帳號:guest(18.118.146.163)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):董丞哲
作者(外文):Tung, Cheng-Che
論文名稱(中文):基於計算之輕量化仿生結構材料設計方法: 由有序排列到生成式設計
論文名稱(外文):Computation-based Design Method for Lightweight Bio-inspired Structural Materials: From Ordered Arrangements to Generative Designs
指導教授(中文):陳柏宇
指導教授(外文):Chen, Po-Yu
口試委員(中文):陳俊杉
張書瑋
周佳靚
游濟華
黃琮暉
口試委員(外文):Chen, Chuin-Shan
Chang, Shu-Wei
Chou, Chia-Ching
Yu, Chi-Hua
Huang, Tsung-Hui
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031529
出版年(民國):111
畢業學年度:111
語文別:英文
論文頁數:146
中文關鍵詞:仿生材料結構材料機械性質輕量化結構設計生成式設計
外文關鍵詞:Bio-inspired materialsStructural materialsMechanical propertiesLightweightStructural designGenerative design
相關次數:
  • 推薦推薦:0
  • 點閱點閱:506
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在40億年的演化史中,生物利用演化克服生存壓力並繁殖延續。對於生物而言,如何有效地利用少數幾種常見元素於常溫常壓下形成多功能的結構材料以應對多變的挑戰,對於個體乃至於族群存續至關重要。許多生物結構材料具有輕量化、高比強度、高能量吸收、兼具剛性與韌性之優異機械性質,成功克服工程材料短板。這些特性多源於結構設計而非單純的成分組成所致,如: 多孔、多尺度、孔洞排列......等。由於大多數生物材料具有多功能性,因此常可觀察到不同結構設計之間的搭配。
本研究集合一系列自主研發之設計方法,用以系統性地設計多種輕量化仿生結構材料。設計方法涵蓋人工規劃二維/三維空間中的排列、給定條件的密度/幾何梯度變化、基於初始條件的生成式設計、以真實三維生物結構作為依據的新型設計。在仿生結構設計上,本研究提出多種新穎設計,如: 費氏數列、三度週期最小曲面(TPMS)、旋節分解、反應擴散......等結構。這些結構不僅可用以描述生物結構,亦提出數學模型可供計算。本設計流程中所產生的結構設計皆具有統一形式與操作模式,故所有方法皆可彈性地互相結合進而創造新的結構。同時,本研究亦整合先進積層製造技術與有限元模擬所需之相關接口,提供一站式設計整合框架。本研究可應用於工程中需輕量化設計之場域,並可擴展至多數仿生結構設計流程當中。在工程學與材料科學發展上具創新價值與應用潛力。
In the four-billion-year history of life evolution, organisms have overcome the pressure of survival through evolution while reproducing and continuing. For organisms, effectively utilizing a few common elements to form multifunctional structural materials at room temperature and pressure to cope with changing challenges is crucial to the survival of individuals and even groups. Many biological structural materials have excellent mechanical properties such as lightweight, high specific strength, high energy absorption, excellent mechanical properties with rigidity and toughness, and successfully overcome the shortcomings of engineering materials. These characteristics are mostly due to structural design rather than simple composition, such as porous, multi-scale, and pore arrangement. Due to the versatility of most biological materials, the collocation between different structural designs is often observed.
This research systematically integrated a series of self-developed design methods to design various lightweight bio-inspired structural materials. The design methods covered artificial planning of arrangements in 2D/3D space, density/geometric gradient changes for given conditions, generative design based on initial conditions, and the creation of new designs based on actual 3D biological structures. In the design of bio-inspired structures, this study proposed various novel designs, such as the Fibonacci sequence, triply periodic minimal surface, spinodal decomposition, reaction-diffusion structure, etc., to interpret biological structures and propose mathematical models available for calculation. The generated structures in this workflow had a unified form and operation mode, so all methods could be flexibly combined to create new structures. At the same time, this research also integrated the relevant interfaces required by advanced additive manufacturing and simulation to provide a one-stop design integration framework. This study could be applied to lightweight engineering design scenarios and extended to most bio-inspired structure design processes. It had innovative value and application potential in engineering and materials science development.
摘要 iii
Abstract iv
Content ix
Figure Caption xii
Table Caption xxiv
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Biological and bio-inspired structural materials 3
2.1.1 Biological materials and structural design elements 3
2.1.2 Bio-inspired structural materials 7
2.1.3 Summary 9
2.2 Lightweight structural designs 10
2.2.1 Cellular solids 10
2.2.2 Pore arrangement 14
2.2.3 Triply periodic minimal surfaces 18
2.2.4 Spinodal decomposition 20
2.2.5 Reaction-diffusion model 22
2.2.6 Summary 23
2.3 Additive manufacturing 24
2.3.1 Fused deposition modeling 25
2.3.2 Stereolithography 26
2.3.3 Digital light processing 27
2.3.4 PolyJet 28
2.3.5 Selective laser melting/sintering 29
2.3.6 Summary 29
2.4 Simulations 30
2.4.1 Finite element methods 30
2.4.2 Particle-based simulations 32
2.4.3 Summary 34
Chapter 3 Methodology 35
3.1 Lightweight structural designs and generation 35
3.1.1 Computer-aided and element-based designs 35
3.1.2 Structural condition designs and generation 38
3.1.3 Mathematical description designs 42
3.1.4 Generative design by phase-field model 44
3.2 Structure operation and storage methods 48
3.2.1 Continuous to discrete transformation 48
3.2.2 Serialize 3D structures into 2D array sequences 51
3.2.3 Structural variation based on 2D-layered changes 52
3.2.4 Existing structure-based designs 54
3.3 Additive manufacturing 57
3.3.1 Fused deposition modeling 58
3.3.2 Stereolithography and digital light processing 60
3.3.4 PolyJet 64
3.3.5 Selective laser melting/sintering 66
3.4 Quasi-static testing by universal testing machines 67
3.5 Material structure analysis 70
3.5.1 Explicit material structure distribution and analysis 70
3.5.2 Implicit material structure distribution and analysis 72
3.6 Simulations 77
3.6.1 Finite element methods 77
3.6.2 Particle-based simulations 79
Chapter 4 Results and Discussion 80
4.1 Lightweight materials inspired by nature patterns 80
4.1.1 Compression-resistant structures from Liquidambar formosana 80
4.1.2 Tensile-resistant structures inspired by natural patterns 88
4.1.3 Related works 95
4.2 Lightweight materials inspired by periodic surfaces and phase-field methods 102
4.2.1 Programmable and systematically generated TPMS structures 102
4.2.2 Phase-field generated lightweight structures 108
4.3 Lightweight materials inspired by biological materials and design elements 112
4.3.1 Lightweight materials generated from biological structure data 112
4.3.2 Related works 117
4.4 Structural design hybrid framework 123
Chapter 5 Conclusions 127
Chapter 6 Future Work 132
6.1 Limitations of this study and potential improvements 132
6.2 Normal vector distribution 133
6.3 Phase-field-driven topology optimization 135
6.4 Bio-inspired structural adapted materials design 136
6.5 Machine learning-aided lightweight structural design 138
6.6 Multi-property coupled structural material design 140
References 141
[1] R.O. Ritchie, Nat Mater 2011, 10, 817.
[2] M.F. Ashby, Materials Selection in Mechanical Design, Butterworth-Heinemann, Oxford 2016.
[3] M.V. Antisari, C. Badini, A.R. Boccaccini, Advanced Engineering Materials and Technologies – EuMaT Strategic Research Agenda 2 Nd Edition – 2012, 2013.
[4] M.A. Meyers, P.Y. Chen, M.I. Lopez, Y. Seki, A.Y.M. Lin, J Mech Behav Biomed Mater 2011, 4, 626.
[5] M.A. Meyers, P.-Y. Chen, A.Y.-M. Lin, Y. Seki, Prog Mater Sci 2008, 53, 1.
[6] X. Guo, H. Gao, Solid Mechanics and Its Applications 2006, 137, 439.
[7] S.E. Naleway, M.M. Porter, J. McKittrick, M.A. Meyers, Advanced Materials 2015, 27, 5455.
[8] U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Nat Mater 2015, 14, 23.
[9] U.G.K. Wegst, M.F. Ashby, Philosophical Magazine 2004, 84, 2167.
[10] H.M. Yang, Y.C. Chan, T.H. Hsu, H.W. Chen, J.W. Lee, J.G. Duh, P.Y. Chen, Surf Coat Technol 2015, 284, 118.
[11] P.Y. Chen, A.Y.M. Lin, J. McKittrick, M.A. Meyers, Acta Biomater 2008, 4, 587.
[12] O. Al-Ketan, R.K. Abu Al-Rub, Adv Eng Mater 2019, 21, 1.
[13] B.D. Wilts, K. Michielsen, J. Kuipers, H. de Raedt, D.G. Stavenga, Proceedings of the Royal Society B: Biological Sciences 2012, 279, 2524.
[14] T. Yang, H. Chen, Z. Jia, Z. Deng, L. Chen, E.M. Peterman, J.C. Weaver, L. Li, Science (1979) 2022, 375, 647.
[15] C.H. Wu, A. Park, D. Joester, J Am Chem Soc 2011, 133, 1658.
[16] A. Jantschke, I. Pinkas, A. Schertel, L. Addadi, S. Weiner, Acta Biomater 2020, 102, 427.
[17] Z. Yin, F. Hannard, F. Barthelat, Science (1979) 2019, 364, 1260.
[18] K. Wu, Z. Song, S. Zhang, Y. Ni, S. Cai, X. Gong, L. He, S.H. Yu, Proc Natl Acad Sci U S A 2020, 117, 15465.
[19] O. Al-Ketan, R.K.A. Al-Rub, R. Rowshan, Adv Mater Technol 2017, 2, 1.
[20] O. Al-Ketan, M. Adel Assad, R.K. Abu Al-Rub, Compos Struct 2017, 176, 9.
[21] D.J. Yoo, International Journal of Precision Engineering and Manufacturing 2015, 16, 2577.
[22] Lorna J. Gibson, Michael F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press1999.
[23] R. Goodall Dr, Porous Metals: Foams and Sponges, 2013.
[24] M.F. Ashby, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2006, 364, 15.
[25] M.W. Wu, J.K. Chen, B.H. Lin, P.H. Chiang, M.K. Tsai, Materials Science and Engineering A 2020, 790.
[26] S. Pramanik, D. Milaege, K.-P. Hoyer, M. Schaper, Materials Science and Engineering: A 2022, 854, 143887.
[27] M. Tomin, Á. Kmetty, J Appl Polym Sci 2022, 139, 1.
[28] Q.Y. Jin, J.H. Yu, K.S. Ha, W.J. Lee, S.H. Park, Mater Des 2021, 201, 109479.
[29] H. Zhou, M. Zhao, Z. Ma, D.Z. Zhang, G. Fu, Int J Mech Sci 2020, 175.
[30] K.D. Traxel, C. Groden, J. Valladares, A. Bandyopadhyay, Materials Science and Engineering A 2021, 809, 140925.
[31] E.D. Sanders, A. Pereira, G.H. Paulino, Sci Adv 2021, 7, 1.
[32] K. Liu, R. Sun, C. Daraio, Science (1979) 2022, 377, 975.
[33] G. Wang, L. Shen, J. Zhao, H. Liang, D. Xie, Z. Tian, C. Wang, ACS Biomater Sci Eng 2018, 4, 719.
[34] S. Yu, J. Sun, J. Bai, Mater Des 2019, 182, 108021.
[35] S. Jiang, A. Göpfert, V. Abetz, Macromolecules 2003, 36, 6171.
[36] B. Deng, G.J. Cheng, Mater Horiz 2021, 8, 987.
[37] Y. Deng, M. Mieczkowski, Protoplasma 1998, 203, 16.
[38] S.C. Han, K. Kang, Materials Today 2019, 31, 31.
[39] A.H. Schoen, Infinite Periodic Minimal Surfaces without Self-Intersections, 1970.
[40] H. Karcher, Manuscr Math 1989, 64, 291.
[41] H. Karcher, K. Polthier, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 1996, 354, 2077.
[42] S. Catchpole-Smith, R.R.J. Sélo, A.W. Davis, I.A. Ashcroft, C.J. Tuck, A. Clare, Addit Manuf 2019, 30, 100846.
[43] A. Panesar, M. Abdi, D. Hickman, I. Ashcroft, Addit Manuf 2018, 19, 81.
[44] S. Ma, K. Song, J. Lan, L. Ma, J Mech Behav Biomed Mater 2020, 107.
[45] D.W. Abueidda, M. Elhebeary, C.S. (Andrew) Shiang, S. Pang, R.K. Abu Al-Rub, I.M. Jasiuk, Mater Des 2019, 165, 107597.
[46] D.W. Lee, K.A. Khan, R.K. Abu Al-Rub, Int J Plast 2017, 95, 1.
[47] C. Bonatti, D. Mohr, J Mech Phys Solids 2019, 122, 1.
[48] S.Z. Khan, S.H. Masood, E. Ibrahim, Z. Ahmad, Virtual Phys Prototyp 2019, 14, 360.
[49] K. Binder, Theory of Phase Transitions, 1982.
[50] P. de Gennes, Scaling Concepts in Polymer, Cornell University Press; UK, Londan 1979.
[51] M.T. Hsieh, B. Endo, Y. Zhang, J. Bauer, L. Valdevit, J Mech Phys Solids 2019, 125, 401.
[52] C.L. Park, J.W. Gibbs, P.W. Voorhees, K. Thornton, Acta Mater 2017, 132, 13.
[53] C.L. Park, P.W. Voorhees, K. Thornton, Acta Mater 2015, 90, 182.
[54] J. Bauer, M. Sala-Casanovas, M. Amiri, L. Valdevit, Sci Adv 2022, 8, 3080.
[55] S. Tavares, J. Machado, J. Svoboda, D.A. Sigala-García, V.M. López-Hirata, M.L. Saucedo-Muñoz, H.J. Dorantes-Rosales, J.D. Villegas-Cárdenas, 2022.
[56] Alan Mathison Turing, Philosophical Transactions of the Royal Society B: Biological Sciences 1952, 237.
[57] A. Heyde, L. Guo, C. Jost, G. Theraulaz, L. Mahadevan, Proc Natl Acad Sci U S A 2021, 118, 1.
[58] S. Kondo, T. Miura, T. Turing, Science (1979) 2010, 329, 1616.
[59] A. Fofonjka, M.C. Milinkovitch, Nat Commun 2021, 12, 1.
[60] M. Doshi, A. Mahale, S.K. Singh, S. Deshmukh, Mater Today Proc 2021, 50, 2269.
[61] M. Qamar Tanveer, G. Mishra, S. Mishra, R. Sharma, Mater Today Proc 2022, 62, 100.
[62] J. Huang, Q. Qin, J. Wang, Processes 2020, 8.
[63] A. Kafle, E. Luis, R. Silwal, H.M. Pan, P.L. Shrestha, A.K. Bastola, Polymers (Basel) 2021, 13, 1.
[64] L.J. Hornbeck, Projection Displays III 1997, 3013, 27.
[65] Y. Li, Q. Mao, J. Yin, Y. Wang, J. Fu, Y. Huang, Addit Manuf 2021, 37, 101716.
[66] C. Bader, D. Kolb, J.C. Weaver, S. Sharma, A. Hosny, J. Costa, N. Oxman, Sci Adv 2018, 4.
[67] N. Vidakis, M. Petousis, N. Vaxevanidis, J. Kechagias, Mathematics 2020, 8, 1.
[68] J. Kechagias, P. Stavropoulos, A. Koutsomichalis, I. Ntintakis, N. Vaxevanidis, Advances in Mechanical Engineering, Materials and Mechanics, Springer Cham2019.
[69] S. Bremen, W. Meiners, A. Diatlov, Laser Technik Journal 2012, 9, 33.
[70] C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Appl Phys Rev 2015, 2.
[71] I. Maskery, N.T. Aboulkhair, A.O. Aremu, C.J. Tuck, I.A. Ashcroft, Addit Manuf 2017, 16, 24.
[72] Z. Qin, L. Wu, H. Sun, S. Huo, T. Ma, E. Lim, P.Y. Chen, B. Marelli, M.J. Buehler, Extreme Mech Lett 2020, 36, 100652.
[73] C. Yu, B. Tseng, Z. Yang, C. Tung, E. Zhao, Z. Ren, S. Yu, P. Chen, C. Chen, M.J. Buehler, Adv Theory Simul 2022, 2200459, 1.
[74] O. Rahman, B. Koohbor, Composites Part C: Open Access 2020, 3, 100052.
[75] G.X. Gu, F. Libonati, S.D. Wettermark, M.J. Buehler, J Mech Behav Biomed Mater 2017, 76, 135.
[76] C.C. Tung, H.J. Wang, P.Y. Chen, J Mech Behav Biomed Mater 2020, 110, 103961.
[77] S.Z. Khan, S.H. Masood, E. Ibrahim, Z. Ahmad, Virtual Phys Prototyp 2019, 14, 360.
[78] S. Wang, J. Wang, Y. Xu, W. Zhang, J. Zhu, Frontiers of Mechanical Engineering 2020, 15, 319.
[79] A. Ingrole, A. Hao, R. Liang, Mater Des 2017, 117, 72.
[80] G.X. Gu, S. Wettermark, M.J. Buehler, Addit Manuf 2017, 17, 47.
[81] S.R.G. Bates, I.R. Farrow, R.S. Trask, Mater Des 2019, 162, 130.
[82] S. Yu, J. Sun, J. Bai, Mater Des 2019, 182, 108021.
[83] J.P.D. Harshit K. Dave, Fused Deposition Modeling Based 3D Printing, Springer Cham2021.
[84] C. Tung, Y. Chen, W. Chen, P. Chen, Mater Des 2022, 222, 111076.
[85] D.A. de Aquino, I. Maskery, G.A. Longhitano, A.L. Jardini, E.G. del Conte, International Journal of Advanced Manufacturing Technology 2020, 109, 771.
[86] S.R.G. Bates, I.R. Farrow, R.S. Trask, Mater Des 2016, 112, 172.
[87] E.M. Maines, M.K. Porwal, C.J. Ellison, T.M. Reineke, Green Chemistry 2021, 23, 6863.
[88] H. Quan, T. Zhang, H. Xu, S. Luo, J. Nie, X. Zhu, Bioact Mater 2020, 5, 110.
[89] D. Dong, H. Su, X. Li, G. Fan, D. Zhao, Z. Shen, Y. Liu, Y. Guo, C. Yang, L. Liu, H. Fu, J Manuf Process 2022, 81, 433.
[90] M. Layani, X. Wang, S. Magdassi, Advanced Materials 2018, 30, 1.
[91] R. Hamzehei, A. Serjouei, N. Wu, A. Zolfagharian, M. Bodaghi, Adv Eng Mater 2022, 2200656.
[92] C. Ling, A. Cernicchi, M.D. Gilchrist, P. Cardiff, Mater Des 2019, 162, 106.
[93] G. Burke, D.M. Devine, I. Major, Polymers (Basel) 2020, 12, 1.
[94] M. Mukhtarkhanov, A. Perveen, D. Talamona, Micromachines (Basel) 2020, 11.
[95] Q. Chen, B. Zou, Q. Lai, K. Zhu, Ceram Int 2022, 48, 30917.
[96] E. Truszkiewicz, A. Thalhamer, M. Rossegger, M. Vetter, G. Meier, E. Rossegger, P. Fuchs, S. Schlögl, M. Berer, J Appl Polym Sci 2022, 139, 1.
[97] Q. Ge, B. Jian, H. Li, Forces in Mechanics 2022, 6.
[98] Y. Bao, N. Paunović, J.C. Leroux, Adv Funct Mater 2022, 32.
[99] Y. Yao, W. Qin, B. Xing, N. Sha, T. Jiao, Z. Zhao, Journal of Advanced Ceramics 2021, 10, 39.
[100] C. Zhang, Y. Yuan, Y. Zeng, J. Chen, Ceram Int 2022, 48, 27765.
[101] G. Qi, Y. Zeng, J. Chen, Ceram Int 2022, 48, 14568.
[102] W. Zhao, C. Wang, B. Xing, M. Shen, Z. Zhao, Mater Res Express 2020, 7.
[103] F. Liu, T. Li, X. Jiang, Z. Jia, Z. Xu, L. Wang, Addit Manuf 2020, 36.
[104] A. Pugalendhi, R. Ranganathan, M. Chandrasekaran, International Journal of Advanced Manufacturing Technology 2020, 108, 1049.
[105] N. Sathishkumar, N. Vivekanandan, L. Balamurugan, N. Arunkumar, I. Ahamed, Mater Today Proc 2019, 22, 2934.
[106] C. Lancea, I. Campbell, L.A. Chicos, S.M. Zaharia, Polymers (Basel) 2020, 12, 1.
[107] W. Liu, H. Song, C. Huang, Addit Manuf 2020, 35, 101257.
[108] M. Bodaghi, A. Serjouei, A. Zolfagharian, M. Fotouhi, H. Rahman, D. Durand, Int J Mech Sci 2020, 173, 105451.
[109] X. Sheng, H. Xu, N. Zhang, N. Ding, X. Zhu, G. Gu, Sens Actuators A Phys 2020, 316, 112398.
[110] J. Hajnys, M. Pagac, J. Mesicek, J. Petru, F. Spalek, Advances in Materials Science 2020, 20, 5.
[111] N. Kalentics, M.O.V. de Seijas, S. Griffiths, C. Leinenbach, R.E. Logé, Addit Manuf 2020, 33, 101112.
[112] I. Zglobicka, A. Chmielewska, E. Topal, K. Kutukova, J. Gluch, P. Krüger, C. Kilroy, W. Swieszkowski, K.J. Kurzydlowski, E. Zschech, Sci Rep 2019, 9, 1.
[113] J. Ge, J. Huang, Y. Lei, P. O’Reilly, M. Ahmed, C. Zhang, X. Yan, S. Yin, Surf Coat Technol 2020, 403, 126419.
[114] O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Elsevier2013.
[115] E.M. Feerick, X.C. Liu, P. McGarry, J Mech Behav Biomed Mater 2013, 20, 77.
[116] K. Yun, Z. Wang, S. Ronald, Y. Pak, Int J Mech Sci 2017, 130, 487.
[117] N. Mos, J. Dolbow, T. Belytschko, Int J Numer Methods Eng 1999, 46, 131.
[118] M. Ostoja-Starzewski, Appl Mech Rev 2002, 55, 35.
[119] F. Wang, K. Liu, D. Li, B. Ji, Journal of Applied Mechanics, Transactions ASME 2020, 87.
[120] F. Libonati, V. Cipriano, L. Vergani, M.J. Buehler, ACS Biomater Sci Eng 2017, 3, 3236.
[121] L. Brely, F. Bosia, N.M. Pugno, Front Mater 2015, 2, 1.
[122] N. Yang, T. Li, L. Zhang, Wood Sci Technol 2020, 54, 63.
[123] B. Boots, K. Sugihara, S.N. Chiu, A. Okabe, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, John Wiley \& Sons2009.
[124] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, \.Ilhan Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, SciPy 1.0 Contributors, Nat Methods 2020, 17, 261.
[125] C.B. Barber, D.P. Dobkin, H. Huhdanpaa, ACM Transactions on Mathematical Software 1996, 22, 469.
[126] J.W. Cahn, J Chem Phys 1959, 30, 1121.
[127] P. Gray, S.K. Scott, Chem Eng Sci 1984, 39, 1087.
[128] J.E. Pearson, Science (1979) 1993, 261, 189.
[129] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, AAAI Press1996, 226.
[130] D.D. Luong, V.C. Shunmugasamy, N. Gupta, D. Lehmhus, J. Weise, J. Baumeister, Mater Des 2015, 66, 516.
[131] Illinois Tool Works Inc., 2009.
[132] Illinois Tool Works Inc., 2009.
[133] J.T. Gostick, N. Misaghian, J. Yang, E.S. Boek, Comput Geosci 2022, 158.
[134] J. Gostick, Z. Khan, T. Tranter, M. Kok, M. Agnaou, M. Sadeghi, R. Jervis, J Open Source Softw 2019, 4, 1296.
[135] Dawson-Haggerty et al., 2019.
[136] D. Cohen-Steiner, J.M. Morvan, Proceedings of the Annual Symposium on Computational Geometry 2003, 312.
[137] Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, IEEE Transactions on Image Processing 2004, 13, 600.
[138] D.L. Logan, A First Course in the Finite Element Method, Cengage Learning, Stamford 2016.
[139] K.C. Nguyen, P. Tran, H.X. Nguyen, Autom Constr 2019, 99, 79.
[140] Y. Chiang, C.C. Tung, X. di Lin, P.Y. Chen, C.S. Chen, S.W. Chang, Compos Struct 2021, 262, 113349.
[141] Y.-Y. Lai, Bio-Inspirations from Dragonfly Wings: Optimization of 2D Voronoi Structures and Mechanical Properties by A.I.-Based Genetic Algorithm, National Tsing Hua University, 2021.
[142] Z. Michalewicz, M. Schoenauer, Evol Comput 1996, 4, 1.
[143] C. Yen-Shuo, Design, Fabrication, Mechanical Testing, and Modeling of Bio-Inspired, Helically Oriented Tubular Structures, National Tsing Hua University, 2021.
(此全文20271213後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 鱷魚骨板之啟發:防禦性生物複合材料之多尺度結構分析及機械性質研究
2. 烏賊骨板之結構與機械性質設計研究
3. 具多階層蜂巢結構的能量吸收器之面內壓縮行為:設計因素與可調控性能
4. 惡魔鐵甲蟲與菊石啟發具多階層扣鎖縫合結構之壓縮和拉伸機械性質研究
5. 仿生螺旋排列管狀結構之設計、製造、機械性質量測與模擬
6. 透過仿生拓樸互鎖與多層結構設計增強複合材料之機械性質
7. 以化學氣相沉積法增強陶瓷支架之機械性質
8. 鮑魚珍珠層之仿生啟發: 以濺鍍與脈衝雷射蒸鍍複合技術合成氧化鋯/聚醯亞胺多層膜之微結構分析與機械性質研究
9. 兩種水棲昆蟲之吸附結構與機制研究:以石蛉幼蟲與網蚊幼蟲為啟發
10. 甲殼類外殼之仿生啟發:以濺鍍與脈衝雷射蒸鍍複合系統合成氧化鋯與氧化鈦/聚亞醯胺多層鍍膜之研究
11. 鯊魚牙齒之多尺度結構觀察與機械性質研究
12. 以扶桑及多孔植物為模板- 凝膠溶膠法合成TiO2及CaCO3 之研究
13. Inspirations from the Peristome of Nepenthes: Microstructural Characterization and Wettability Measurement of Multifunctional Surfaces Synthesized by Bio-replication and Surface Modification Techniques
14. Multi-scale Structural Characterization and Attachment Mechanisms of the Hillstream River Loach (Sinogastromyzon puliensis)
15. Multi-scale Structural Characterization and Mechanical Evaluation of Protective Bio-composites: Inspirations from Cobra Snake and Chinese Striped-neck Turtle Eggshells
 
* *