|
[1] Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Tsau C.H., and Chang S.Y., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303. [2] Miracle D.B. and Senkov O.N., A critical review of high entropy alloys and related concepts. Acta Materialia, 2017. 122: p. 448-511. [3] Miracle D., Miller J., Senkov O., Woodward C., Uchic M., and Tiley J., Exploration and Development of High Entropy Alloys for Structural Applications. Entropy, 2014. 16(1): p. 494-525. [4] Senkov O.N., Senkova S.V., Woodward C., and Miracle D.B., Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Materialia, 2013. 61(5): p. 1545-1557. [5] Senkov O.N., Wilks G.B., Scott J.M., and Miracle D.B., Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011. 19(5): p. 698-706. [6] Senkov O.N., Scott J.M., Senkova S.V., Meisenkothen F., Miracle D.B., and Woodward C.F., Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. Journal of Materials Science, 2012. 47(9): p. 4062-4074. [7] Senkov O.N., Scott J.M., Senkova S.V., Miracle D.B., and Woodward C.F., Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys and Compounds, 2011. 509(20): p. 6043-6048. [8] Stepanov N.D., Yurchenko N.Y., Zherebtsov S.V., Tikhonovsky M.A., and Salishchev G.A., Aging behavior of the HfNbTaTiZr high entropy alloy. Materials Letters, 2018. 211: p. 87-90. [9] Kolli R. and Devaraj A., A Review of Metastable Beta Titanium Alloys. Metals, 2018. 8(7). [10] Banerjee D. and Williams J.C., Perspectives on Titanium Science and Technology. Acta Materialia, 2013. 61(3): p. 844-879. [11] Donachie M.J., Titanium: A Technical Guide, 2nd Edition. [12] Smith W.F., Structure and Properties of Engineering Alloys. [13] Abdel-Hady M., Phase stability change with Zr content in b-type Ti–Nb alloys. 2007. [14] Jin Y.X., Li K.Y., Chen H.M., and Xiang H.F., Effect of Rolling Process on Microstructure and Texture of Cold Rolled Ti-6Al-4V Seamless Tubes. Advanced Materials Research, 2012. 557-559: p. 191-197. [15] da Rocha S.S., Adabo G.L., Henriques G.E., and Nobilo M.A., Vickers hardness of cast commercially pure titanium and Ti-6Al-4V alloy submitted to heat treatments. Braz Dent J, 2006. 17(2): p. 126-9. [16] ATI Ti-6Al-4V, Grade 5. [17] Pinke P. and Réger M., HEAT TREATMENT OF THE CASTED Ti6Al4V TITANIUM ALLOY TEPELNÉ SPRACOVANIE LIATEJ TITÁNOVEJ ZLIATINY Ti6Al4V. [18] Li Z., Zheng B., Kurmanaeva L., Zhou Y., Valiev R.Z., and Lavernia E.J., High-strain induced reverse martensitic transformation in an ultrafine-grained Ti-Nb-Ta-Zr alloy. Philosophical Magazine Letters, 2016. 96(5): p. 189-195. [19] Yeh J.-W., Alloy Design Strategies and Future Trends in High-Entropy Alloys. Jom, 2013. 65(12): p. 1759-1771. [20] Yeh J.-W., Physical Metallurgy of High-Entropy Alloys. Jom, 2015. 67(10): p. 2254-2261. [21] Jien-Wei Y.J.A.C.S.M., Recent progress in high entropy alloys. 2006. 31(6): p. 633-648. [22] Yeh J.-W., Chang S.-Y., Hong Y.-D., Chen S.-K., and Lin S.-J., Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Materials Chemistry and Physics, 2007. 103(1): p. 41-46. [23] Sheikh S., Shafeie S., Hu Q., Ahlström J., Persson C., Veselý J., Zýka J., Klement U., and Guo S., Alloy design for intrinsically ductile refractory high-entropy alloys. Journal of Applied Physics, 2016. 120(16). [24] N.D.Stepanov, Aging behavior of the HfNbTaTiZr high entropy alloy. Materials Letters 211 (2018) 87–90. [25] Reed-Hill R.E. and Abbaschian R., Physical Metallurgy Principles. 1992: PWS-Kent Pub. [26] Ivasishin O.M., Markovsky P.E., Matviychuk Y.V., Semiatin S.L., Ward C.H., and Fox S., A comparative study of the mechanical properties of high-strength β-titanium alloys. Journal of Alloys and Compounds, 2008. 457(1-2): p. 296-309. [27] Song R., Ponge D., Raabe D., Speer J.G., and Matlock D.K., Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Materials Science and Engineering: A, 2006. 441(1-2): p. 1-17. [28] Mignanelli P.M., Jones N.G., Pickering E.J., Messé O.M.D.M., Rae C.M.F., Hardy M.C., and Stone H.J., Gamma-gamma prime-gamma double prime dual-superlattice superalloys. Scripta Materialia, 2017. 136: p. 136-140. [29] Porter D.A., Easterling K.E., and Sherif M., Phase Transformations in Metals and Alloys, (Revised Reprint). 2009: CRC press. [30] Li Z., Pradeep K.G., Deng Y., Raabe D., and Tasan C.C., Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 2016. 534(7606): p. 227-30. [31] Huang H., Wu Y., He J., Wang H., Liu X., An K., Wu W., and Lu Z., Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering. Adv Mater, 2017. 29(30). [32] Abdel-Hady M., Hinoshita K., and Morinaga M., General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scripta Materialia, 2006. 55(5): p. 477-480. [33] Takeuchi A. and Inoue A., Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Materials Transactions, 2005. 46(12): p. 2817-2829. [34] Davis J.R., ASM handbook. Vol. 2. 1990: ASM International. [35] Raabe D. introduction to Titanium Alloys. Available from: http://www.dierk-raabe.com/titanium-alloys/. [36] 阮建彰, Hf-Mo-Nb-Ta-Ti-Zr耐火高熵合金之微結構及機械性質探討. 2016. [37] Sikka S., Vohra Y., and Chidambaram R.J.P.i.M.S., Omega phase in materials. 1982. 27(3-4): p. 245-310. [38] Hickman B.J.J.o.M.S., The formation of omega phase in titanium and zirconium alloys: A review. 1969. 4(6): p. 554-563. [39] Li T., Kent D., Sha G., Stephenson L.T., Ceguerra A.V., Ringer S.P., Dargusch M.S., and Cairney J.M., New insights into the phase transformations to isothermal ω and ω-assisted α in near β-Ti alloys. Acta Materialia, 2016. 106: p. 353-366.
|