|
[1] https://zh.wikipedia.org/wiki/PN%E7%BB%93 [2] https://www.alternative-energy-tutorials.com/energy-articles/solar-cell-i-v-characteristic.html [3] http://www.isu.edu.tw/upload/81201/41/news/postfile_26024.ppt [4] Rau, U., & Schock, H. W. (1999). Electronic properties of Cu (In, Ga) Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges. Applied Physics A, 69(2), 131-147. [5] Tao Xue, H., Tang, F. L., Kang Li, X., Cheng Wan, F., Jiang Lu, W., Yuan Rui, Z., & Dong Feng, Y. (2014). Phase equilibrium of a CuInSe2–CuInS2 pseudobinary system studied by combined first-principles calculations and cluster expansion Monte Carlo simulations. Materials Science in Semiconductor Processing, 25, 251–257. [6] https://www.moneydj.com/KMDJ/wiki/wikiViewer.aspx?keyid=33a047d9-1766-4774-94dc-fda31b908c2b [7] Blösch, P., Chirilă, A., Pianezzi, F., Seyrling, S., Rossbach, P., Buecheler, S., ... & Tiwari, A. N. (2011). Comparative study of different back-contact designs for high-efficiency CIGS solar cells on stainless steel foils. IEEE Journal of Photovoltaics, 1(2), 194-199. [8] Kohara, N., Nishiwaki, S., Hashimoto, Y., Negami, T., & Wada, T. (2001). Electrical properties of the Cu (In, Ga) Se2/MoSe2/Mo structure. Solar Energy Materials and Solar Cells, 67(1-4), 209-215. [9] Zhu, X., Zhou, Z., Wang, Y., Zhang, L., Li, A., & Huang, F. (2012). Determining factor of MoSe2 formation in Cu(In,Ga)Se2 solar Cells. Solar Energy Materials and Solar Cells, 101, 57–61. [10] Yoon, J.-H., Cho, S., Kim, W. M., Park, J.-K., Baik, Y.-J., Lee, T. S., … Jeong, J. (2011). Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity. Solar Energy Materials and Solar Cells, 95(11), 2959–2964. [11] Shockley, W., & Queisser, H. J. (1961). Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells. Journal of Applied Physics, 32(3), 510–519. [12] Miguel, A., Contreras, K., Ramanathan, J., AbuShama, F., Hasoon, D. L., Young, B., ... & Noufi, R. (2005). Diode characteristics in state-of-the-art ZnO/CdS/Cu (In1ÀxGax) Se2 solar cells. Prog. Photovolt.: Res. Appl, 13, 209-216. [13] Liao, D., & Rockett, A. (2003). Cd doping at the CuInSe 2/CdS heterojunction. Journal of Applied Physics, 93(11), 9380-9382. [14] Shay, J. L., Wagner, S., & Kasper, H. M. (1975). Efficient CuInSe2/CdS solar cells. Applied Physics Letters, 27(2), 89–90. [15] Gabor, A. M., Tuttle, J. R., Albin, D. S., Contreras, M. A., Noufi, R., & Hermann, A. M. (1994). High‐efficiency CuInxGa1−xSe2solar cells made from (Inx,Ga1−x)2Se3precursor films. Applied Physics Letters, 65(2), 198–200. [16] http://taiyangnews.info/technology/solar-frontier-23-35-cis-world-record/ [17] https://renewablesnow.com/news/tsmc-solar-hits-16-5-cigs-module-efficiency-to-break-fresh-record-474245/ [18] Jackson, P., Wuerz, R., Hariskos, D., Lotter, E., Witte, W., & Powalla, M. (2016). Effects of heavy alkali elements in Cu (In, Ga) Se2 solar cells with efficiencies up to 22.6%. physica status solidi (RRL)–Rapid Research Letters, 10(8), 583-58. [19] Romeo, A., Terheggen, M., Abou‐Ras, D., Bätzner, D. L., Haug, F. J., Kälin, M., ... & Tiwari, A. N. (2004). Development of thin‐film Cu (In, Ga) Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications, 12(2‐3), 93-111. [20] Ramanathan, K., Contreras, M. A., Perkins, C. L., Asher, S., Hasoon, F. S., Keane, J., … Duda, A. (2003). Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Progress in Photovoltaics: Research and Applications, 11(4), 225–230. [21] Shay, J. L., Wagner, S., & Kasper, H. M. (1975). Efficient CuInSe2/CdS solar cells. Applied Physics Letters, 27(2), 89–90. [22] Dullweber, T., anna, G. ., Rau, U., & Schock, H. . (2001). A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors. Solar Energy Materials and Solar Cells, 67(1-4), 145–150. [23] J.H. Ermer, R.B.Love, (1989) Method for forming CuInSe2 films. [24] Witte, W., Abou-Ras, D., Albe, K., Bauer, G. H., Bertram, F., Boit, C., … Powalla, M. (2014). Gallium gradients in Cu(In,Ga)Se2 thin-film solar cells. Progress in Photovoltaics: Research and Applications, 23(6), 717–733. [25] Wu, T.-T., Huang, J.-H., Hu, F., Chang, C., Liu, W.-L., Wang, T.-H., … Chueh, Y.-L. (2014). Toward high efficiency and panel size 30×40 cm 2 Cu(In,Ga)Se 2 solar cell: Investigation of modified stacking sequences of metallic precursors and pre-annealing process without Se vapor at low temperature. Nano Energy, 10, 28–36. [26] Jensen, C. L., Tarrant, D. E., Ermer, J. H., & Pollock, G. A. (1993, May). The role of gallium in CuInSe/sub 2/solar cells fabricated by a two-stage method. In Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference-1993 (Cat. No. 93CH3283-9) (pp. 577-580). IEEE. [27] Niki, S., Contreras, M., Repins, I., Powalla, M., Kushiya, K., Ishizuka, S., & Matsubara, K. (2010). CIGS absorbers and processes. Progress in Photovoltaics: Research and Applications, 18(6), 453–466. [28] Kronik, L., Cahen, D., & Schock, H. W. (1998). Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance. Advanced Materials, 10(1), 31–36. [29] Eid, J., Liang, H., Gereige, I., Lee, S., & Duren, J. V. (2013). Combinatorial study of NaF addition in CIGSe films for high efficiency solar cells. Progress in Photovoltaics: Research and Applications, 23(3), 269–280. [30] Vermang B, Fjällström V, Pettersson J, Salomé P, Edoff M. Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nanosized local rear point contacts. Solar Energy Materials and Solar Cells 2013; 117: 505–511. [31] Reinhard, P., Bissig, B., Pianezzi, F., Hagendorfer, H., Sozzi, G., Menozzi, R., ... & Tiwari, A. N. (2015). Alkali-templated surface nanopatterning of chalcogenide thin films: A novel approach toward solar cells with enhanced efficiency. Nano letters, 15(5), 3334-3340. [32] Allsop, N., Nürnberg, R., Lux-Steiner, M. C., & Schedel-Niedrig, T. (2009). Three-dimensional simulations of a thin film heterojunction solar cell with a point contact/defect passivation structure at the heterointerface. Applied Physics Letters, 95(12), 122108. [33] Sozzi, G., Pignoloni, D., Menozzi, R., Pianezzi, F., Reinhard, P., Bissig, B., ... & Tiwari, A. N. (2015, June). Designing CIGS solar cells with front-side point contacts. In 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC):1-5. [34] Handick, E., Reinhard, P., Alsmeier, J.-H., Köhler, L., Pianezzi, F., Krause, S., … Bär, M. (2015). Potassium Postdeposition Treatment-Induced Band Gap Widening at Cu(In,Ga)Se2 Surfaces – Reason for Performance Leap? ACS Applied Materials & Interfaces, 7(49), 27414–27420. [35] Dullweber, T., anna, G. ., Rau, U., & Schock, H. . (2001). A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors. Solar Energy Materials and Solar Cells, 67(1-4), 145–150. [36] Nishimura, T., Hirai, Y., Kurokawa, Y., & Yamada, A. (2015). Control of valence band offset at CdS/Cu (In, Ga) Se2 interface by inserting wide-bandgap materials for suppression of interfacial recombination in Cu (In, Ga) Se2 solar cells. Japanese Journal of Applied Physics, 54(8S1), 08KC08. [37] https://sites.google.com/site/ensatptd/tai-yang-guang-dian-fa-dian [38] Schmid, D., Ruckh, M., Grunwald, F., & Schock, H. W. (1993). Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2. Journal of Applied Physics, 73(6), 2902-2909. [39] Contreras, M. A., Egaas, B., Ramanathan, K., Hiltner, J., Swartzlander, A., Hasoon, F., & Noufi, R. (1999). Progress toward 20% efficiency in Cu (In, Ga) Se2 polycrystalline thin‐film solar cells. Progress in Photovoltaics: Research and applications, 7(4), 311-316. [40] Gabor, A. M., Tuttle, J. R., Albin, D. S., Contreras, M. A., Noufi, R., & Hermann, A. M. (1994). High‐efficiency CuIn x Ga1− x Se2 solar cells made from (In x, Ga1− x) 2Se3 precursor films. Applied Physics Letters, 65(2), 198-200. [41] Nishimura, T., Sugiura, H., Nakada, K., & Yamada, A. (2019). Accurate control and characterization of Cu depletion layer for highly efficient Cu (In, Ga) Se2 solar cells. Progress in Photovoltaics: Research and Applications, 27(2), 171-178. [42] https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/handheld-xrf/how-xrf-works.html [43] https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy [44] https://shodhganga.inflibnet.ac.in/bitstream/10603/70211/8/08_chapter2.pdf [45] Lepetit, T., Harel, S., Arzel, L., Ouvrard, G., & Barreau, N. (2017). KF post deposition treatment in co‐evaporated Cu (In, Ga) Se2 thin film solar cells: Beneficial or detrimental effect induced by the absorber characteristics. Progress in Photovoltaics: Research and Applications, 25(12), 1068-1076. [46] Pistor, P., Greiner, D., Kaufmann, C. A., Brunken, S., Gorgoi, M., Steigert, A., ... & Lux-Steiner, M. C. (2014). Experimental indication for band gap widening of chalcopyrite solar cell absorbers after potassium fluoride treatment. Applied Physics Letters, 105(6), 063901. [47] Wei, S. H., Zhang, S. B., & Zunger, A. (1999). Effects of Na on the electrical and structural properties of CuInSe 2. Journal of Applied Physics, 85(10), 7214-7218. [48] Schmid, D., Ruckh, M., Grunwald, F., & Schock, H. W. (1993). Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2. Journal of Applied Physics, 73(6), 2902-2909.
|