帳號:guest(18.225.175.174)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡孟哲
作者(外文):Cai, Meng-Che
論文名稱(中文):銅銦鎵硒太陽能電池之表面鈍化
論文名稱(外文):Surface passivation of the Cu(In,Ga)Se2 solar cell
指導教授(中文):賴志煌
指導教授(外文):Lai, Chih-Huang
口試委員(中文):闕郁倫
王致喨
口試委員(外文):Chueh, Yu-Lun
Wang, Chih-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031547
出版年(民國):108
畢業學年度:108
語文別:中文
論文頁數:51
中文關鍵詞:太陽能電池表面鈍化有序缺陷化合物表面反轉氟化鉀後處理銅銦鎵硒太陽能電池
外文關鍵詞:solar cellsurface passivationordered vacancy compoundsurface type inversionKF post deposition treatmentCu(In,Ga)Se solar cell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:855
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
當資源有限,而人口卻不斷增長的現今,開發新興可再生能源的必要性日漸加劇。銅銦鎵硒為第二世代的薄膜太陽能電池材料,相比現在市面上的矽晶太陽能電池只有百分之一的厚度,因此能夠更靈活的運用在住宅整合或是其他應用上,且其逼近矽晶太陽能電池的最高轉換效率23.35%,使得銅銦鎵硒此種材料受到產業界和學界的重視,如日本的Solar Frontier和台灣的上銀光電。
然而,銅銦鎵硒薄膜太陽能電池屬於一種異質接面太陽能電池,因此界面處的載子復合一直是阻礙效率提升的一大原因。其限制了元件的開路電壓和填充因子,為此表面鈍化是近年來人們所努力的方向,也是本論文所著眼的方向。我們使用三種方式嘗試去鈍化吸收層的表面,藉此提高元件效率。
第一部分,我們使用濺鍍的方式在吸收層表面鍍上一層3奈米的硫化銦,並經由退火後,使表面形成一銅缺的表面。經過實驗發現,此種方式確實能夠提高效率,且使表面的價帶往下彎曲。
銜接前面的實驗,由於硫化銦中的硫並沒有留在吸收層表面,並且濺鍍損傷也是無可避免的缺點。因此在第二部分,我們使用蒸鍍的方式,鍍一層一奈米的銦在吸收層表面,使OVC相在表面形成。我們也藉由此種方式改善了元件效率,且其元件和材料分析的結果和第一部分實驗相似
第三部分,我們嘗試蒸鍍氟化鉀和銦在吸收層表面,並在退火爐中退火,然而氟化鉀的吸水特性,使其在蒸鍍腔體外吸收了大量水分。在退火過程中,其氧原子進入了吸收層內部和表面且取代硒原子,進而惡化元件表現。
With limited resources and a growing population, the need to develop a new renewable energy source is growing. Copper indium gallium selenide is the second generation of thin-film solar cell materials, which is only one percent of the current Silicon solar cell thickness. Therefore, it can be more flexibly applied in building. The highest conversion efficiency of twin crystal solar cells is 23.35%, which makes the material of copper indium gallium selenide attract the attention of industry and academy, such as Japan's Solar frontier and Taiwan's Eterbright Solar.

However, CIGSe device is a heterojunction solar cell, so the carrier recombination at the interface has always been a major obstacle to efficiency improvement. It limits the open circuit voltage and fill factor of the device. To overcome this issue, surface passivation is the direction that people have worked hard in recent years, and it is also the direction of this thesis. We tried to passivate the surface of the absorber layer in three different ways in order to increase the device efficiency.

In the first part, we sputter 3 nm of indium sulfide on the surface of the absorber, and after annealing, the surface was formed into a copper-deficient surface. From the experiment result, this method can actually improve the efficiency and bend the valence band of the surface downward.

Following the previous part, since sulfur in the indium sulfide did not remain on the surface of the absorber, sputtering damage was inevitable issues. Therefore, we use an evaporation deposition to coat an one-nanometer indium on the surface of the absorber to form the OVC phase on the surface, and we also improve the efficiency of the element in this way.
In the third part, we try to evaporate potassium fluoride and indium on the surface of the absorption layer and anneal in the annealing furnace. However, the highly hygroscopic characteristics of potassium fluoride make it absorb a large amount of water outside the evaporation chamber. During the annealing process, oxygen atoms enter the interior and surface of the absorber layer and replace the selenium atom, thereby deteriorating device efficiency. 
目錄
摘要 i
Abstract ii
目錄 iv
圖目錄 vi
第一章 緒論 1
1.1 研究動機 1
第二章 文獻回顧 3
2.1 太陽能元件原理 3
2.2電流密度-電壓曲線(I-V curve) 4
2.2.1短路電流(Short circuit current density) 4
2.2.2開路電壓(Open circuit voltage) 5
2.2.3填充因子(Fill factor) 6
2.2.4光電轉換效率(Efficiency) 6
2.2.5寄生電阻(Parasitic resistance) 7
2.2.6載子的再復合(Carrier recombination) 8
2.3銅銦鎵硒太陽能元件介紹 10
2.3.1銅銦鎵硒太陽能元件結構介紹 11
2.3.2基板(Substrate) 11
2.3.3鉬背電極(Mo back contact) 12
2.3.4吸收層(Absorber) 12
2.3.5緩衝層(Buffer layer) 13
2.3.6窗口層(Window layer) 13
2.4 Cu(In,Ga)Se2太陽能電池的發展 14
2.4.1共蒸鍍製程(Co-evaporation process) 14
2.4.2連續製程(Sequential process) 16
2.4.3鈉的參雜 17
2.5吸收層表面工程 18
2.5.1 點接觸(Point contact) 18
2.5.2 氟化鉀後處理(KF post deposition treatment, KF-PDT) 19
2.5.3 表面反轉與CuIn3Se5(Order vacancy compound, OVC) 20
第三章 實驗設計 22
3.1 元件製作 22
3.1.1 磁控濺鍍系統 22
3.1.2 硒化製程(Selenization process) 22
3.1.3 蒸鍍系統 22
3.2 材料分析與方法 23
3.2.1 X光螢光分析(X-Ray Fluorescence, XRF) 23
3.2.2 X光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 24
3.2.3 光致發光光譜(Photoluminescence spectroscopy and time-resolved photoluminescence, PL and TR-PL) 24
3.2.4 拉曼光譜(Raman spectroscopy, Raman) 26
3.2.5 紫外線電子能譜儀(Ultraviolet photoelectron spectroscopy, UPS) 27
3.2.6 IV量測 27
3.2.7 外部量子效率量測儀(External Quantum Efficiency, EQE) 28
3.2.8 X光繞射分析(X-ray Diffraction, XRD) 28
第四章 實驗結果與討論 29
4.1 實驗架構與流程 29
4.2 第一部分-濺鍍硫化銦薄膜 30
4.2.1 XPS表面成分分析 30
4.2.2 元件效率表現 31
4.2.3 效率提升之原因探討 33
4.3 第二部分-蒸鍍銦薄膜 35
4.3.1 元件效率表現 35
4.3.2 效率提升之原因探討 36
4.4 第三部分-銦-氟化鉀後處理 39
4.4.1 K-In-Se化合物 39
4.4.2 元件效率表現 41
第五章 結論 47
第六章 參考文獻 48

[1] https://zh.wikipedia.org/wiki/PN%E7%BB%93
[2] https://www.alternative-energy-tutorials.com/energy-articles/solar-cell-i-v-characteristic.html
[3] http://www.isu.edu.tw/upload/81201/41/news/postfile_26024.ppt
[4] Rau, U., & Schock, H. W. (1999). Electronic properties of Cu (In, Ga) Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges. Applied Physics A, 69(2), 131-147.
[5] Tao Xue, H., Tang, F. L., Kang Li, X., Cheng Wan, F., Jiang Lu, W., Yuan Rui, Z., & Dong Feng, Y. (2014). Phase equilibrium of a CuInSe2–CuInS2 pseudobinary system studied by combined first-principles calculations and cluster expansion Monte Carlo simulations. Materials Science in Semiconductor Processing, 25, 251–257.
[6] https://www.moneydj.com/KMDJ/wiki/wikiViewer.aspx?keyid=33a047d9-1766-4774-94dc-fda31b908c2b
[7] Blösch, P., Chirilă, A., Pianezzi, F., Seyrling, S., Rossbach, P., Buecheler, S., ... & Tiwari, A. N. (2011). Comparative study of different back-contact designs for high-efficiency CIGS solar cells on stainless steel foils. IEEE Journal of Photovoltaics, 1(2), 194-199.
[8] Kohara, N., Nishiwaki, S., Hashimoto, Y., Negami, T., & Wada, T. (2001). Electrical properties of the Cu (In, Ga) Se2/MoSe2/Mo structure. Solar Energy Materials and Solar Cells, 67(1-4), 209-215.
[9] Zhu, X., Zhou, Z., Wang, Y., Zhang, L., Li, A., & Huang, F. (2012). Determining factor of MoSe2 formation in Cu(In,Ga)Se2 solar Cells. Solar Energy Materials and Solar Cells, 101, 57–61.
[10] Yoon, J.-H., Cho, S., Kim, W. M., Park, J.-K., Baik, Y.-J., Lee, T. S., … Jeong, J. (2011). Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity. Solar Energy Materials and Solar Cells, 95(11), 2959–2964.
[11] Shockley, W., & Queisser, H. J. (1961). Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells. Journal of Applied Physics, 32(3), 510–519.
[12] Miguel, A., Contreras, K., Ramanathan, J., AbuShama, F., Hasoon, D. L., Young, B., ... & Noufi, R. (2005). Diode characteristics in state-of-the-art ZnO/CdS/Cu (In1ÀxGax) Se2 solar cells. Prog. Photovolt.: Res. Appl, 13, 209-216.
[13] Liao, D., & Rockett, A. (2003). Cd doping at the CuInSe 2/CdS heterojunction. Journal of Applied Physics, 93(11), 9380-9382.
[14] Shay, J. L., Wagner, S., & Kasper, H. M. (1975). Efficient CuInSe2/CdS solar cells. Applied Physics Letters, 27(2), 89–90.
[15] Gabor, A. M., Tuttle, J. R., Albin, D. S., Contreras, M. A., Noufi, R., & Hermann, A. M. (1994). High‐efficiency CuInxGa1−xSe2solar cells made from (Inx,Ga1−x)2Se3precursor films. Applied Physics Letters, 65(2), 198–200.
[16] http://taiyangnews.info/technology/solar-frontier-23-35-cis-world-record/
[17] https://renewablesnow.com/news/tsmc-solar-hits-16-5-cigs-module-efficiency-to-break-fresh-record-474245/
[18] Jackson, P., Wuerz, R., Hariskos, D., Lotter, E., Witte, W., & Powalla, M. (2016). Effects of heavy alkali elements in Cu (In, Ga) Se2 solar cells with efficiencies up to 22.6%. physica status solidi (RRL)–Rapid Research Letters, 10(8), 583-58.
[19] Romeo, A., Terheggen, M., Abou‐Ras, D., Bätzner, D. L., Haug, F. J., Kälin, M., ... & Tiwari, A. N. (2004). Development of thin‐film Cu (In, Ga) Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications, 12(2‐3), 93-111.
[20] Ramanathan, K., Contreras, M. A., Perkins, C. L., Asher, S., Hasoon, F. S., Keane, J., … Duda, A. (2003). Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Progress in Photovoltaics: Research and Applications, 11(4), 225–230.
[21] Shay, J. L., Wagner, S., & Kasper, H. M. (1975). Efficient CuInSe2/CdS solar cells. Applied Physics Letters, 27(2), 89–90.
[22] Dullweber, T., anna, G. ., Rau, U., & Schock, H. . (2001). A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors. Solar Energy Materials and Solar Cells, 67(1-4), 145–150.
[23] J.H. Ermer, R.B.Love, (1989) Method for forming CuInSe2 films.
[24] Witte, W., Abou-Ras, D., Albe, K., Bauer, G. H., Bertram, F., Boit, C., … Powalla, M. (2014). Gallium gradients in Cu(In,Ga)Se2 thin-film solar cells. Progress in Photovoltaics: Research and Applications, 23(6), 717–733.
[25] Wu, T.-T., Huang, J.-H., Hu, F., Chang, C., Liu, W.-L., Wang, T.-H., … Chueh, Y.-L. (2014). Toward high efficiency and panel size 30×40 cm 2 Cu(In,Ga)Se 2 solar cell: Investigation of modified stacking sequences of metallic precursors and pre-annealing process without Se vapor at low temperature. Nano Energy, 10, 28–36.
[26] Jensen, C. L., Tarrant, D. E., Ermer, J. H., & Pollock, G. A. (1993, May). The role of gallium in CuInSe/sub 2/solar cells fabricated by a two-stage method. In Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference-1993 (Cat. No. 93CH3283-9) (pp. 577-580). IEEE.
[27] Niki, S., Contreras, M., Repins, I., Powalla, M., Kushiya, K., Ishizuka, S., & Matsubara, K. (2010). CIGS absorbers and processes. Progress in Photovoltaics: Research and Applications, 18(6), 453–466.
[28] Kronik, L., Cahen, D., & Schock, H. W. (1998). Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance. Advanced Materials, 10(1), 31–36.
[29] Eid, J., Liang, H., Gereige, I., Lee, S., & Duren, J. V. (2013). Combinatorial study of NaF addition in CIGSe films for high efficiency solar cells. Progress in Photovoltaics: Research and Applications, 23(3), 269–280.
[30] Vermang B, Fjällström V, Pettersson J, Salomé P, Edoff M. Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nanosized local rear point contacts. Solar Energy Materials and Solar Cells 2013; 117: 505–511.
[31] Reinhard, P., Bissig, B., Pianezzi, F., Hagendorfer, H., Sozzi, G., Menozzi, R., ... & Tiwari, A. N. (2015). Alkali-templated surface nanopatterning of chalcogenide thin films: A novel approach toward solar cells with enhanced efficiency. Nano letters, 15(5), 3334-3340.
[32] Allsop, N., Nürnberg, R., Lux-Steiner, M. C., & Schedel-Niedrig, T. (2009). Three-dimensional simulations of a thin film heterojunction solar cell with a point contact/defect passivation structure at the heterointerface. Applied Physics Letters, 95(12), 122108.
[33] Sozzi, G., Pignoloni, D., Menozzi, R., Pianezzi, F., Reinhard, P., Bissig, B., ... & Tiwari, A. N. (2015, June). Designing CIGS solar cells with front-side point contacts. In 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC):1-5.
[34] Handick, E., Reinhard, P., Alsmeier, J.-H., Köhler, L., Pianezzi, F., Krause, S., … Bär, M. (2015). Potassium Postdeposition Treatment-Induced Band Gap Widening at Cu(In,Ga)Se2 Surfaces – Reason for Performance Leap? ACS Applied Materials & Interfaces, 7(49), 27414–27420.
[35] Dullweber, T., anna, G. ., Rau, U., & Schock, H. . (2001). A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors. Solar Energy Materials and Solar Cells, 67(1-4), 145–150.
[36] Nishimura, T., Hirai, Y., Kurokawa, Y., & Yamada, A. (2015). Control of valence band offset at CdS/Cu (In, Ga) Se2 interface by inserting wide-bandgap materials for suppression of interfacial recombination in Cu (In, Ga) Se2 solar cells. Japanese Journal of Applied Physics, 54(8S1), 08KC08.
[37] https://sites.google.com/site/ensatptd/tai-yang-guang-dian-fa-dian
[38] Schmid, D., Ruckh, M., Grunwald, F., & Schock, H. W. (1993). Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2. Journal of Applied Physics, 73(6), 2902-2909.
[39] Contreras, M. A., Egaas, B., Ramanathan, K., Hiltner, J., Swartzlander, A., Hasoon, F., & Noufi, R. (1999). Progress toward 20% efficiency in Cu (In, Ga) Se2 polycrystalline thin‐film solar cells. Progress in Photovoltaics: Research and applications, 7(4), 311-316.
[40] Gabor, A. M., Tuttle, J. R., Albin, D. S., Contreras, M. A., Noufi, R., & Hermann, A. M. (1994). High‐efficiency CuIn x Ga1− x Se2 solar cells made from (In x, Ga1− x) 2Se3 precursor films. Applied Physics Letters, 65(2), 198-200.
[41] Nishimura, T., Sugiura, H., Nakada, K., & Yamada, A. (2019). Accurate control and characterization of Cu depletion layer for highly efficient Cu (In, Ga) Se2 solar cells. Progress in Photovoltaics: Research and Applications, 27(2), 171-178.
[42] https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/handheld-xrf/how-xrf-works.html
[43] https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
[44] https://shodhganga.inflibnet.ac.in/bitstream/10603/70211/8/08_chapter2.pdf
[45] Lepetit, T., Harel, S., Arzel, L., Ouvrard, G., & Barreau, N. (2017). KF post deposition treatment in co‐evaporated Cu (In, Ga) Se2 thin film solar cells: Beneficial or detrimental effect induced by the absorber characteristics. Progress in Photovoltaics: Research and Applications, 25(12), 1068-1076.
[46] Pistor, P., Greiner, D., Kaufmann, C. A., Brunken, S., Gorgoi, M., Steigert, A., ... & Lux-Steiner, M. C. (2014). Experimental indication for band gap widening of chalcopyrite solar cell absorbers after potassium fluoride treatment. Applied Physics Letters, 105(6), 063901.
[47] Wei, S. H., Zhang, S. B., & Zunger, A. (1999). Effects of Na on the electrical and structural properties of CuInSe 2. Journal of Applied Physics, 85(10), 7214-7218.
[48] Schmid, D., Ruckh, M., Grunwald, F., & Schock, H. W. (1993). Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2. Journal of Applied Physics, 73(6), 2902-2909.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *