帳號:guest(3.141.25.214)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳淑嫣
作者(外文):Chen, Shu-Yen
論文名稱(中文):以三維裂環共振器實現之等向性完美吸收體
論文名稱(外文):Isotropic perfect absorbers realized by three-dimensional split ring resonators
指導教授(中文):嚴大任
指導教授(外文):Yen, Ta-Jen
口試委員(中文):陳哲勤
黃承彬
林鶴南
口試委員(外文):Chen, Che-Chin
Huang, Chen-Bin
Lin, Heh-Nan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031523
出版年(民國):108
畢業學年度:108
語文別:英文
論文頁數:61
中文關鍵詞:超材料完美吸收體三維自組裝中紅外不受極化角影響
外文關鍵詞:MetamaterialsPerfect absorberThree-dimensionalSelf-assemblyMid-infraredPolarization-independence
相關次數:
  • 推薦推薦:0
  • 點閱點閱:231
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
超材料完美吸收體自成功地實現於多種幾何形狀的實驗研究以來,透過各式各樣的實際應用展現其廣泛的用途。隨著超材料的發展和奈米科技的進步,許多基於超材料完美吸收體所製造的元件由平面轉成立體化。因此,許多三維結構所具有的獨特性質和迷人特性為超材料領域帶來了新奇並使其成長。
在三維超材料的製備中我們採用了應力驅動技術,即存在於材料系統中的應變梯度驅使平面圖形在經過選擇性蝕刻後捲起而形成三維圖形。此方法的優點是不需要重複地進行複雜的曝光步驟即能直接由一個平面組成立體結構。如此一來,既節省了大量的時間又能避免在曝光過程中由於未精確對準而造成的不完美,藉此提高了應力驅動的自組裝技術在奈米科技中的地位。
綜合以上所述,本論文提出了一種透過應力驅動的自組裝技術所建構的等向性三維超材料完美吸收體。透過各項數值模擬以及實驗的結果驗證了此結構不僅具有不受偏振角度影響的特性,還具有能夠容忍光以較大傾斜角度入射的能力。最重要的是,這個三維吸收體在中紅外波段的吸光度可達到97%以上。而在應用方面,我們在實驗過程中觀察到可以通過改變在此三維結構設計中捲起的手臂之曲率以調整其吸光能力的強弱。因此,我們將此發現視為此等向性三維完美吸收體可做為可調諧元件的潛力。展望未来,隨著奈米技術和超材料的發展,這個三維超材料完美吸收體值得被期待以多樣的方式進行各式應用。
Metamaterial perfect absorbers (MPA) have been broadly implemented in a variety of practical applications since they were successfully demonstrated with several kinds of geometry. With the evolution of metamaterials as well as the progress of nanotechnology, a lot of devices based on the MPA are transformed from planar patterns into stereoscopic structures. Consequentially, numerous unique and fascinating properties stemming from three-dimensional structures bring about the novelty and growing in the field of metamaterials.
As for the fabrication of the three-dimensional metamaterial, we adopted the stress-driven technique in which the strain-gradient exiting in the material system drove a flat pattern to roll up into a three-dimensional structure after the selective etching process. The advantage of this approach is that a stereoscopic structure can be formed directly from a planar pattern without multiple and complicated exposure steps. In this way, both the significant time saving feature and the avoidance of imprecision resulting from the misalignment during the exposure promote the status of stress-driven self-assembly technique in the nanotechnology.
To summarize, in this thesis, we propose an isotropic three-dimensional metamaterial perfect absorber which is constructed by the stress-driven self-assembly methodology. Not only the independence of polarized angle but also the wide tolerance of oblique incidence is presented by our designed structure numerically and experimentally. Most of all, this three-dimensional absorber achieves the absorbance up to 97% in the mid-infrared region. In terms of its application, we discover that the curvature of arms is one of the factors that can adjust the absorptive ability of this three-dimensional absorber, and which makes the perfect absorber a potential candidate for tunable devices. Going forward, with the growth in nanotechnology and metamaterials, it is expected that this metamaterial perfect absorber based on the vertical split ring resonators (VSRRs) can be used in a variety way.
摘要 I
Abstract II
誌謝 IV
Content V
List of Figures VII
List of Tables XIII
1 Introduction 1
1.1 Metamaterials 1
1.2 Vertical Split Ring Resonators (VSRRs) 5
1.3 Thesis Overview 8
2 Literature review 9
2.1 Three-dimensional metamaterials 9
2.2 Perfect absorber 17
3 Design and Simulation 23
3.1 Motivation 23
3.2 Simulation 25
3.2.1 CST Microwave Studio TM 25
3.2.2 Simulation setup 26
3.3 Simulation results and discussion 28
3.3.1 High absorbance 28
3.3.2 Polarization-independent property 34
3.3.3 Wide angle absorbance 35
4 Fabrication, Measurement and Discussion 37
4.1 Fabrication and measurement 37
4.1.1 Fabrication process 37
4.1.2 Mid-infrared (MIR) measurement 40
4.2 Measurement results and discussion 43
4.2.1 High absorbance 43
4.2.2 Polarization-independent property 47
4.2.3 Wide angle absorbance 48
5 Conclusions and Future Prospects 50
5.1 Conclusion 50
5.2 Future prospect 51
References 52
Appendix 61
Conference publication 61
1. Jackson, J.D., Classical electrodynamics john wiley & sons. Inc., New York, 1999. 13.
2. Liu, Y. and X. Zhang, Metamaterials: a new frontier of science and technology. Chemical Society Reviews, 2011. 40(5): p. 2494-2507.
3. Veselago, V.G., THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF ϵ AND μ. Physics-Uspekhi, 1968. 10(4): p. 509-514.
4. Pendry, J.B., Negative refraction makes a perfect lens. Physical review letters, 2000. 85(18): p. 3966.
5. Shelby, R.A., D.R. Smith, and S. Schultz, Experimental verification of a negative index of refraction. science, 2001. 292(5514): p. 77-79.
6. Yen, T.-J., et al., Terahertz magnetic response from artificial materials. Science, 2004. 303(5663): p. 1494-1496.
7. Schurig, D., et al., Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006. 314(5801): p. 977-980.
8. Alu, A., et al., Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. Physical review B, 2007. 75(15): p. 155410.
9. Pendry, J.B., et al., Magnetism from conductors and enhanced nonlinear phenomena. IEEE transactions on microwave theory and techniques, 1999. 47(11): p. 2075-2084.
10. Soukoulis, C.M. and M. Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials. nature photonics, 2011. 5(9): p. 523.
11. Tanaka, T., A. Ishikawa, and S. Kawata, Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure. Applied Physics Letters, 2006. 88(8): p. 081107.
12. Fan, K., et al., Stand-up magnetic metamaterials at terahertz frequencies. Optics Express, 2011. 19(13): p. 12619-12627.
13. Wu, P.C., et al., Magnetic plasmon induced transparency in three-dimensional metamolecules. Nanophotonics, 2012. 1(2): p. 131-138.
14. Wu, P.C., et al., Isotropic absorption and sensor of vertical split‐ring resonator. Advanced Optical Materials, 2017. 5(2): p. 1600581.
15. Emerson, D.T., The work of Jagadis Chandra Bose: 100 years of millimeter-wave research. IEEE Transactions on Microwave Theory and Techniques, 1997. 45(12): p. 2267-2273.
16. Lakhtakia, A., W.S. Weiglhofer, and I.J. Hodgkinson. Complex mediums II: Beyond linear isotropic dielectrics. in Complex Mediums II: Beyond Linear Isotropic Dielectrics. 2001.
17. Chen, H.-T., A.J. Taylor, and N. Yu, A review of metasurfaces: physics and applications. Reports on progress in physics, 2016. 79(7): p. 076401.
18. Ko, H.C., et al., A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 2008. 454(7205): p. 748.
19. Ahn, B.Y., et al., Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science, 2009. 323(5921): p. 1590-1593.
20. Xu, S., et al., Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 2015. 347(6218): p. 154-159.
21. Yan, Z., et al., Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Science advances, 2016. 2(9): p. e1601014.
22. Ergin, T., et al., Three-dimensional invisibility cloak at optical wavelengths. science, 2010. 328(5976): p. 337-339.
23. Gansel, J.K., et al., Gold helix photonic metamaterial as broadband circular polarizer. Science, 2009. 325(5947): p. 1513-1515.
24. Deubel, M., et al., Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nature materials, 2004. 3(7): p. 444.
25. Valentine, J., et al., Three-dimensional optical metamaterial with a negative refractive index. nature, 2008. 455(7211): p. 376.
26. Von Freymann, G., et al., Three‐dimensional nanostructures for photonics. Advanced Functional Materials, 2010. 20(7): p. 1038-1052.
27. Yu, X., et al., Passive wavelength tuning and multichannel photonic coupling using monolithically integrated vertical microresonators on ridge waveguides. Applied Physics Letters, 2018. 112(2): p. 021108.
28. Huang, M., et al., Nanomechanical architecture of semiconductor nanomembranes. Nanoscale, 2011. 3(1): p. 96-120.
29. Dong, L., et al. Nanorobotics for creating NEMS from 3D helical nanostructures. in Journal of Physics: Conference Series. 2007. IOP Publishing.
30. Rogers, J., et al., Origami mems and nems. Mrs Bulletin, 2016. 41(2): p. 123-129.
31. Ning, X., et al., 3D Tunable, Multiscale, and Multistable Vibrational Micro‐Platforms Assembled by Compressive Buckling. Advanced Functional Materials, 2017. 27(14): p. 1605914.
32. Zhang, S., et al., Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks. Optics express, 2006. 14(15): p. 6778-6787.
33. Zhang, S., et al., Near-infrared double negative metamaterials. Optics Express, 2005. 13(13): p. 4922-4930.
34. Eleftheriades, G.V., Analysis of bandwidth and loss in negative-refractive-index transmission-line (NRI–TL) media using coupled resonators. IEEE microwave and wireless components letters, 2007. 17(6): p. 412-414.
35. Grbic, A. and G.V. Eleftheriades, Overcoming the diffraction limit with a planar left-handed transmission-line lens. Physical Review Letters, 2004. 92(11): p. 117403.
36. Lai, A., T. Itoh, and C. Caloz, Composite right/left-handed transmission line metamaterials. IEEE microwave magazine, 2004. 5(3): p. 34-50.
37. Li, T., et al., Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission. Optics Express, 2006. 14(23): p. 11155-11163.
38. Andres, C.M., et al., Nanocomposite microcontainers. Advanced Materials, 2012. 24(34): p. 4597-4600.
39. Burckel, D.B., et al., Fabrication of 3D Metamaterial Resonators Using Self‐Aligned Membrane Projection Lithography. Advanced Materials, 2010. 22(29): p. 3171-3175.
40. Vyatskikh, A., et al., Additive manufacturing of 3D nano-architected metals. Nature communications, 2018. 9(1): p. 593.
41. Cumpston, B.H., et al., Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature, 1999. 398(6722): p. 51.
42. Kawata, S., et al., Finer features for functional microdevices. Nature, 2001. 412(6848): p. 697.
43. Chu, W., et al., Centimeter‐Height 3D Printing with Femtosecond Laser Two‐Photon Polymerization. Advanced Materials Technologies, 2018. 3(5): p. 1700396.
44. Skylar-Scott, M.A., S. Gunasekaran, and J.A. Lewis, Laser-assisted direct ink writing of planar and 3D metal architectures. Proceedings of the National Academy of Sciences, 2016. 113(22): p. 6137-6142.
45. Destino, J.F., et al., 3D printed optical quality silica and silica–titania glasses from sol–gel feedstocks. Advanced Materials Technologies, 2018. 3(6): p. 1700323.
46. Chanda, D., et al., Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nature nanotechnology, 2011. 6(7): p. 402.
47. Kim, J.H., et al., 3D printing of reduced graphene oxide nanowires. Advanced Materials, 2015. 27(1): p. 157-161.
48. García‐Tuñon, E., et al., Printing in three dimensions with graphene. Advanced Materials, 2015. 27(10): p. 1688-1693.
49. Niu, Z., et al., A leavening strategy to prepare reduced graphene oxide foams. Advanced Materials, 2012. 24(30): p. 4144-4150.
50. Vickery, J.L., A.J. Patil, and S. Mann, fabrication of graphene–polymer nanocomposites with higher‐order three‐dimensional architectures. Advanced Materials, 2009. 21(21): p. 2180-2184.
51. Shenoy, V.B. and D.H. Gracias, Self-folding thin-film materials: From nanopolyhedra to graphene origami. Mrs Bulletin, 2012. 37(9): p. 847-854.
52. Meza, L.R., S. Das, and J.R. Greer, Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science, 2014. 345(6202): p. 1322-1326.
53. Zheng, X., et al., Multiscale metallic metamaterials. Nature materials, 2016. 15(10): p. 1100.
54. Liu, N., et al., Three-dimensional photonic metamaterials at optical frequencies. Nature materials, 2008. 7(1): p. 31.
55. Bassik, N., G.M. Stern, and D.H. Gracias, Microassembly based on hands free origami with bidirectional curvature. Applied physics letters, 2009. 95(9): p. 091901.
56. Chalapat, K., et al., Self‐Organized Origami Structures via Ion‐Induced Plastic Strain. Advanced Materials, 2013. 25(1): p. 91-95.
57. Pandey, S., et al., Algorithmic design of self-folding polyhedra. Proceedings of the National Academy of Sciences, 2011. 108(50): p. 19885-19890.
58. Gracias, D.H., et al., Fabrication of Micrometer‐Scale, Patterned Polyhedra by Self‐Assembly. Advanced Materials, 2002. 14(3): p. 235-238.
59. Yan, Z., et al., Controlled mechanical buckling for origami‐inspired construction of 3D microstructures in advanced materials. Advanced functional materials, 2016. 26(16): p. 2629-2639.
60. Xu, L., T.C. Shyu, and N.A. Kotov, Origami and kirigami nanocomposites. Acs Nano, 2017. 11(8): p. 7587-7599.
61. Xu, C., et al., Rolled‐up Nanotechnology: Materials Issue and Geometry Capability. Advanced Materials Technologies, 2019. 4(1): p. 1800486.
62. Huang, G. and Y. Mei, Assembly and Self‐Assembly of Nanomembrane Materials—From 2D to 3D. Small, 2018. 14(14): p. 1703665.
63. Prinz, V.Y., et al., Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays. Physica E: Low-dimensional Systems and Nanostructures, 2000. 6(1-4): p. 828-831.
64. Cavallo, F., W. Sigle, and O. Schmidt, Controlled fabrication of Cr∕ Si and Cr∕ Si Ge tubes tethered to insulator substrates. 2008, AIP.
65. Luchnikov, V., O. Sydorenko, and M. Stamm, Self‐rolled polymer and composite polymer/metal micro‐and nanotubes with patterned inner walls. Advanced Materials, 2005. 17(9): p. 1177-1182.
66. Golod, S., et al., Freestanding SiGe/Si/Cr and SiGe/Si/Si x N y/Cr microtubes. Applied physics letters, 2004. 84(17): p. 3391-3393.
67. Ramachandran, R., D. Johnson-McDaniel, and T.T. Salguero, Formation and scrolling behavior of metal fluoride and oxyfluoride nanosheets. Chemistry of Materials, 2016. 28(20): p. 7257-7267.
68. Li, J., et al., Dry‐Released Nanotubes and Nanoengines by Particle‐Assisted Rolling. Advanced Materials, 2013. 25(27): p. 3715-3721.
69. Chen, C.C., et al., Fabrication of three dimensional split ring resonators by stress-driven assembly method. Optics express, 2012. 20(9): p. 9415-9420.
70. Chen, C.C., et al., Uniaxial‐isotropic Metamaterials by Three‐Dimensional Split‐Ring Resonators. Advanced Optical Materials, 2015. 3(1): p. 44-48.
71. Ma, H.F. and T.J. Cui, Three-dimensional broadband ground-plane cloak made of metamaterials. Nature communications, 2010. 1: p. 21.
72. Yin, M., et al., All-dielectric three-dimensional broadband Eaton lens with large refractive index range. Applied Physics Letters, 2014. 104(9): p. 094101.
73. Zhu, S. and T. Li, Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake, storage, and release. ACS nano, 2014. 8(3): p. 2864-2872.
74. Bunch, J.S., et al., Impermeable atomic membranes from graphene sheets. Nano letters, 2008. 8(8): p. 2458-2462.
75. Choi, K., et al., Reduced water vapor transmission rate of graphene gas barrier films for flexible organic field-effect transistors. ACS nano, 2015. 9(6): p. 5818-5824.
76. Berry, V., Impermeability of graphene and its applications. Carbon, 2013. 62: p. 1-10.
77. Joung, D., et al., Self-assembled three-dimensional graphene-based polyhedrons inducing volumetric light confinement. Nano letters, 2017. 17(3): p. 1987-1994.
78. Grimm, D., et al., Rolled-up nanomembranes as compact 3D architectures for field effect transistors and fluidic sensing applications. Nano letters, 2012. 13(1): p. 213-218.
79. Ayala, A.M., Metamaterial Absorber Design and Implementation for Cruise Control Radar Applications. Master of Science Thesis, Tufts University, USA, 2009.
80. Ruck, G.T., et al., Radar cross section handbook. Vol. 1. 1970: Plenum press New York.
81. Salisbury, W.W., Absorbent body for electromagnetic waves. 1952, Google Patents.
82. Emerson, W., Electromagnetic wave absorbers and anechoic chambers through the years. IEEE Transactions on Antennas and Propagation, 1973. 21(4): p. 484-490.
83. Wanghuang, T., et al., Analysis of metamaterial absorber in normal and oblique incidence by using interference theory. AIP Advances, 2013. 3(10): p. 102118.
84. Chambers, B., Optimum design of a Salisbury screen radar absorber. Electronics Letters, 1994. 30(16): p. 1353-1354.
85. Knott, E. and C. Lunden, The two-sheet capacitive Jaumann absorber. IEEE Transactions on Antennas and Propagation, 1995. 43(11): p. 1339-1343.
86. Landy, N.I., et al., Perfect metamaterial absorber. Physical review letters, 2008. 100(20): p. 207402.
87. Tao, H., et al., A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Optics express, 2008. 16(10): p. 7181-7188.
88. Avitzour, Y., Y.A. Urzhumov, and G. Shvets, Wide-angle infrared absorber based on a negative-index plasmonic metamaterial. Physical Review B, 2009. 79(4): p. 045131.
89. Liu, X., et al., Infrared spatial and frequency selective metamaterial with near-unity absorbance. Physical review letters, 2010. 104(20): p. 207403.
90. Aydin, K., et al., Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature communications, 2011. 2: p. 517.
91. Liu, N., et al., Infrared perfect absorber and its application as plasmonic sensor. Nano letters, 2010. 10(7): p. 2342-2348.
92. Wu, C., et al., Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. Journal of Optics, 2012. 14(2): p. 024005.
93. Hendrickson, J., et al., Wideband perfect light absorber at midwave infrared using multiplexed metal structures. Optics letters, 2012. 37(3): p. 371-373.
94. Cao, T., et al., Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies. Scientific reports, 2014. 4: p. 3955.
95. Bai, Y., et al., Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial. Optics express, 2015. 23(7): p. 8670-8680.
96. Zhou, J., et al., Application of metasurface description for multilayered metamaterials and an alternative theory for metamaterial perfect absorber. arXiv preprint arXiv:1111.0343, 2011.
97. Ding, F., et al., Ultra-broadband microwave metamaterial absorber. Applied physics letters, 2012. 100(10): p. 103506.
98. Gandomi, Y.A., et al., Critical review—experimental diagnostics and material characterization techniques used on redox flow batteries. Journal of The Electrochemical Society, 2018. 165(5): p. A970-A1010.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *