|
[1] A. Chen, P. K. Wright, Modules, Systems, and Applications in Thermoelectrics, CRC Press: 2012; chap. 26, pp. 26-21-26-22. [2] D. M. Rowe, Thermoelectrics Handbook: Macro to Nano; Taylor and Francis: 2006; chap. 1, pp 1-7. [3] G. S. Nolas, J. Sharp, H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments; Springer: 2001; chap. 2, pp 36-39. [4] G. J. Snyder, E. S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105 (2008) [5] W. Glatz, S. Muntwyler, C. Hierold, Optimization and fabrication of thick flexible polymer based micro thermoelectric generator. Sens. Actuators, A 132, 337-345 (2006) [6] Z. Cao, M. J. Tudor, R. N. Torah, S. P. Beeby, Screen Printable Flexible BiTe–SbTe-Based Composite Thermoelectric Materials on Textiles for Wearable Applications. IEEE Trans. Electron Devices 63, 4024-4030 (2016) [7] D. Madan, Z. Wang, A. Chen, R. C. Juang, J. Keist, P. K. Wright, J. W. Evans, Enhanced performance of dispenser printed MA n-type Bi2Te3 composite thermoelectric generators. ACS Appl Mater Interfaces 4, 6117-6124 (2012) [8] H. Choi, S. J. Kim, Y. Kim, J. H. We, M.-W. Oh, B. J. Cho, Enhanced thermoelectric properties of screen-printed Bi0.5Sb1.5Te3 and Bi2Te2.7Se0.3 thick films using a post annealing process with mechanical pressure. J. Mater. Chem. C 5, 8559-8565 (2017) [9] H. Choi, Y. J. Kim, C. S. Kim, H. M. Yang, M.-W. Oh, B. J. Cho, Enhancement of reproducibility and reliability in a high-performance flexible thermoelectric generator using screen-printed materials. Nano Energy 46, 39-44 (2018) [10] C.-N. Liao, K.-M. Liou, H.-S. Chu, Enhancement of thermoelectric properties of sputtered Bi–Sb–Te thin films by electric current stressing. Appl. Phys. Lett. 93, 042103 (2008). [11] Y.-H. Chen, C.-N. Liao, Transport properties of electrically sintered bismuth antimony telluride with antimony nanoprecipitation. Appl. Phys. Lett. 111, 143901 (2017). [12] J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. Engl. 48, 8616-8639 (2009) [13] G. Wang, T. J. P. R. B. Cagin, Electronic structure of the thermoelectric materials Bi2 Te3 and Sb2Te3 from first-principles calculations. Phys. Rev. B. 76, 075201 (2007) [14] T. Caillat, M. Carle, P. Pierrat, H. Scherrer, S. J. J. o. P. Scherrer, C. o. Solids, Thermoelectric properties of (BixSb1− x)2Te3 single crystal solid solutions grown by the THM method. J. Phys. Chem. Solids 53, 1121-1129 (1992) [15] C. B. Satterthwaite, R. W. Ure, Electrical and Thermal Properties of Bi2Te3. Phys. Rev. 108, 1164-1170 (1957) [16] D. O. Scanlon, P. D. King, R. P. Singh, A. de la Torre, S. M. Walker, G. Balakrishnan, F. Baumberger, C. R. Catlow, Controlling bulk conductivity in topological insulators: key role of anti-site defects. Adv. Mater. 24, 2154-2158 (2012) [17] Z. Starý, J. Horak, M. Stordeur, M. J. J. o. P. Stölzer, C. o. Solids, Antisite defects in Sb2− xBixTe3 mixed crystals. J. Phys. Chem. Solids 49, 29-34 (1988) [18] S. Cho, Y. Kim, A. DiVenere, G. K. Wong, J. B. Ketterson, J. R. Meyer, Antisite defects of Bi2Te3 thin films. Appl. Phys. Lett. 75, 1401-1403 (1999) [19] J. Horak, K. Čermák, L. J. J. o. P. Koudelka, C. o. Solids, Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals. J. Phys. Chem. Solids 47, 805-809 (1986) [20] C. Lamuta, A. Cupolillo, A. Politano, Z. S. Aliev, M. B. Babanly, E. V. Chulkov, L. Pagnotta, Indentation fracture toughness of single-crystal Bi2Te3 topological insulators. Nano Research 9, 1032-1042 (2016) [21] D. Zhao, G. Tan, A review of thermoelectric cooling: Materials, modeling and applications. Appl. Therm. Eng. 66, 15-24 (2014) [22] J. Yang, T. Aizawa, A. Yamamoto, T. J. M. c. Ohta, physics, Effect of processing parameters on thermoelectric properties of p-type (Bi2Te3)0.25 (Sb2Te3)0.75 prepared via BMA–HP method. Mater. Chem. Phys. 70, 90-94 (2001) [23] W. J. L. Chen, C. N, A study of electrical properties of Sn63Pb37 and Sn95.5Ag4Cu0.5 solder joint in thermoelectric module. 國立清華大學碩士論文, p.68 (2006) [24] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. J. N. O'quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001) [25] J. Yan, X. Liao, D. Yan, Y. Chen, Review of Micro Thermoelectric Generator. J. Microelectromech. Syst. 27, 1-18 (2018) [26] H. Bottner, J. Nurnus, A. Gavrikov, G. Kuhner, M. Jagle, C. Kunzel, D. Eberhard, G. Plescher, A. Schubert, K.-H. J. J. o. m. s. Schlereth, New thermoelectric components using microsystem technologies. J. Microelectromech. Syst. 13, 414-420 (2004) [27] A. Chen, D. Madan, P. K. Wright, J. W. Evans, Dispenser-printed planar thick-film thermoelectric energy generators. J. Micromech. Microeng. 21, 104006 (2011) [28] Z. Cao, E. Koukharenko, M. J. Tudor, R. N. Torah, S. P. Beeby, Flexible screen printed thermoelectric generator with enhanced processes and materials. Sens. Actuators, A. 238, 196-206 (2016) [29] J.-H. Bahk, H. Fang, K. Yazawa, A. Shakouri, Flexible thermoelectric materials and device optimization for wearable energy harvesting. J. Mater. Chem. C. 3, 10362-10374 (2015) [30] S. J. Kim, J. H. We, B. J. Cho, A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 7, 959-1965 (2014) [31] N. Miljkovic, E. N. Wang, Modeling and optimization of hybrid solar thermoelectric systems with thermosyphons. Sol. Energy 85, 2843-2855 (2011) [32] R. Stobart, M. Wijewardane, Z. J. A. T. E. Yang, Comprehensive analysis of thermoelectric generation systems for automotive applications. Appl. Therm. Eng 112, 1433-1444 (2017) [33] M.-K. Kim, M.-S. Kim, S. Lee, C. Kim, Y.-J. Kim, Wearable thermoelectric generator for harvesting human body heat energy. Smart Mater. Struct. 23, 105002 (2014) [34] D. Madan, A. Chen, P. K. Wright, J. W. Evans, Dispenser printed composite thermoelectric thick films for thermoelectric generator applications. J. Appl. Phys. 109, 034904 (2011) [35] G. Delaizir, G. Bernard-Granger, J. Monnier, R. Grodzki, O. Kim-Hak, P. D. Szkutnik, M. Soulier, S. Saunier, D. Goeuriot, O. Rouleau, J. Simon, C. Godart, C. Navone, A comparative study of Spark Plasma Sintering (SPS), Hot Isostatic Pressing (HIP) and microwaves sintering techniques on p-type Bi2Te3 thermoelectric properties. Mater. Res. Bull. 47, 1954-1960 (2012) [36] S. J. Kim, J. H. We, J. S. Kim, G. S. Kim, B. J. Cho, Thermoelectric properties of P-type Sb2Te3 thick film processed by a screen-printing technique and a subsequent annealing process. J. Alloys Compd. 582, 177-180 (2014) [37] D. M. Hulbert, A. Anders, D. V. Dudina, J. Andersson, D. Jiang, C. Unuvar, U. Anselmi-Tamburini, E. J. Lavernia, A. K. Mukherjee, The absence of plasma in “spark plasma sintering”. J. Appl. Phys. 104, 033305 (2008) [38] Z. A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763-777 (2006) [39] S. V. Faleev, F. Léonard, Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys. Rev. B 77, 214304 (2008) [40] J. de Boor, E. Muller, Data analysis for Seebeck coefficient measurements. Rev. Sci. Instrum. 84, 065102 (2013) [41] A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2, 466-479 (2009) [42] L. J. v. d. PAUW, A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep 13, 1-9 (1958) [43] M. Hajizadeh-Oghaz, R. S. Razavi, M. R. J. J. o. s.-g. s. Loghman-Estarki, technology, Synthesis and characterization of non-transformable tetragonal YSZ nanopowder by means of Pechini method for thermal barrier coatings (TBCs) applications. J. Sol-Gel Sci. Technol. 70, 6-13 (2014) [44] H. M. Gilder, D. Lazarus, Effect of High Electronic Current Density on the Motion of Au195 and Sb125 in Gold. Phys. Rev. 145, 507-518 (1966) [45] Z. Cao, E. Koukharenko, R. N. Torah, J. Tudor, S. P. Beeby, Flexible screen printed thick film thermoelectric generator with reduced material resistivity. J. Phys.: Conf. Ser. 557, 012016 (2014) [46] W. Hou, X. Nie, W. Zhao, H. Zhou, X. Mu, W. Zhu, Q. Zhang, Fabrication and excellent performances of Bi0.5Sb1.5Te3/epoxy flexible thermoelectric cooling devices. Nano Energy 50, 766-776 (2018) [47] S. Shin, R. Kumar, J. W. Roh, D. S. Ko, H. S. Kim, S. I. Kim, L. Yin, S. M. Schlossberg, S. Cui, J. M. You, S. Kwon, J. Zheng, J. Wang, R. Chen, High-Performance Screen-Printed Thermoelectric Films on Fabrics. Sci Rep 7, 7317 (2017) [48] A. F. Mayadas, M. Shatzkes, Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces. Phys. Rev. B 1, 1382-1389 (1970) [49] F. J. J. o. I. Lotgering, N. Chemistry, Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I. J. Inorg. Nucl. Chem. 9, 113-123 (1959) [50] L. P. Bulat, I. A. Drabkin, V. V. Karataev, V. B. Osvenskiĭ, D. A. Pshenaĭ-Severin, Effect of boundary scattering on the thermal conductivity of a nanostructured semiconductor material based on the BixSb2−xTe3 solid solution. Phys. Solid State 52, 1836-1841 (2010) [51] M. Stordeur, M. Stölzer, H. Sobotta, V. J. p. s. s. Riede, Investigation of the valence band structure of thermoelectric (Bi1− xSbx)2Te3 single crystals. Phys. Status Solidi B 150, 165-176 (1988)
|