|
1. Jackson, J.D., Classical electrodynamics john wiley & sons. Inc., New York, 1999. 13. 2. Liu, Y. and X. Zhang, Metamaterials: a new frontier of science and technology. Chemical Society Reviews, 2011. 40(5): p. 2494-2507. 3. Veselago, V.G., THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF ϵ AND μ. Physics-Uspekhi, 1968. 10(4): p. 509-514. 4. Pendry, J.B., Negative refraction makes a perfect lens. Physical review letters, 2000. 85(18): p. 3966. 5. Shelby, R.A., D.R. Smith, and S. Schultz, Experimental verification of a negative index of refraction. science, 2001. 292(5514): p. 77-79. 6. Yen, T.-J., et al., Terahertz magnetic response from artificial materials. Science, 2004. 303(5663): p. 1494-1496. 7. Schurig, D., et al., Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006. 314(5801): p. 977-980. 8. Alu, A., et al., Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. Physical review B, 2007. 75(15): p. 155410. 9. Pendry, J.B., et al., Magnetism from conductors and enhanced nonlinear phenomena. IEEE transactions on microwave theory and techniques, 1999. 47(11): p. 2075-2084. 10. Soukoulis, C.M. and M. Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials. nature photonics, 2011. 5(9): p. 523. 11. Tanaka, T., A. Ishikawa, and S. Kawata, Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure. Applied Physics Letters, 2006. 88(8): p. 081107. 12. Fan, K., et al., Stand-up magnetic metamaterials at terahertz frequencies. Optics Express, 2011. 19(13): p. 12619-12627. 13. Wu, P.C., et al., Magnetic plasmon induced transparency in three-dimensional metamolecules. Nanophotonics, 2012. 1(2): p. 131-138. 14. Wu, P.C., et al., Isotropic absorption and sensor of vertical split‐ring resonator. Advanced Optical Materials, 2017. 5(2): p. 1600581. 15. Emerson, D.T., The work of Jagadis Chandra Bose: 100 years of millimeter-wave research. IEEE Transactions on Microwave Theory and Techniques, 1997. 45(12): p. 2267-2273. 16. Lakhtakia, A., W.S. Weiglhofer, and I.J. Hodgkinson. Complex mediums II: Beyond linear isotropic dielectrics. in Complex Mediums II: Beyond Linear Isotropic Dielectrics. 2001. 17. Chen, H.-T., A.J. Taylor, and N. Yu, A review of metasurfaces: physics and applications. Reports on progress in physics, 2016. 79(7): p. 076401. 18. Ko, H.C., et al., A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 2008. 454(7205): p. 748. 19. Ahn, B.Y., et al., Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science, 2009. 323(5921): p. 1590-1593. 20. Xu, S., et al., Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 2015. 347(6218): p. 154-159. 21. Yan, Z., et al., Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Science advances, 2016. 2(9): p. e1601014. 22. Ergin, T., et al., Three-dimensional invisibility cloak at optical wavelengths. science, 2010. 328(5976): p. 337-339. 23. Gansel, J.K., et al., Gold helix photonic metamaterial as broadband circular polarizer. Science, 2009. 325(5947): p. 1513-1515. 24. Deubel, M., et al., Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nature materials, 2004. 3(7): p. 444. 25. Valentine, J., et al., Three-dimensional optical metamaterial with a negative refractive index. nature, 2008. 455(7211): p. 376. 26. Von Freymann, G., et al., Three‐dimensional nanostructures for photonics. Advanced Functional Materials, 2010. 20(7): p. 1038-1052. 27. Yu, X., et al., Passive wavelength tuning and multichannel photonic coupling using monolithically integrated vertical microresonators on ridge waveguides. Applied Physics Letters, 2018. 112(2): p. 021108. 28. Huang, M., et al., Nanomechanical architecture of semiconductor nanomembranes. Nanoscale, 2011. 3(1): p. 96-120. 29. Dong, L., et al. Nanorobotics for creating NEMS from 3D helical nanostructures. in Journal of Physics: Conference Series. 2007. IOP Publishing. 30. Rogers, J., et al., Origami mems and nems. Mrs Bulletin, 2016. 41(2): p. 123-129. 31. Ning, X., et al., 3D Tunable, Multiscale, and Multistable Vibrational Micro‐Platforms Assembled by Compressive Buckling. Advanced Functional Materials, 2017. 27(14): p. 1605914. 32. Zhang, S., et al., Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks. Optics express, 2006. 14(15): p. 6778-6787. 33. Zhang, S., et al., Near-infrared double negative metamaterials. Optics Express, 2005. 13(13): p. 4922-4930. 34. Eleftheriades, G.V., Analysis of bandwidth and loss in negative-refractive-index transmission-line (NRI–TL) media using coupled resonators. IEEE microwave and wireless components letters, 2007. 17(6): p. 412-414. 35. Grbic, A. and G.V. Eleftheriades, Overcoming the diffraction limit with a planar left-handed transmission-line lens. Physical Review Letters, 2004. 92(11): p. 117403. 36. Lai, A., T. Itoh, and C. Caloz, Composite right/left-handed transmission line metamaterials. IEEE microwave magazine, 2004. 5(3): p. 34-50. 37. Li, T., et al., Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission. Optics Express, 2006. 14(23): p. 11155-11163. 38. Andres, C.M., et al., Nanocomposite microcontainers. Advanced Materials, 2012. 24(34): p. 4597-4600. 39. Burckel, D.B., et al., Fabrication of 3D Metamaterial Resonators Using Self‐Aligned Membrane Projection Lithography. Advanced Materials, 2010. 22(29): p. 3171-3175. 40. Vyatskikh, A., et al., Additive manufacturing of 3D nano-architected metals. Nature communications, 2018. 9(1): p. 593. 41. Cumpston, B.H., et al., Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature, 1999. 398(6722): p. 51. 42. Kawata, S., et al., Finer features for functional microdevices. Nature, 2001. 412(6848): p. 697. 43. Chu, W., et al., Centimeter‐Height 3D Printing with Femtosecond Laser Two‐Photon Polymerization. Advanced Materials Technologies, 2018. 3(5): p. 1700396. 44. Skylar-Scott, M.A., S. Gunasekaran, and J.A. Lewis, Laser-assisted direct ink writing of planar and 3D metal architectures. Proceedings of the National Academy of Sciences, 2016. 113(22): p. 6137-6142. 45. Destino, J.F., et al., 3D printed optical quality silica and silica–titania glasses from sol–gel feedstocks. Advanced Materials Technologies, 2018. 3(6): p. 1700323. 46. Chanda, D., et al., Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nature nanotechnology, 2011. 6(7): p. 402. 47. Kim, J.H., et al., 3D printing of reduced graphene oxide nanowires. Advanced Materials, 2015. 27(1): p. 157-161. 48. García‐Tuñon, E., et al., Printing in three dimensions with graphene. Advanced Materials, 2015. 27(10): p. 1688-1693. 49. Niu, Z., et al., A leavening strategy to prepare reduced graphene oxide foams. Advanced Materials, 2012. 24(30): p. 4144-4150. 50. Vickery, J.L., A.J. Patil, and S. Mann, fabrication of graphene–polymer nanocomposites with higher‐order three‐dimensional architectures. Advanced Materials, 2009. 21(21): p. 2180-2184. 51. Shenoy, V.B. and D.H. Gracias, Self-folding thin-film materials: From nanopolyhedra to graphene origami. Mrs Bulletin, 2012. 37(9): p. 847-854. 52. Meza, L.R., S. Das, and J.R. Greer, Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science, 2014. 345(6202): p. 1322-1326. 53. Zheng, X., et al., Multiscale metallic metamaterials. Nature materials, 2016. 15(10): p. 1100. 54. Liu, N., et al., Three-dimensional photonic metamaterials at optical frequencies. Nature materials, 2008. 7(1): p. 31. 55. Bassik, N., G.M. Stern, and D.H. Gracias, Microassembly based on hands free origami with bidirectional curvature. Applied physics letters, 2009. 95(9): p. 091901. 56. Chalapat, K., et al., Self‐Organized Origami Structures via Ion‐Induced Plastic Strain. Advanced Materials, 2013. 25(1): p. 91-95. 57. Pandey, S., et al., Algorithmic design of self-folding polyhedra. Proceedings of the National Academy of Sciences, 2011. 108(50): p. 19885-19890. 58. Gracias, D.H., et al., Fabrication of Micrometer‐Scale, Patterned Polyhedra by Self‐Assembly. Advanced Materials, 2002. 14(3): p. 235-238. 59. Yan, Z., et al., Controlled mechanical buckling for origami‐inspired construction of 3D microstructures in advanced materials. Advanced functional materials, 2016. 26(16): p. 2629-2639. 60. Xu, L., T.C. Shyu, and N.A. Kotov, Origami and kirigami nanocomposites. Acs Nano, 2017. 11(8): p. 7587-7599. 61. Xu, C., et al., Rolled‐up Nanotechnology: Materials Issue and Geometry Capability. Advanced Materials Technologies, 2019. 4(1): p. 1800486. 62. Huang, G. and Y. Mei, Assembly and Self‐Assembly of Nanomembrane Materials—From 2D to 3D. Small, 2018. 14(14): p. 1703665. 63. Prinz, V.Y., et al., Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays. Physica E: Low-dimensional Systems and Nanostructures, 2000. 6(1-4): p. 828-831. 64. Cavallo, F., W. Sigle, and O. Schmidt, Controlled fabrication of Cr∕ Si and Cr∕ Si Ge tubes tethered to insulator substrates. 2008, AIP. 65. Luchnikov, V., O. Sydorenko, and M. Stamm, Self‐rolled polymer and composite polymer/metal micro‐and nanotubes with patterned inner walls. Advanced Materials, 2005. 17(9): p. 1177-1182. 66. Golod, S., et al., Freestanding SiGe/Si/Cr and SiGe/Si/Si x N y/Cr microtubes. Applied physics letters, 2004. 84(17): p. 3391-3393. 67. Ramachandran, R., D. Johnson-McDaniel, and T.T. Salguero, Formation and scrolling behavior of metal fluoride and oxyfluoride nanosheets. Chemistry of Materials, 2016. 28(20): p. 7257-7267. 68. Li, J., et al., Dry‐Released Nanotubes and Nanoengines by Particle‐Assisted Rolling. Advanced Materials, 2013. 25(27): p. 3715-3721. 69. Chen, C.C., et al., Fabrication of three dimensional split ring resonators by stress-driven assembly method. Optics express, 2012. 20(9): p. 9415-9420. 70. Chen, C.C., et al., Uniaxial‐isotropic Metamaterials by Three‐Dimensional Split‐Ring Resonators. Advanced Optical Materials, 2015. 3(1): p. 44-48. 71. Ma, H.F. and T.J. Cui, Three-dimensional broadband ground-plane cloak made of metamaterials. Nature communications, 2010. 1: p. 21. 72. Yin, M., et al., All-dielectric three-dimensional broadband Eaton lens with large refractive index range. Applied Physics Letters, 2014. 104(9): p. 094101. 73. Zhu, S. and T. Li, Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake, storage, and release. ACS nano, 2014. 8(3): p. 2864-2872. 74. Bunch, J.S., et al., Impermeable atomic membranes from graphene sheets. Nano letters, 2008. 8(8): p. 2458-2462. 75. Choi, K., et al., Reduced water vapor transmission rate of graphene gas barrier films for flexible organic field-effect transistors. ACS nano, 2015. 9(6): p. 5818-5824. 76. Berry, V., Impermeability of graphene and its applications. Carbon, 2013. 62: p. 1-10. 77. Joung, D., et al., Self-assembled three-dimensional graphene-based polyhedrons inducing volumetric light confinement. Nano letters, 2017. 17(3): p. 1987-1994. 78. Grimm, D., et al., Rolled-up nanomembranes as compact 3D architectures for field effect transistors and fluidic sensing applications. Nano letters, 2012. 13(1): p. 213-218. 79. Ayala, A.M., Metamaterial Absorber Design and Implementation for Cruise Control Radar Applications. Master of Science Thesis, Tufts University, USA, 2009. 80. Ruck, G.T., et al., Radar cross section handbook. Vol. 1. 1970: Plenum press New York. 81. Salisbury, W.W., Absorbent body for electromagnetic waves. 1952, Google Patents. 82. Emerson, W., Electromagnetic wave absorbers and anechoic chambers through the years. IEEE Transactions on Antennas and Propagation, 1973. 21(4): p. 484-490. 83. Wanghuang, T., et al., Analysis of metamaterial absorber in normal and oblique incidence by using interference theory. AIP Advances, 2013. 3(10): p. 102118. 84. Chambers, B., Optimum design of a Salisbury screen radar absorber. Electronics Letters, 1994. 30(16): p. 1353-1354. 85. Knott, E. and C. Lunden, The two-sheet capacitive Jaumann absorber. IEEE Transactions on Antennas and Propagation, 1995. 43(11): p. 1339-1343. 86. Landy, N.I., et al., Perfect metamaterial absorber. Physical review letters, 2008. 100(20): p. 207402. 87. Tao, H., et al., A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Optics express, 2008. 16(10): p. 7181-7188. 88. Avitzour, Y., Y.A. Urzhumov, and G. Shvets, Wide-angle infrared absorber based on a negative-index plasmonic metamaterial. Physical Review B, 2009. 79(4): p. 045131. 89. Liu, X., et al., Infrared spatial and frequency selective metamaterial with near-unity absorbance. Physical review letters, 2010. 104(20): p. 207403. 90. Aydin, K., et al., Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature communications, 2011. 2: p. 517. 91. Liu, N., et al., Infrared perfect absorber and its application as plasmonic sensor. Nano letters, 2010. 10(7): p. 2342-2348. 92. Wu, C., et al., Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. Journal of Optics, 2012. 14(2): p. 024005. 93. Hendrickson, J., et al., Wideband perfect light absorber at midwave infrared using multiplexed metal structures. Optics letters, 2012. 37(3): p. 371-373. 94. Cao, T., et al., Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies. Scientific reports, 2014. 4: p. 3955. 95. Bai, Y., et al., Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial. Optics express, 2015. 23(7): p. 8670-8680. 96. Zhou, J., et al., Application of metasurface description for multilayered metamaterials and an alternative theory for metamaterial perfect absorber. arXiv preprint arXiv:1111.0343, 2011. 97. Ding, F., et al., Ultra-broadband microwave metamaterial absorber. Applied physics letters, 2012. 100(10): p. 103506. 98. Gandomi, Y.A., et al., Critical review—experimental diagnostics and material characterization techniques used on redox flow batteries. Journal of The Electrochemical Society, 2018. 165(5): p. A970-A1010.
|