|
[1] J.M. Lorenzo, P.E.S. Munekata, A.S. Sant'Ana, R.B. Carvalho, F.J. Barba, F. Toldrá, L. Mora, M.A. Trindade, Main characteristics of peanut skin and its role for the preservation of meat products, Trends in Food Science & Technology 77 (2018) 1-10. [2] J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov, X. Tan, A. Kohandehghan, D. Mitlin, Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors, Energy & Environmental Science 8(3) (2015) 941-955. [3] L. Zhang, X. Hu, Z. Wang, F. Sun, D.G. Dorrell, A review of supercapacitor modeling, estimation, and applications: A control/management perspective, Renewable and Sustainable Energy Reviews 81 (2018) 1868-1878. [4] N. Sulaiman, M.A. Hannan, A. Mohamed, E.H. Majlan, W.R. Wan Daud, A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges, Renewable and Sustainable Energy Reviews 52 (2015) 802-814. [5] A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: Technologies and materials, Renewable and Sustainable Energy Reviews 58 (2016) 1189-1206. [6] B.K. Kim, S. Sy, A. Yu, J. Zhang, Electrochemical Supercapacitors for Energy Storage and Conversion, Handbook of Clean Energy Systems2015, pp. 1-25. [7] K. Jost, G. Dion, Y. Gogotsi, Textile energy storage in perspective, Journal of Materials Chemistry A 2(28) (2014) 10776-10787. [8] J. Kang, J. Wen, S.H. Jayaram, A. Yu, X. Wang, Development of an equivalent circuit model for electrochemical double layer capacitors (EDLCs) with distinct electrolytes, Electrochimica Acta 115 (2014) 587-598. [9] D.L. Chapman, LI. A contribution to the theory of electrocapillarity, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 25(148) (1913) 475-481. [10] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem Soc Rev 41(2) (2012) 797-828. [11] Q. Ke, J. Wang, Graphene-based materials for supercapacitor electrodes – A review, Journal of Materiomics 2(1) (2016) 37-54. [12] Z. Qiu, Y. Wang, X. Bi, T. Zhou, J. Zhou, J. Zhao, Z. Miao, W. Yi, P. Fu, S. Zhuo, Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors, Journal of Power Sources 376 (2018) 82-90. [13] Q. Wang, J. Yan, Z. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities, Energy & Environmental Science 9(3) (2016) 729-762. [14] D. Kang, Q. Liu, J. Gu, Y. Su, W. Zhang, D. Zhang, “Egg-Box”-Assisted Fabrication of Porous Carbon with Small Mesopores for High-Rate Electric Double Layer Capacitors, ACS Nano 9(11) (2015) 11225-11233. [15] J. Chmiola, C. Largeot, P.-L. Taberna, P. Simon, Y.J.S. Gogotsi, Monolithic carbide-derived carbon films for micro-supercapacitors, 328(5977) (2010) 480-483. [16] K. Wan, S. Liu, C. Zhang, L. Li, Z. Zhao, T. Liu, Y. Xie, Supramolecular Assembly of 1D Pristine Carbon Nanotubes and 2D Graphene Oxides into Macroscopic All-Carbon Hybrid Sponges for High-Energy-Density Supercapacitors, ChemNanoMat 3(6) (2017) 447-453. [17] M. Zhi, C. Xiang, J. Li, M. Li, N.J.N. Wu, Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review, Nanoscale 5(1) (2013) 72-88. [18] Q. Meng, K. Cai, Y. Chen, L.J.N.E. Chen, Research progress on conducting polymer based supercapacitor electrode materials, Nano Energy 36 (2017) 268-285. [19] A.M. Bryan, L.M. Santino, Y. Lu, S. Acharya, J.M.J.C.o.M. D’Arcy, Conducting polymers for pseudocapacitive energy storage, Chemistry of Materials 28(17) (2016) 5989-5998. [20] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J.J.C.S.R. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chemical Society Reviews 44(21) (2015) 7484-7539. [21] A. Volkov, S. Paula, D.J.B. Deamer, Bioenergetics, Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers, Bioelectrochemistry and Bioenergetics 42(2) (1997) 153-160. [22] E.J.T.J.o.P.C. Nightingale Jr, Phenomenological theory of ion solvation. Effective radii of hydrated ions, The Journal of Physical Chemistry 63(9) (1959) 1381-1387. [23] M.Y. Kiriukhin, K.D.J.B.c. Collins, Dynamic hydration numbers for biologically important ions, Biophysical chemistry 99(2) (2002) 155-168. [24] D. Yu, Q. Qian, L. Wei, W. Jiang, K. Goh, J. Wei, J. Zhang, Y.J.C.S.R. Chen, Emergence of fiber supercapacitors, Chemical Society Reviews 44(3) (2015) 647-662. [25] S. Vijayakumar, S.-H. Lee, K.-S.J.E.A. Ryu, Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance, Electrochimica Acta 182 (2015) 979-986. [26] S.-M. Chen, R. Ramachandran, V. Mani, R.J.I.J.E.S. Saraswathi, Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: a review, Int. J. Electrochem. Sci 9(8) (2014) 4072-4085. [27] N.d.M. Pereira, J.P.C. Trigueiro, I.d.F. Monteiro, L.A. Montoro, G.G.J.E.A. Silva, Graphene oxide–ionic liquid composite electrolytes for safe and high-performance supercapacitors, Electrochimica Acta 259 (2018) 783-792. [28] R. Bendi, V. Kumar, V. Bhavanasi, K. Parida, P.S.J.A.E.M. Lee, Metal Organic Framework‐Derived Metal Phosphates as Electrode Materials for Supercapacitors, Advanced Energy Materials 6(3) (2016) 1501833. [29] H.-J. Chu, C.-Y. Lee, N.-H.J.J.o.P.S. Tai, Green preparation using black soybeans extract for graphene-based porous electrodes and their applications in supercapacitors, Journal of Power Sources 322 (2016) 31-39. [30] P. Taberna, P. Simon, J.-F.J.J.o.T.E.S. Fauvarque, Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors, Electrochemical Society 150(3) (2003) A292-A300. [31] P. Xu, T. Gu, Z. Cao, B. Wei, J. Yu, F. Li, J.H. Byun, W. Lu, Q. Li, T.W.J.A.E.M. Chou, Carbon Nanotube Fiber Based Stretchable Wire‐Shaped Supercapacitors, Advanced Energy Materials 4(3) (2014) 1300759. [32] M.N. Patel, X. Wang, D.A. Slanac, D.A. Ferrer, S. Dai, K.P. Johnston, K.J.J.J.o.M.C. Stevenson, High pseudocapacitance of MnO 2 nanoparticles in graphitic disordered mesoporous carbon at high scan rates, Journal of Materials Chemistry A 22(7) (2012) 3160-3169. [33] S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S.J.n. Ruoff, Graphene-based composite materials, nature 442(7100) (2006) 282. [34] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A.J.s. Firsov, Electric field effect in atomically thin carbon films, science 306(5696) (2004) 666-669. [35] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S.J.A.m. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Advanced materials 22(35) (2010) 3906-3924. [36] A.K. Geim, K.S. Novoselov, The rise of graphene, Nanoscience and Technology: A Collection of Reviews from Nature Journals, World Scientific2010, pp. 11-19. [37] E. Abbasi, A. Akbarzadeh, M. Kouhi, M.J.A.c. Milani, nanomedicine,, biotechnology, Graphene: synthesis, bio-applications, and properties, 44(1) (2016) 150-156. [38] M. Yi, Z.J.J.o.M.C.A. Shen, A review on mechanical exfoliation for the scalable production of graphene, Journal of Materials Chemistry A 3(22) (2015) 11700-11715. [39] A. Guermoune, T. Chari, F. Popescu, S.S. Sabri, J. Guillemette, H.S. Skulason, T. Szkopek, M.J.C. Siaj, Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors, Carbon 49(13) (2011) 4204-4210. [40] M. Qi, Z. Ren, Y. Jiao, Y. Zhou, X. Xu, W. Li, J. Li, X. Zheng, J.J.T.J.o.P.C.C. Bai, Hydrogen kinetics on scalable graphene growth by atmospheric pressure chemical vapor deposition with acetylene, The Journal of Physical Chemistry C 117(27) (2013) 14348-14353. [41] L. Banszerus, M. Schmitz, S. Engels, J. Dauber, M. Oellers, F. Haupt, K. Watanabe, T. Taniguchi, B. Beschoten, C.J.S.a. Stampfer, Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper, Science advances 1(6) (2015) e1500222. [42] G. Kalita, M. Tanemura, Fundamentals of Chemical Vapor Deposited Graphene and Emerging Applications, Graphene Materials-Advanced Applications, IntechOpen (2017) 41. [43] W.S. Hummers Jr, R.E.J.J.o.t.a.c.s. Offeman, Preparation of graphitic oxide, Journal of the american chemical society 80(6) (1958) 1339-1339. [44] A. Samal, D.P.J.C.T. Das, Transfiguring UV light active “metal oxides” to visible light active photocatayst by reduced graphene oxide hypostatization, Catalysis Today 300 (2018) 124-135. [45] J.S. Cha, S.H. Park, S.-C. Jung, C. Ryu, J.-K. Jeon, M.-C. Shin, Y.-K.J.J.o.I. Park, E. Chemistry, Production and utilization of biochar: A review, Journal of Industrial and Engineering Chemistry 40 (2016) 1-15. [46] T. Volk, L. Abrahamson, E. White, E. Neuhauser, E. Gray, C. Demeter, C. Lindsey, J. Jarnefeld, D. Aneshansley, R. Pellerin, Developing a willow biomass crop enterprise for bioenergy and bioproducts in the United States, Proceedings of Bioenergy, 2000. [47] Y.-P. Gao, Z.-B. Zhai, K.-J. Huang, Y.-Y.J.N.J.o.C. Zhang, Energy storage applications of biomass-derived carbon materials: batteries and supercapacitors, New Journal of Chemistry 41(20) (2017) 11456-11470. [48] A.M. Abioye, F.N.J.R. Ani, s.e. reviews, Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review, Renewable and sustainable energy reviews 52 (2015) 1282-1293. [49] A. Aworn, P. Thiravetyan, W.J.J.o.A. Nakbanpote, A. Pyrolysis, Preparation and characteristics of agricultural waste activated carbon by physical activation having micro-and mesopores, Journal of Analytical and Applied Pyrolysis 82(2) (2008) 279-285. [50] H. Feng, H. Hu, H. Dong, Y. Xiao, Y. Cai, B. Lei, Y. Liu, M.J.J.o.P.S. Zheng, Hierarchical structured carbon derived from bagasse wastes: a simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors, Journal of Power Sources 302 (2016) 164-173. [51] B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, M.J.E. Cai, E. Science, Nitrogen-doped activated carbon for a high energy hybrid supercapacitor, Energy & Environmental Science 9(1) (2016) 102-106. [52] E. Raymundo‐Piñero, M. Cadek, F. Béguin, Tuning Carbon Materials for Supercapacitors by Direct Pyrolysis of Seaweeds, Advanced Functional Materials 19(7) (2009) 1032-1039. [53] Q. Xie, R. Bao, A. Zheng, Y. Zhang, S. Wu, C. Xie, P.J.A.S.C. Zhao, Engineering, Sustainable low-cost green electrodes with high volumetric capacitance for aqueous symmetric supercapacitors with high energy density, ACS Sustainable Chemistry & Engineering 4(3) (2016) 1422-1430. [54] D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J.J.S. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts, Science 351(6271) (2016) 361-365. [55] Z.-Y. Sui, Y.-N. Meng, P.-W. Xiao, Z.-Q. Zhao, Z.-X. Wei, B.-H.J.A.a.m. Han, interfaces, Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents, ACS applied materials & interfaces 7(3) (2015) 1431-1438. [56] J. Hou, C. Cao, F. Idrees, X.J.A.n. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors, ACS nano 9(3) (2015) 2556-2564. [57] J. Chen, J. Xu, S. Zhou, N. Zhao, C.-P.J.N.E. Wong, Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors, Nano Energy 25 (2016) 193-202. [58] X. Liu, R. Mi, L. Yuan, F. Yang, Z. Fu, C. Wang, Y.J.F.i.c. Tang, Nitrogen-Doped Multi-Scale Porous Carbon for High Voltage Aqueous Supercapacitors, Frontiers in chemistry 6 (2018) 475. [59] Y.-H. Lee, K.-H. Chang, C.-C.J.J.o.P.S. Hu, Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes, Journal of Power Sources 227 (2013) 300-308. [60] C.-T. Hung, N. Yu, C.-T. Chen, P.-H. Wu, X. Han, Y.-S. Kao, T.-C. Liu, Y. Chu, F. Deng, A.J.J.o.M.C.A. Zheng, Highly nitrogen-doped mesoscopic carbons as efficient metal-free electrocatalysts for oxygen reduction reactions, Journal of Materials Chemistry A 2(47) (2014) 20030-20037. [61] H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W.J.N.l. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes, Nano letters 11(6) (2011) 2472-2477. [62] F. Béguin, K. Szostak, G. Lota, E. Frackowiak, A Self‐Supporting Electrode for Supercapacitors Prepared by One‐Step Pyrolysis of Carbon Nanotube/Polyacrylonitrile Blends, Advanced Materials 17(19) (2005) 2380-2384. [63] J. Tan, H. Chen, Y. Gao, H.J.E.A. Li, Nitrogen-doped porous carbon derived from citric acid and urea with outstanding supercapacitance performance, Electrochimica Acta 178 (2015) 144-152. [64] G. Guan, M. Kaewpanha, X. Hao, A.J.R. Abudula, s.e. reviews, Catalytic steam reforming of biomass tar: Prospects and challenges, Renewable and sustainable energy reviews 58 (2016) 450-461. [65] J. Han, H.J.R. Kim, s.e. reviews, The reduction and control technology of tar during biomass gasification/pyrolysis: an overview, Renewable and sustainable energy reviews 12(2) (2008) 397-416. [66] G. Ferrero, A. Fuertes, M.J.S.r. Sevilla, From Soybean residue to advanced supercapacitors, Scientific reports 5 (2015) 16618. [67] Y. Cheng, S. Lu, H. Zhang, C.V. Varanasi, J.J.N.l. Liu, Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors, Nano letters 12(8) (2012) 4206-4211. [68] S. Baskaran, Structure and Regulation of Yeast Glycogen Synthase, 2010. [69] A. Connelly, BET surface area, 2017. https://andyjconnelly.wordpress.com/2017/03/13/bet-surface-area/. [70] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.J.P. Sing, A. Chemistry, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry 87(9-10) (2015) 1051-1069. [71] M.M. Ahmadi, G.A.J.I.T.o.C. Jullien, S.I.R. Papers, Current-mirror-based potentiostats for three-electrode amperometric electrochemical sensors, IEEE Transactions on Circuits and Systems I: Regular Papers 56(7) (2009) 1339-1348. [72] K. Chen, D.J.C.J.o.C. Xue, Multiple Functional Biomass‐Derived Activated Carbon Materials for Aqueous Supercapacitors, Lithium‐Ion Capacitors and Lithium‐Sulfur Batteries, Chinese Journal of Chemistry 35(6) (2017) 861-866. [73] J. Wang, S.J.J.o.M.C. Kaskel, KOH activation of carbon-based materials for energy storage, Journal of Materials Chemistry A 22(45) (2012) 23710-23725. [74] A.C.J.S.s.c. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid state communications 143(1-2) (2007) 47-57. [75] R. Beams, L.G. Cançado, L.J.J.o.P.C.M. Novotny, Raman characterization of defects and dopants in graphene, Journal of Physics: Condensed Matter 27(8) (2015) 083002. [76] J. Ribeiro-Soares, M. Oliveros, C. Garin, M. David, L. Martins, C. Almeida, E. Martins-Ferreira, K. Takai, T. Enoki, R.J.C. Magalhães-Paniago, Structural analysis of polycrystalline graphene systems by Raman spectroscopy, Carbon 95 (2015) 646-652. [77] S. Brunauer, P.H. Emmett, E.J.J.o.t.A.c.s. Teller, Adsorption of gases in multimolecular layers, Journal of the American chemical society 60(2) (1938) 309-319. [78] A. Grosman, C.J.L. Ortega, Capillary condensation in porous materials. Hysteresis and interaction mechanism without pore blocking/percolation process, Langmuir 24(8) (2008) 3977-3986. [79] Y. Zhang, D. Shao, J. Yan, X. Jia, Y. Li, P. Yu, T.J.J.o.N.G.G. Zhang, The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi Formations, Sichuan Basin, China, Journal of Natural Gas Geoscience 1(3) (2016) 213-220. [80] B.-A. Mei, O. Munteshari, J. Lau, B. Dunn, L.J.T.J.o.P.C.C. Pilon, Physical interpretations of Nyquist plots for EDLC electrodes and devices, The Journal of Physical Chemistry C 122(1) (2017) 194-206. [81] S. Ban, J. Zhang, L. Zhang, K. Tsay, D. Song, X.J.E.A. Zou, Charging and discharging electrochemical supercapacitors in the presence of both parallel leakage process and electrochemical decomposition of solvent, Electrochimica Acta 90 (2013) 542-549. [82] W. Fan, Y.-Y. Xia, W.W. Tjiu, P.K. Pallathadka, C. He, T.J.J.o.P.S. Liu, Nitrogen-doped graphene hollow nanospheres as novel electrode materials for supercapacitor applications, Journal of Power Sources 243 (2013) 973-981. [83] J. Han, G. Xu, B. Ding, J. Pan, H. Dou, D.R.J.J.o.M.C.A. MacFarlane, Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors, Journal of Materials Chemistry A 2(15) (2014) 5352-5357. [84] C.-H. Wang, W.-C. Wen, H.-C. Hsu, B.-Y.J.A.P.T. Yao, High-capacitance KOH-activated nitrogen-containing porous carbon material from waste coffee grounds in supercapacitor, Advanced Powder Technology 27(4) (2016) 1387-1395. [85] B.-H. Cheng, K. Tian, R.J. Zeng, H.J.S.E. Jiang, Fuels, Preparation of high performance supercapacitor materials by fast pyrolysis of corn gluten meal waste, Sustainable Energy & Fuels 1(4) (2017) 891-898. [86] C.-S. Yang, Y.S. Jang, H.K.J.C.A.P. Jeong, Bamboo-based activated carbon for supercapacitor applications, Current Applied Physics 14(12) (2014) 1616-1620. [87] E.Y.L. Teo, L. Muniandy, E.-P. Ng, F. Adam, A.R. Mohamed, R. Jose, K.F.J.E.A. Chong, High surface area activated carbon from rice husk as a high performance supercapacitor electrode, Electrochimica Acta 192 (2016) 110-119. [88] S. Senthilkumar, R.K. Selvan, N. Ponpandian, J.J.R.A. Melo, Redox additive aqueous polymer gel electrolyte for an electric double layer capacitor, RSC Advances 2(24) (2012) 8937-8940. [89] N. Choudhury, S. Sampath, A.J.E. Shukla, E. Science, Hydrogel-polymer electrolytes for electrochemical capacitors: an overview, Energy & Environmental Science 2(1) (2009) 55-67. [90] H. Yu, J. Wu, L. Fan, Y. Lin, K. Xu, Z. Tang, C. Cheng, S. Tang, J. Lin, M.J.J.o.P.S. Huang, A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor, Journal of Power Sources 198 (2012) 402-407.
|