帳號:guest(18.191.178.88)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊琬昀
作者(外文):Wang, Wan-Yun
論文名稱(中文):高效率低色溫串聯式有機發光二極體
論文名稱(外文):High efficiency low color temperature tandem organic light-emitting diode
指導教授(中文):周卓煇
指導教授(外文):Jou, Jwo-Huei
口試委員(中文):王欽戊
岑尚仁
李佳任
口試委員(外文):Wang, Ching-Wu
Chen, Sun-Zen
Lee, Jia-Ren
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031555
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:100
中文關鍵詞:高效率低色溫串聯式有機發光二極體長壽命
外文關鍵詞:high efficiencylow color temperacturetandem organic light emitting diodeslong lifetime
相關次數:
  • 推薦推薦:0
  • 點閱點閱:204
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
低色溫光源的藍光含量微少,較不影響褪黑激素的分泌,可大幅降低罹癌機率;隨著現代人健康意識逐漸抬頭,低色溫光源已成為近年來興起的夜間照明;然而,照明產品皆要面對高亮度且長時間使用的考驗,故元件的壽命相當關鍵;因此,本研究利用有機發光二極體(organic light emitting diode, OLED)的堆疊結構,製備出一色溫僅1,500 K的低色溫元件,在高亮度時,僅需較低的操作電流,這能使元件效率、壽命大幅提升;以亮度10,000 cd/m2為例,典型與串聯式OLED的操作電流分別為62.5與34 mA/cm2、電流效率為17.4與32.6 cd/A,衰減至起始亮度的50% (t50)所需的時間為120與320小時,換算成起始亮度1,000 cd/m2時,t50分別為6,000與16,000小時;為了更進一步提升串聯式元件的效率與壽命,本研究最佳化有機層鍍率、厚度和封裝膠厚度,在亮度10,000 cd/m2下,電流效率由32.6提升至44.1cd/A,當亮度為1,000 cd/m2時,電流效率為54.6 cd/A、t50為40,860小時;此外,其視網膜最大可忍受曝光極限(MPE)長達11.8小時,並僅微量抑制褪黑激素(MSS) 1.65%;相較於市售暖白光光源(色溫2,800 K),如:緊湊型螢光燈管、發光二極體與有機發光二極體,由視網膜保護角度來看,分別安全9、10與11倍,從褪黑激素抑制角度來看,分別安全8、4與4倍;由此可見,此元件較目前市面上照明更護眼與更健康,又兼具高效率與長壽命,可謂夜間照明首選。
Low color temperature light sources contain few blue emission so it can reduce the risk of cancer due to its less affection on the secretion of melatonin. Because of the rising awareness of people's emphasis on health, low color temperature light sources are the safe lighting at night that has emerged in recent years. However, lifetime is still the most critical issue in OLEDs, especially in lighting applications which face with the test of long-term use with high brightness. Therefore, we use the technology of organic light emitting diode (OLED) with tandem structure to demonstrate a low color temperature OLED of color temperature only 1,500 K. At high luminance, it needs low operating current which can make improve efficiency and lifetime of devices. For example, at luminance of 10,000 cd/m2, the typical and tandem OLEDs shows a operating current of 62.5 and 34 mA/cm2, and a current efficiency are 17.4 and 32.6 cd/A, respectively. In addition, the lifetime (t50) of typical and tandem OLEDs are 120 and 320 hours, respectively, at initial luminance of 10,000 cd/m2. If we use linear extrapolation and convert the initial luminance to 1,000 cd/m2, their lifetime (t50) are 6,000 and 16,000 hours, respectively. To further enhance the efficiency and lifetime of tandem OLED, we optimize the deposition rate and thickness of organic layers, and the thickness of encapsulation glue. The current efficiency of the resulting tandem OLED is improved from 32.6 to 44.1 cd/A at 10,000 cd/m2. At 1,000 cd/m2, its current efficiency is 54.6 cd/A, as t50 is 40,860 hours. Additionally, the device also exhibits long retina exposure duration of 11.8 hours and suppresses very less melatonin secretion (1.65%), compared to warm white light sources (CT 2,800~3,000 K), such as compact fluorescent lamps, light-emitting diodes and organic light-emitting diodes. From the view of retina protection, the device has 9, 10 and 11 times safer respectively. From the perspective of melatonin suppression, it is respectively safer 8, 4 and 4 times. It can be seen that the resultant device has better characteristics of protecting the human retina and health than all the lightings currently on the market. The low color temperature OLED with high efficiency and long lifetime will become a high potential lighting at night.
摘要 I
Abstract II
致謝 IV
目錄 IX
圖目錄 XII
表目錄 XVI
壹、緒論 1
貳、文獻回顧 4
2-1、有機發光二極體的歷史發展 4
2-2、有機發光二極體之發光原理 23
2-3、有機發光二極體之能量轉移機制 27
2-4、光色定義 30
2-5、有機發光二極體之材料發展 31
2-5-1、陽極材料 31
2-5-2、電洞注入材料 32
2-5-3、電洞傳輸材料 32
2-5-4、電子傳輸材料 33
2-5-5、電子注入材料 34
2-5-6、陰極材料 34
2-6、串聯式有機發光二極體之發展 35
2-6-1、串聯式有機發光二極體之元件效率 42
2-6-2、串聯式有機發光二極體之元件壽命 44
2-7、低色溫光源之進展 45
2-7-1、低色溫有機發光二極體之進展 45
2-7-2、低色溫發光二極體之進展 47
參、理論計算 48
3-1、視網膜最大可忍受之曝光極限 (MPE) 計算 48
3-2、褪黑激素抑制敏感度 (MSS) 計算 49
3-3、自然光譜相似性指數 (SRI) 計算 52
3-4、顯色指數(CRI)計算 54
3-6、有機發光二極體壽命(LT)的計算 56
肆、實驗方法 57
4-1、本研究使用之材料 57
4-2、元件設計及製備 58
4-2-1、元件電路設計 58
4-2-2、ITO基材清潔與表面前處理 59
4-2-3、真空熱蒸鍍機裝置 60
4-2-4、發光層之製備 61
4-2-5、成膜鍍率測定 61
4-2-6、串聯式OLED元件之製備 62
4-3、元件封裝 62
4-4、元件光電特性、壽命量測 63
伍、結果與討論 66
5-1、元件結構 66
5-1-1、典型元件結構 66
5-1-2、串聯式元件結構 67
5-1-3、典型與串聯式OLED之比較 68
5-2、手套箱水氧值對串聯式元件壽命的影響 73
5-3、鍍率對串聯式元件之影響 75
5-3-1、電洞傳輸層鍍率對串聯式元件之影響 75
5-3-2、發光層鍍率對串聯式元件之影響 78
5-4、電洞傳輸層厚度對串聯式元件之影響 83
5-5、封裝膠厚度對串聯式元件壽命的影響 88
陸、結論 90
柒、參考文獻 91
附錄、個人著作目錄 98

[1] A. Panzer, Med. Hypotheses, 50, 385-387 (1998)
[2] M. Sato, T. Sakaguchi and T. Morita, Biol. Rhythm Res., 36, 287-292 (2005)
[3] T. Kozaki, S. Koga, N. Toda, H. Noguchi and A. Yasukouchi, Neurosci. Lett., 439, 256-259 (2008)
[4] G. C. Brainard, B. A. Richardson, T. S. King and R. J. Reiter, Brain Research, 294, 333-339 (1984)
[5] S. M. Pauley, Med. Hypotheses, 63, 588-596 (2004)
[6] S. W. Lockley, G. C. Brainard and C. A. Czeisler, J. Clin. Endocrinol. Metab., 88, 4502-4505 (2003)
[7] A. B. Hargadon and Y. Douglas, Admin. Sci. Quart. 46, 476-501 (2001)
[8] R. F. Service, Science, 310, 1762-1763 (2005)
[9] F. So, J. Kido and P. Burrows, Mrs Bulletin, 33, 663-669 (2008)
[10] J. H. Jou, C. P. Wang, M. H. Wu, H. W. Lin, H. C. Pan and B. H. Liu, J. Mater. Chem., 20, 6626-6629 (2010)
[11] J. Kido, M. Kimura and K. Nagai, Science, 267, 1332-1334 (1995)
[12] C. H. Huang and T. M. Chen, J. Phys. Chem. C, 115, 2349-2355 (2011)
[13] C. H. Huang and T. M. Chen, Inorg. Chem., 50, 5725-5730 (2011)
[14] T. W. Kuo, C. H. Huang and T. M. Chen, Opt. Express, 18, A231-A236 (2010)
[15] W. R. Liu, C. H. Huang, C. P. Wu, Y. C. Chiu, Y. T. Yeh and T. M. Chen, J. Mater. Chem., 21, 6869-6874 (2011)
[16] W. R. Liu, C. W. Yeh, C. H. Huang, C. C. Lin, Y. C. Chiu, Y. T. Yeh and R. S. Liu, J. Mater. Chem., 21, 3740-3744 (2011)
[17] R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars and J. S. Speck, Semicond. Sci. Technol., 27, 024001 (2012)
[18] D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni and J. S. Speck, J. Vac. Sci. Technol. A, 30, 041513 (2012)
[19] H. P. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf and N. Tansu, Opt. Express, 19, A991-A1007 (2011)
[20] H. P. Zhao, G. Y. Liu, X. H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf and N. Tansu, Appl. Phys. Lett., 95, 061104 (2009)
[21] J. Zhang and N. Tansu, J. Appi. Phys., 110, 113110 (2011)
[22] H. P. Zhao, G. Y. Liu and N. Tansu, Appl. Phys. Lett., 97, 131114 (2010)
[23] T. Akasaka, H. Gotoh, Y. Kobayashi and H. Yamamoto, Adv. Mater., 24, 4296-4300 (2012)
[24] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem and K. Leo, Nature, 459, 234-238 (2009)
[25] S. J. Su, E. Gonmori, H. Sasabe and J. Kido, Adv. Mater., 20, 4189-4194 (2008)
[26] Y. H. Chen, J. S. Chen, D. G. Ma, D. H. Yan and L. X. Wang, Appl. Phys. Lett., 99, 1033021 (2011)
[27] T. C. Rosenow, M. Furno, S. Reineke, S. Olthof, B. Lussem and K. Leo, J. Appl. Phys., 108, 113113 (2010)
[28] M. T. Lee, M. T. Chu, J. S. Lin and M. R. Tseng, J. Phys. D: Appl. Phys., 43, 442003 (2010)
[29] T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn and T. W. Lee, Nat. Photonics, 6, 105-110 (2012)
[30] Y. S. Tyan, J. Photon. Energy, 1, 011009 (2011)
[31] J. Birnstock, G. He, S. Murano, A. Werner and O. Zeika, SID 08 DIGEST, 38, 822-825 (2008)
[32] J. H. Jou, M. H. Wu, S. M. Shen, H. C. Wang, S. Z. Chen, S. H. Chen, C. R. Lin and Y. L. Hsieh, Appl. Phys. Lett., 95, 013307 (2009)
[33] J. H. Jou, S. H. Chen, S. M. Shen, Y. C. Jou, C. H. Lin, S. H. Peng, S. P. Hsia, C. W. Wang, C. C. Chen and C. C. Wang, J. Mater. Chem., 21, 17850-17854 (2011)
[34] J. H. Jou, M. C. Tang, P. C. Chen, Y. S. Wang, S. M. Shen, B. R. Chen, C. H. Lin, W. B. Wang, S. H. Chen, C. T. Chen, F. Y. Tsai, C. W. Wang, C. C. Chen and C. C. Wang, Org. Electron., 13, 1349-1355 (2012)
[35] J. H. Jou, C. Y. Hsieh, J. R. Tseng, S. H. Peng, Y. C. Jou, J. H. Hong, S. M. Shen, M. C. Tang, P. C. Chen and C. H. Lin, Adv. Funct. Mater., 23, 2750-2757 (2013) 緒論
[36] L. S. Liao, K. P. Klubek and C. W. Tang, Appl. Phys. Lett., 84, 167-169 (2004)
[37] A. Bernanose, M. Conet and P. Vouauzx, J. Chim. Phys. PCB., 50, 64-68 (1953)
[38] M. Pope, P. Magnante and H. P. Kallmann, J. Chem. Phys., 38, 2042-2043 (1963)
[39] W. Helfrich and W. G. Schneide, Phys. Rev. Lett., 14, 229-231 (1965)
[40] W. Helfrich and W. G. Schneide, J. Chem. Phys., 44, 2902-2909 (1966)
[41] P. S. Vincett, W. A. Barlow, R. A. Hann and G. G. Roberts, Thin Solid Films, 94, 171-183 (1982)
[42] R. H. Partridge, Polymer, 24, 733-738 (1983)
[43] C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett., 51, 913-915 (1987)
[44] S. A. Vanslyke, C. W. Tang and L. C. Robert, US Patent., No. 4720432 (1988)
[45] C. W. Tang, S. A. Vanslyke and C. H. Chen, J. Appl. Phys., 65, 3610-3616 (1989)
[46] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 347, 539-541 (1990)
[47] R. H. Friend, J. H. Burroughes, and D. D. Bradley, US. Patent, No. 5247190 (1993)
[48] C. Adachi, S. Tokito, T. Tsutsui and S. Saito, Jpn. J. Appl. Phys., 27, L713-L715 (1988)
[49] M. Era, C. Adachi, T. Tsutsui, and S. Saito, Chem. Phys. Lett., 178, 488-490 (1991)
[50] J. Kido, K. Honggawa, K. Okuyama and K. Nagai, Appl. Phys. Lett., 64, 815-817 (1994)
[51] J. Kido, M. Kimura and K. Nagai, Science, 267, 1332-1334 (1995)
[52] L. S. Hung, C. W. Tang and M. G. Mason, Appl. Phys. Lett., 70, 152-154 (1997)
[53] J. Kido and T. Mazukami, US. Patent, No. 6013384 (2000)
[54] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature, 395, 151-154 (1998)
[55] C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, J. Appl. Phys., 90, 5048-5051 (2001)
[56] J. Blochwitz, M. Pfeiffer, T. Fritz and K. Leo, Appl. Phys. Lett., 73, 729-731 (1998)
[57] J. S. Huang, M. Pfeiffer, A. Warner, J. Blochwitz, K. Leo and S. Y. Liu, Appl. Phys. Lett., 80, 139-141 (2002)
[58] Matsumoto, T., et al. 27.5 L: Late‐News Paper: Multiphoton Organic EL device having Charge Generation Layer. in SID Symposium Digest of Technical Papers. 2003. Wiley Online Library.
[59] Liao, L., K. Klubek, and C. Tang, High-efficiency tandem organic light-emitting diodes. Applied physics letters, 2004. 84(2): p. 167-169.
[60] Liao, L.-S., et al., Cascaded organic electroluminescent devices with improved voltage stability. 2004, Google Patents.
[61] Y. Shao and Y. Yang, Appl. Phys. Lett., 85, 073510 (2005)
[62] J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang and C. Hu, Appl. Phys. Lett., 88, 193501 (2006)
[63] Y. Sun and S. R. Forrest, Nat. Photonics, 2, 483-487 (2008)
[64] Reineke, S., et al., White organic light-emitting diodes with fluorescent tube efficiency. Nature, 2009. 459(7244): p. 234.
[65] Wang, Z., et al., Unlocking the full potential of organic light-emitting diodes on flexible plastic. Nature Photonics, 2011. 5(12): p. 753.
[66] Uoyama, H., et al., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012. 492(7428): p. 234.
[67] Zhang, Q., et al., Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nature Photonics, 2014. 8(4): p. 326.
[68] Lin, T.A., et al., Sky‐blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine‐triazine hybrid. Advanced Materials, 2016. 28(32): p. 6976-6983.
[69] Méhes, G., et al., Enhanced electroluminescence efficiency in a spiro‐acridine derivative through thermally activated delayed fluorescence. Angewandte Chemie International Edition, 2012. 51(45): p. 11311-11315.
[70] Zhao, B., et al., Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host. Scientific reports, 2015. 5: p. 10697.
[71] Jou, J.H., et al., Candle Light‐Style Organic Light‐Emitting Diodes. Advanced Functional Materials, 2013. 23(21): p. 2750-2757.
[72] Ly, K.T., et al., Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nature Photonics, 2017. 11(1): p. 63.
[73] L. G. Thompson and S. E. Webber, J. Phys. Chem., 76, 221 (1972)
[74] T. Förster, Ann. Physik, 437, 55-75 (1948)
[75] L. Dexter, J. Chem. Phys., 21, 836-850 (1953)
[76] M. Klessonger and J. Michl, “Excited Stated and Photochemistry of Organic Molecules”, VCH Publishers, New York (1995)
[77] C. I. d. L. e. (CIE), Publication Report No. 15.2, Colorimetry (1986)
[78] J. Yang and J. Shen, J. Appl. Phys., 84, 2105-2111 (1998)
[79] Z. Liu, J. Pinto, J. Soares and E. Pereira, Synthetic Met., 122, 177-179 (2001)
[80] Kim, J.-S., et al., Indium–tin oxide treatments for single-and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance. Journal of Applied Physics, 1998. 84(12): p. 6859-6870.
[81] Mason, M., et al., Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices. Journal of Applied Physics, 1999. 86(3): p. 1688-1692.
[82] So, S., et al., Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices. Applied Physics A: Materials Science & Processing, 1999. 68(4): p. 447-450.
[83] Ishii, M., et al., Improvement of organic electroluminescent device performance by in situ plasma treatment of indium–tin-oxide surface. Journal of Luminescence, 2000. 87: p. 1165-1167.
[84] S. A. VanSlyke, C. H. Chen and C. W. Tang, Appl. Phys. Lett., 69, 2160-2162 (1996)
[85] A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer and S. Thurm, Synthetic Met., 111, 139-143 (2000)
[86] Kido, J., et al., Organic electroluminescent devices based on molecularly doped polymers. Applied physics letters, 1992. 61(7): p. 761-763.
[87] Hosokawa, C., H. Higashi, and T. Kusumoto, Novel structure of organic electroluminescence cells with conjugated oligomers. Applied physics letters, 1993. 62(25): p. 3238-3240.
[88] J. Shi, C. W. Tang and C. H. Chen, US. Patent, No. 5646948 (1997)
[89] T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada and M. Tsuchida, IEEE T. Electron Dev., 44, 1245-1248 (1997)
[90] C. Ganzorig, K. Suga and M. Fujihira, Mat. Sci. Eng. B-Solid, 85, 140-143 (2001)
[91] T. Brown, R. Friend, I. Millard, D. Lacey, T. Butler, J. Burroughes and F. Cacialli, J. Appl. Phys., 93, 6159-6172 (2003)
[92] L. S. Hung, Thin Solid Films, 363, 47-50 (2000)
[93] T. Matsumoto, T. Nakada, J. Endo, K. Mori, N .Kawamura A. Yokoi and J. Kido, SID 03 DIGEST, 34, 979-981 (2003)
[94] L. S. Liao, K. P. Klubek, D. L. Comfort, C. W. Tang, US Patent 6717358 (2004)
[95] C. C. Chang, S. W. Hwang, C. H. Chen and J. F. Chen, Jpn. J. Appl. Phys., 43, 6418 (2004)
[96] C. C. Chang, J. F. Chen, S. W. Hwang and C. H. Chen, Appl. Phys. Lett., 87, 253501 (2005)
[97] C. W. Chen, Y. J. Lu, E. H. E. Wu and Yang Yang, Appl. Phys. Lett., 87, 241121 (2005)
[98] H. Kanno, R. J. Holmes, Y. Sun, S. K. Cohen and S. R. Forrest, Adv. Mater., 18, 339-342 (2006)
[99] H. Zh M. H. Ho, T. M. Chen, P. C. Yeh, S. W. Hwang and C. H. Chen, Appl. Phys. Lett., 91, 233507 (2007)
[100] L. S. Liao, W. K. Slusarek, T. K. Hatwar, M. L. Ricks and D. L. Comfort, Adv. Mater., 20, 324-329 (2008)
[101] D. S. Leem, J. H. Lee, J. J. Kim and J. W. Kang, Appl. Phys. Lett., 93, 103304 (2008)
[102] ang, Y. Dai and D. Ma, Appl. Phys. Lett., 91, 123504 (2007)
[103] T. Chiba, Y. J. Pu, R. Miyazaki, K. Nakayama, H. Sasabe and J. Kido, Org. Electron., 12, 710-715 (2011)
[104] H. Sasabe, K. Minamoto, Y. J. Pu, M. Hirasawa and J. Kido, Org. Electron., 13, 2615-2619 (2012)
[105] X. Wu, W. Bi, Y. Hua, J. Sun, Z. Xiao, L. Wang and S. Yin, Appl. Phys. Lett., 102, 243302 (2013)
[106] S. Lee, H. Shin, and J. J. Kim, Adv. Mater., DOI: 10.1002/adma.201400330 (2014)
[107] H. Nowatari, T. Ushikubo, N. Ohsawa, S. Seo, and T. Tsutsui, "60.2: Intermediate Connector With Suppressed Voltage Loss for White Tandem OLEDS," in SID Symposium Digest of Technical Papers, 2009, pp. 899-902.
[108] H. Sasabe, K. Minamoto, Y.-J. Pu, M. Hirasawa, and J. Kido, "Ultra high-efficiency multi-photon emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%," Organic Electronics, vol. 13, pp. 2615-2619, 2012.
[109] Lee, S., Shin, H., & Kim, J. J. (2014). High‐Efficiency Orange and Tandem White Organic Light‐Emitting Diodes Using Phosphorescent Dyes with Horizontally Oriented Emitting Dipoles. Advanced Materials, 26(33), 5864-5868.
[110] B. Zhao, T. Zhang, B. Chu, W. Li, Z. Su, Y. Luo, et al., "Highly efficient tandem full exciplex orange and warm white OLEDs based on thermally activated delayed fluorescence mechanism," Organic Electronics, vol. 17, pp. 15-21, 2015.
[111] Sun, H., Guo, Q., Yang, D., Chen, Y., Chen, J., & Ma, D. (2015). High efficiency tandem organic light emitting diode using an organic heterojunction as the charge generation layer: an investigation into the charge generation model and device performance. Acs Photonics, 2(2), 271-279.
[112] Zhao, D., Liu, H., Miao, Y., Wang, H., Zhao, B., Hao, Y., ... & Xu, B. (2016). A red tandem organic light-emitting diode based on organic photovoltaic-type charge generation layer. Organic Electronics, 32, 1-6.
[113] Yu, Y., Cao, C., Wu, Z., Wu, Q., Lin, W., Peng, X., ... & Tong, Q. (2019). Improving the color-rendering index of a tandem warm white organic light-emitting device by employing a simple fabrication process. Optics letters, 44(4), 931-934.
[114] Liu, B., et al., Efficient hybrid white organic light-emitting diodes with extremely long lifetime: the effect of n-type interlayer. Scientific reports, 2014. 4: p. 7198.
[115] BRANDS, A. WHY OLED? 2014; Available from: http://hydrel.acuitybrands.com/sitecore/content/acuitybrandscorporate/home/oled/why-oled.
[116] Jang, S., Y. Lee, and M. Park. 44.1: Invited Paper: OLED Lighting for General Lighting Applications. in SID Symposium Digest of Technical Papers. 2015. Wiley Online Library.
[117] Miller NJ, L.F., OLED Lighting Products:
Capabilities, Challenges, Potential. 2016.
[118] OLED-info. Yeolight developed new amber OLED lighting and automotive OLED rearlights. 2017; Available from: https://www.oled-info.com/yeolight-developed-new-oled-panels-and-automotive-oled-rearlights.
[119] S. Nakamura, “GaN off energy revolution,” Tokyo ConferenceCenter Shinagawa, Tokyo, 2015.
[120] J. H. Jou, M. H. Wu, S. M. Shen, H. C. Wang, S, Z. Chen, S. H.Chen, C. R. Lin, and Y. L. Hsieh, Appl. Phys. Lett., 95 , 013307,2009.
[121] J. H. Jou, S. M. Shen, M. H. Wu, S. H. Peng, and H. C. Wang, J.Photon. Energy, 1, 011021, 2011
[122] J. H. Jou, M. C. Tang, P. C. Chen, Y. S. Wang, S. M. Shen, B. R.Chen, C. H, Lin, W. B. Wang, S. H. Chen, C. T. Chen, F. Y. Tsai, C.W. Wang, C. C. Chen and C. C. Wang, Org. Electron, 13, 1349-1355,2013.
[123] Jou, Jwo-Huei, et al. "OLEDs with chromaticity tunable between dusk-hue and candle-light." Organic electronics 14.1 (2013): 47-54.
[124] Hu, Yue, et al. "Hybrid Organic Light‐Emitting Diodes with Low Color‐Temperature and High Efficiency for Physiologically‐Friendly Night Illumination." Israel Journal of Chemistry 54.7 (2014): 979-985.
[125] Jou, J. H., Su, Y. T., Liu, S. H., He, Z. K., Sahoo, S., Yu, H. H., ... & Lee, J. R. (2016). Wet-process feasible candlelight OLED. Journal of Materials Chemistry C, 4(25), 6070-6077.
[126] Chen, Bin, et al. "Efficient Bipolar Blue AIEgens for High‐Performance Nondoped Blue OLEDs and Hybrid White OLEDs." Advanced Functional Materials 28.40 (2018): 1803369.
[127] S. Nakamura, Proc SPIE, 3002, 26-35, 1997.
[128] S. Nizamoglu, T. Erdem, X. W. Sun, and H. V. Demir, Lasers and Electro-Optics, 2011.
[129] X. F. Li, J. D. Budai, F. Liu, J.Y. Howe, J. H. Zhang, X. J. Wang,Z. J Gu, C. J. Sun, R. S. Meltzer, and Z.W. Pan, Light: Science &Applications, 2, e50, 2013.
[130] C. F. Lai, C. L. Hsieh, and C. J. Wu, Opt Lett, 38, 3612-3615, 2013.
[131] Chang, C.-C., et al., Highly efficient white organic electroluminescent devices based on tandem architecture. Applied Physics Letters, 2005. 87(25): p. 253501.
[132] Chen, C.-W., et al., Effective connecting architecture for tandem organic light-emitting devices. Applied Physics Letters, 2005. 87(24): p. 241121.
[133] Su, S.J., et al., Highly efficient organic blue‐and white‐light‐emitting devices having a carrier‐and exciton‐confining structure for reduced efficiency roll‐off. Advanced Materials, 2008. 20(21): p. 4189-4194.
[134] Sun, J., et al., Effective intermediate layers for highly efficient stacked organic light-emitting devices. Applied Physics Letters, 2005. 87(9): p. 093504.
[135] Chang, C.-C., et al., High-efficiency organic electroluminescent device with multiple emitting units. Japanese journal of applied physics, 2004. 43(9R): p. 6418.
[136] jou, j.-h., OLED introductuon.
[137] Féry, C., et al., Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes. Applied Physics Letters, 2005. 87(21): p. 213502.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *