帳號:guest(3.17.174.204)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林瑋翔
作者(外文):Lin, Woei-Shyang
論文名稱(中文):耐磨耗新型銅合金之開發
論文名稱(外文):Development of Innovative Copper Alloys with Superior Wear Resistance
指導教授(中文):蔡哲瑋
指導教授(外文):Tsai, Che-Wei
口試委員(中文):葉均蔚
陳育良
口試委員(外文):Yeh, Jien-Wei
Chen, Yu-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031520
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:101
中文關鍵詞:析出強化型銅合金磨耗阻抗導電度硬度時效硬化
外文關鍵詞:precipitation hardened copper alloywear resistanceelectrical conductivityhardnessage hardening
相關次數:
  • 推薦推薦:0
  • 點閱點閱:307
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究是以固溶多元素銅合金為基礎,經熱處理後析出硬化,開發數款兼具硬度與導電性之銅合金,旨在取代昂貴且製程中具有毒性的銅鈹合金。於研究中觀察合金微結構、硬度與導電度之時效曲線,並探討其於室溫下、高溫與潤滑油環境下之耐磨耗性質。量測本研究尖峰時效態合金之導電度,並與 C17200 銅鈹合金進行比較,探討新合金的實際應用性質。
在此合金系列中,鎳矽化合物為主要析出相,可在合金時效處理後,提升其硬度與導電度;鋁、鉻、鐵、錫元素則提供固溶強化、晶粒細化之性質。故本實驗將針對鎳、矽、鋁含量的變化,對合金微結構、硬度與導電度表現進行研究。
應用性質方面,本研究開發之新型合金綜合性能表現優異,其滾軋退火態在具有 290.4 Hv 硬度與 23.7 % IACS 導電度的同時,也保有 2199.25 m/(MPa∙mm^3) 的室溫磨耗阻抗,其摩擦係數為 0.73。有 6840.00 m/(MPa∙mm^3) 的油溫磨耗阻抗。對比銅鈹合金,本研究合金之硬度為C17200其 72 %、導電度為其99 %,更具有 208 % 之室溫磨耗阻抗與 205 % 之油溫磨耗阻抗之提升。
On the basis of multi-component alloy with precipitation hardening, a series of innovative copper alloys with superior hardness and conductivity are developed to replace beryllium copper for high cost and toxicity. For further commercial application, microstructures, age hardening, dry and wet sliding wear resistances of the present alloys are analyzed and compared with C17200 beryllium copper.
In this study, Ni-Si compounds act as precipitates, giving rise to the increases on hardness and conductivity. Additionally, aluminum, chromium, iron, and tin elements provide properties such as solid solution strengthening and grain refining. Therefore, the effects of nickel, silicon, and aluminum on microstructure, hardness, and conductivity are studied.
In the aspect of commercial application, the innovative copper alloy in this study demonstrates excellent performance with 290.4 Hv in hardness and 23.7 % IACS in conductivity, which are 72 % and 99 % of those of C17200 alloy. Besides, the dry and wet sliding wear resistances of the innovative copper alloy are 2199.25 m/(MPa∙mm^3) at ambient temperature and 6840.00 m/(MPa∙mm^3) at elevated temperature, respectively, which makes an improvement of 208 % and 205 % compared with those of C17200 alloy.
致謝 I
摘 要 V
Abstract VI
目錄 VIII
圖目錄 XII
表目錄 XVI
第一章 前言 1
第二章 文獻回顧 4
2.1 純銅之基本性質與用途 4
2.2 銅合金之種類 4
2.2.1 黃銅 5
2.2.2 青銅 5
2.2.3 特殊青銅(磷青銅、鋁青銅、銅鎳矽合金與銅鈹合金) 6
2.3 時效析出對合金硬度與導電度之影響 14
2.4 元素混合焓 14
2.5 析出物的形成 16
2.6 添加固溶元素對銅合金硬度之影響 17
2.7 氧化沾黏層之生成 19
2.8 本研究之目的 21
第三章 實驗方法 22
3.1 實驗步驟 22
3.2 合金原料配製與真空電弧熔煉 22
3.3 放電切割 24
3.4 均質化處理 24
3.5 冷滾軋 24
3.6 時效處理 25
3.7 微結構觀察 25
3.7.1 X-ray 結晶繞射分析 (XRD) 25
3.7.2 掃描式電子顯微鏡 (SEM) 25
3.7.3 穿透式電子顯微鏡 (TEM) 26
3.8 機械性質量測 26
3.8.1 硬度量測 26
3.8.2 室溫黏著磨耗試驗 26
3.8.3 油溫磨耗試驗 27
3.9 室溫電阻量測 28
第四章 實驗結果 30
4.1 合金微結構 30
4.1.1 第一型銅合金 30
4.1.2 第二型銅合金 33
4.1.3 第三型銅合金 37
4.1.4 第四型銅合金 41
4.1.5 第五型銅合金 45
4.1.6 TEM 微結構分析 49
4.2新型銅合金系列之物理性質 51
4.2.1 室溫硬度比較 51
4.2.2 室溫導電度比較 57
4.2.3 室溫磨耗比較 64
4.2.4 油溫磨耗比較 80
4.3合金系列之應用特性 81
第五章 討 論 83
5.1熱處理之奈米晶析出強化微結構 83
5.2冷滾軋對析出強化之影響 84
5.3鋁含量對導電度之影響 87
5.4合金之抗磨耗性質 89
第六章 結 論 93
第七章 研究貢獻 95
第八章 未來研究方向 96
第九章 參考文獻 97
參考文獻
[1] 林安熙, 高工空中教學金屬材料學(全). 台北市: 中華出版社, (1982) 164-178.
[2] Hiroaki Okamoto, Mark E. Schlesinger, Erik M. Mueller. Metals Hand Book Volume 03: Alloys Phase Diagrams: ASM International, (1992) 94-178.
[3] 吳裕慶, 金屬材料學. 台北市: 大中國圖書公司, (1982) 179-200.
[4] 劉火欽, 金屬材料. 台北市: 三民書局, (1991) 215-232.
[5] C. W. Tsai, M. H. Tsai, J. W. Yeh, and C. C. Yang. Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy. Journal of Alloys and Compounds, 490 (2010) 160-165.
[6] 呂思賢. 高硬度無鈹之銅合金開發研究. 國立清華大學材料科學工程研究所碩士論文, (2010).
[7] 劉舒佩. 無鈹高性能銅合金之開發. 國立清華大學材料科學工程研究所碩士論文, (2012).
[8] 邱文芳. 取代 Cu-Be 合金之無鈹銅合金開發. 國立清華大學材料科學工程研究所碩士論文, (2014).
[9] 黃紀蓉. 高強度高導電銅合金之開發. 國立清華大學材料科學工程研究所碩士論文, (2015).
[10] A. Fateh, M. Aliofkhazraei, A.R. Rezvanian. Review of corrosive environments for copper and its corrosion inhibitors. Arabian Journal of Chemistry, (2015).
[11] 呂璞石, 黃振賢. 金屬材料(增訂版). 台北市: 文京圖書有限公司, (1986) 354-376.
[12] J. Anantapong, V. Uthaisangsuk, S. Suranuntchai, A. Manonukul. Additive manufacturing of Cu–10Sn bronze. Materials & Design, 60 (2014), 233-243.
[13] Kongjie Jin, Zhuhui Qiao, Shengyu Zhu, Jun Cheng, Bing Yin, Jun Yang. Synthesis effects of Cr and Ag on the tribological properties of Cu–9Al–5Ni–4Fe–Mn bronze under seawater condition. Tribology International, 101 (2016) 69-80.
[14] Z.Y. Pan, M.P. Wang, Z. Li, Z. Xiao, C. Chen. Thermomechanical treatment of super high strength Cu-8.0Ni-1.8Si alloy. Transactions of Nonferrous Metals Society of China, 17 (2007) 1076-1080.
[15] Z. Li, Z. Y. Pan, Y. Y. Zhao, Z. Xiao, and M. P. Wang. Microstructure and properties of high-conductivity, super-high-strength Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg alloy. Journal of Materials Research, 24 (2009) 2123-2129.
[16] 第一伸銅科技股份有限公司, http://www.fcht.com.tw/cmainpage.htm.
[17] W. F. Smith. Structure and Properties of Engineering Alloys, 2nd edition. Singapore: McGraw-Hill, In, (1993) 233-278.
[18] A.I.H. Committee, Metals handbook, vol. 2, Properties and selection: nonferrous alloys and special-purpose materials. Materials Park, OH: ASM International, (1990) 557-562.
[19] V. A. Phillips and L. E. Tanner. High resolution electron microscope observations on G.P. zones in an aged Cu-1.97wt.% Be crystal. Acta Metallurgica, 21 (1973) 441-448.
[20] Naoya Kamikawa, Kensuke Sato, Goro Miyamoto, Mitsuhiro Murayama, Nobuaki Sekido, Kaneaki Tsuzaki, Tadashi Furuhara. Stress–strain behavior of ferrite and bainite with nano-precipitation in low carbon steels. Acta Materialia, 83 (2015) 383-396.
[21] Xie Guoliang, Wang Qiangsong, Mi Xujun, Xiong Baiqing, Peng Lijun. The precipitation behavior and strengthening of a Cu–2.0 wt% Be alloy. Materials Science & Engineering A, 558 (2012) 326-330.
[22] Yi Zhang, Alex A. Volinsky, Hai T. Tran, Zhe Chai, Ping Liu, Baohong Tian, Yong Liu. Aging behavior and precipitates analysis of the Cu–Cr–Zr–Ce alloy. Materials Science & Engineering A, 650 (2016) 248-253.
[23] Akira Takeuchi and Akihisa Inoue. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Materials Transactions, 46, 12 (2005) 2817-2829.
[24] Yake Wu, Ya Li, Junyong Lu, Sai Tan, Feng Jiang, Jun Sun. Correlations between microstructures and properties of Cu-Ni-Si-Cr alloy. Materials Science & Engineering A, 731 (2018) 403-412.
[25] Hui Xie, Lei Jia, Zhenlin Lu. Microstructure and solidification behavior of Cu–Ni–Si alloys. Materials Characterization, 60 (2009) 114-118.
[26] Q. Lei, Z. Li, C. Dai, J. Wang, X. Chen, J.M. Xie, W.W. Yang, D.L. Chen. Effect of aluminum on microstructure and property of Cu–Ni–Si alloys. Materials Science & Engineering A, 572 (2013) 65-74.
[27] F. H. Stott. The role of oxidation in the wear of alloys. Tribology International, 31 (1998) 61-71.
[28] S. Fürtauer, D. Li, D. Cupid, H. Flandorfer. The Cu-Sn phase diagram, Part I: New experimental results. Intermetallics, 34 (2013) 142-147.
[29] G. J. Butterworth and C. B. A. Forty. A survey of the properties of copper-alloys for use as fusion reactor materials. Journal of Nuclear Materials, 189 (1992) 237-276.
[30] William Duffy. Acoustic quality factor of copper alloys from 50 mK to 300 K. Journal of Applied Physics, 86 (1999) 2483.
[31] J. L. Sullivan, L. F. Wong. Wear of aluminum bronze on steel under conditions of boundary lubrication. Tribology International, 18 (1985) 275-281.
[32] S. Suzuki, N. Shibutani, K. Mimura, M. Isshiki, and Y. Waseda. Improvement in strength and electrical conductivity of Cu-Ni-Si alloys by aging and cold rolling. Journal of Alloys and Compounds, 417 (2006) 116-120.
[32] X. P. Xiao, B. Q. Xiong, Q. S. Wang, G. L. Xie, L. J. Peng, and G. X. Huang. Microstructure and properties of Cu-Ni-Si-Zr alloy after thermomechanical treatments. Rare Metals, 32 (2013) 144-149.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *