshinova, M.A., et al., The enhancement of the oxidation resistance of carbonyl iron by polyaniline coating and consequent changes in electromagnetic properties. Polymer Degradation and Stability, 2008. 93(10): p. 1826-1831.
44. Richards, C.E. and E.V. Walker, ‘Onion Skin’ Structure of Carbonyl Iron. Nature, 1941. 148(3753): p. 409-410.
45. Huber, D.L., Synthesis, Properties, and Applications of Iron Nanoparticles. Small, 2005. 1(5): p. 482-501.
46. Wichmann, M.H.G., et al., Glass-fibre-reinforced composites with enhanced mechanical and electrical properties – Benefits and limitations of a nanoparticle modified matrix. Engineering Fracture Mechanics, 2006. 73(16): p. 2346-2359.
47. 馬振基, 高分子複合材料. 1999: 國立編譯館.
48. William D. Callister , D.G.R., Materials Science and Engineering introduction. 7 ed. 2007: wiley.
49. 呂俊麟, 複合材料力學近況簡介. 國立清華大學 動力機械學工程.
50. Hallett, S.R., et al., Modelling the interaction between matrix cracks and delamination damage in scaled quasi-isotropic specimens. Composites Science and Technology, 2008. 68(1): p. 80-89.
51. 林育聖, 奈米碳管/環氧樹酯/玻璃纖維 疊層複合材料強化機械性質之分析. 2017, 國立清華大學碩士論文
52. 洪偉綸, 多壁奈米碳管/碳黑/羰基鐵複合材料之1-18GHz 電磁波吸收特性研究. 2017, 國立清華大學碩士論文.
53. Mahulikar, S.P., P.S. Kolhe, and A.G. Rao, Skin-Temperature Prediction of Aircraft Rear Fuselage with Multimode Thermal Model. Journal of Thermophysics and Heat Transfer, 2005. 19(1): p. 114-124.
54. Knott, E.F., Tuley, M. T. & Shaeffer, J. F. , Radar Cross Section Second Edition ed. 1993: Artech House.
55. Technologies, M. NRL Arch Reflectivity Test Setup, <http://masttechnologies.com/wp-content/uploads/2012/01/Tech-Bulletin-101-NRL-Arch-Reflectivity.pdf>.
56. Products, E. C. M. NRL Arch Reflectivity Testing <http://www.eccosorb.com/Collateral/Documents/English-US/nrl_arch_reflectivity_testing.pdf>
57. TA儀器基本原理.
58. Wen, S.L., et al., Synthesis, dual-nonlinear magnetic resonance and microwave absorption properties of nanosheet hierarchical cobalt particles. Physical Chemistry Chemical Physics, 2014. 16(34): p. 18333-18340.
59. O'Donnell, D.R.M., ed. Radar Systems Engineering Lecture 7 Part 2 Radar Cross Section. 2009.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *