帳號:guest(3.145.64.152)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳峻偉
作者(外文):Chen, Chun-Wei
論文名稱(中文):以電流輔助熱壓製程製備高效能鉍-銻-碲系熱電厚膜
論文名稱(外文):High-performance Bi-Sb-Te thermoelectric thick film prepared by current-assisted hot pressing
指導教授(中文):廖建能
指導教授(外文):Liao, Chien-Neng
口試委員(中文):陳軍華
朱旭山
口試委員(外文):Chen, Chun-Hua
Chu, Hsu-Shan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031519
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:85
中文關鍵詞:電流輔助燒結網版印刷熱電厚膜
外文關鍵詞:Current-assisted sinteringScreen-printed thermoelectric thick film
相關次數:
  • 推薦推薦:0
  • 點閱點閱:184
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
熱電材料為一種能將熱能與電能互相轉換的綠色能源材料,以其所製成的熱電元件無噪音且反應快速,可用於廢熱回收及局部致冷等應用。傳統的熱電模組有兩種,包含塊材以及薄膜模組,然而高成本、耗時以及厚度限制為此二者的缺點。因此,具有低成本、可大量生產且可微型化等優點的印刷式熱電厚膜模組在近幾年被提出並且被大量研究。然而因其添加了黏著劑而造成的不良電性質一直是亟需改善的問題。雖然高溫退火製程可以提升厚膜的電導率以達更好的熱電表現,但高溫製程不適用於以可撓高分子為基板的厚膜。 因此,本研究在相對低溫下以電流輔助燒結製程在可撓高分子基板上製備高效能鉍-銻-碲系熱電厚膜。相較於純熱壓之試片,等溫下熱壓通電流的試片的導電率提升了兩倍,包括較高的載子遷移率 (163  3 cm/V∙s)以及較低的電阻率 (2.9  0.1 mΩ∙cm),也因此具有顯著提升的功率因子 (1.95  0.05 mW/mK2)。此外,我們也將透過理論模型來分析並評估不同的電流密度、電流模式以及燒結溫度對微結構、缺陷機制、散射機制及熱電性質的影響。
Thermoelectric generation devices are able to convert waste heat into electricity. Typical thermoelectric modules, including bulk and thin-film modules, have the drawbacks of high cost, lengthening process and the narrow range of achievable thickness. Recently, printed thick-film thermoelectrics have been proposed for their virtues of miniaturization, low cost and mass production. However, the poor electrical property of thick films, mainly due to residual binders, has long been an issue. Although a high-temperature annealing can improve the electrical conductivity of films, the high temperature might exceed the glass transition point (Tg) of the flexible polymer-based substrate and limit the substrate selectivity. In this study, we presented a low-temperature current-assisted sintering approach to prepare high-performance Bi-Sb-Te thick films printed on polyimide substrates. Compared to the hot-pressed specimens, the electrically sintered Bi-Sb-Te thick film exhibits a 2 times enhancement of electrical property with a Hall mobility of 163  3 cm/V∙s and an electrical resistivity of 2.9  0.1 mΩ∙cm, giving rise to a large power factor of 1.95  0.05 mW/mK2. How different current density, current modes and sintering temperatures interact with microstructures, crystal defects and carrier scattering mechanism in Bi-Sb-Te films are investigated.
Abstract I
摘要 II
致謝 III
Contents V
List of figures VII
List of tables XII
Chapter 1 Introduction 1
1.1 Background information 2
1.2 Motivation 6
Chapter 2 Literature review 8
2.1 Bi-Te based compounds 8
2.1.1 Crystal structure of Bi-Te based compounds 8
2.1.2 Crystal defects in Bi-Te based compounds 10
2.2 Comparison of different thermoelectric modules 13
2.2.1 Optimized thickness of thermoelectric legs in a module 13
2.2.2 Processing of different thermoelectric modules 15
2.3 Thermoelectric thick-film materials 18
2.3.1 Applications of thermoelectric thick films 18
2.3.2 Properties of thermally-sintered Bi-Te based thick films 20
2.4 Strategy of enhancing thermoelectric transport properties of Bi-Te based films 24
2.4.1 Current-assisted sintering processes 24
2.4.2 Interfacial energy-filtering effect 30
Chapter 3 Experimental 33
3.1 Preparation of screen-printed Bi-Sb-Te thermoelectric thick films 33
3.2 Microstructure characterization 36
3.3 Thermoelectric property measurement 38
Chapter 4 Results and discussion 42
4.1 Electrically sintered Bi-Sb-Te thermoelectric thick films 42
4.1.1 Bi-Sb-Te films prepared with different current density 43
4.1.2 Bi-Sb-Te films prepared with different current mode 51
4.2 Bi-Sb-Te films electrically sintered at different temperatures 55
4.3 Theoretical modeling of the sintered Bi-Sb-Te thermoelectric thick films 67
4.3.1 Mayadas-Shatzkes model 67
4.3.2 Scattering mechanism analysis 73
Chapter 5 Conclusions 80
References 82
[1] A. Chen, P. K. Wright, Modules, Systems, and Applications in Thermoelectrics, CRC Press: 2012; chap. 26, pp. 26-21-26-22.
[2] D. M. Rowe, Thermoelectrics Handbook: Macro to Nano; Taylor and Francis: 2006; chap. 1, pp 1-7.
[3] G. S. Nolas, J. Sharp, H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments; Springer: 2001; chap. 2, pp 36-39.
[4] G. J. Snyder, E. S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105 (2008)
[5] W. Glatz, S. Muntwyler, C. Hierold, Optimization and fabrication of thick flexible polymer based micro thermoelectric generator. Sens. Actuators, A 132, 337-345 (2006)
[6] Z. Cao, M. J. Tudor, R. N. Torah, S. P. Beeby, Screen Printable Flexible BiTe–SbTe-Based Composite Thermoelectric Materials on Textiles for Wearable Applications. IEEE Trans. Electron Devices 63, 4024-4030 (2016)
[7] D. Madan, Z. Wang, A. Chen, R. C. Juang, J. Keist, P. K. Wright, J. W. Evans, Enhanced performance of dispenser printed MA n-type Bi2Te3 composite thermoelectric generators. ACS Appl Mater Interfaces 4, 6117-6124 (2012)
[8] H. Choi, S. J. Kim, Y. Kim, J. H. We, M.-W. Oh, B. J. Cho, Enhanced thermoelectric properties of screen-printed Bi0.5Sb1.5Te3 and Bi2Te2.7Se0.3 thick films using a post annealing process with mechanical pressure. J. Mater. Chem. C 5, 8559-8565 (2017)
[9] H. Choi, Y. J. Kim, C. S. Kim, H. M. Yang, M.-W. Oh, B. J. Cho, Enhancement of reproducibility and reliability in a high-performance flexible thermoelectric generator using screen-printed materials. Nano Energy 46, 39-44 (2018)
[10] C.-N. Liao, K.-M. Liou, H.-S. Chu, Enhancement of thermoelectric properties of sputtered Bi–Sb–Te thin films by electric current stressing. Appl. Phys. Lett. 93, 042103 (2008).
[11] Y.-H. Chen, C.-N. Liao, Transport properties of electrically sintered bismuth antimony telluride with antimony nanoprecipitation. Appl. Phys. Lett. 111, 143901 (2017).
[12] J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. Engl. 48, 8616-8639 (2009)
[13] G. Wang, T. J. P. R. B. Cagin, Electronic structure of the thermoelectric materials Bi2 Te3 and Sb2Te3 from first-principles calculations. Phys. Rev. B. 76, 075201 (2007)
[14] T. Caillat, M. Carle, P. Pierrat, H. Scherrer, S. J. J. o. P. Scherrer, C. o. Solids, Thermoelectric properties of (BixSb1− x)2Te3 single crystal solid solutions grown by the THM method. J. Phys. Chem. Solids 53, 1121-1129 (1992)
[15] C. B. Satterthwaite, R. W. Ure, Electrical and Thermal Properties of Bi2Te3. Phys. Rev. 108, 1164-1170 (1957)
[16] D. O. Scanlon, P. D. King, R. P. Singh, A. de la Torre, S. M. Walker, G. Balakrishnan, F. Baumberger, C. R. Catlow, Controlling bulk conductivity in topological insulators: key role of anti-site defects. Adv. Mater. 24, 2154-2158 (2012)
[17] Z. Starý, J. Horak, M. Stordeur, M. J. J. o. P. Stölzer, C. o. Solids, Antisite defects in Sb2− xBixTe3 mixed crystals. J. Phys. Chem. Solids 49, 29-34 (1988)
[18] S. Cho, Y. Kim, A. DiVenere, G. K. Wong, J. B. Ketterson, J. R. Meyer, Antisite defects of Bi2Te3 thin films. Appl. Phys. Lett. 75, 1401-1403 (1999)
[19] J. Horak, K. Čermák, L. J. J. o. P. Koudelka, C. o. Solids, Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals. J. Phys. Chem. Solids 47, 805-809 (1986)
[20] C. Lamuta, A. Cupolillo, A. Politano, Z. S. Aliev, M. B. Babanly, E. V. Chulkov, L. Pagnotta, Indentation fracture toughness of single-crystal Bi2Te3 topological insulators. Nano Research 9, 1032-1042 (2016)
[21] D. Zhao, G. Tan, A review of thermoelectric cooling: Materials, modeling and applications. Appl. Therm. Eng. 66, 15-24 (2014)
[22] J. Yang, T. Aizawa, A. Yamamoto, T. J. M. c. Ohta, physics, Effect of processing parameters on thermoelectric properties of p-type (Bi2Te3)0.25 (Sb2Te3)0.75 prepared via BMA–HP method. Mater. Chem. Phys. 70, 90-94 (2001)
[23] W. J. L. Chen, C. N, A study of electrical properties of Sn63Pb37 and Sn95.5Ag4Cu0.5 solder joint in thermoelectric module. 國立清華大學碩士論文, p.68 (2006)
[24] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. J. N. O'quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001)
[25] J. Yan, X. Liao, D. Yan, Y. Chen, Review of Micro Thermoelectric Generator. J. Microelectromech. Syst. 27, 1-18 (2018)
[26] H. Bottner, J. Nurnus, A. Gavrikov, G. Kuhner, M. Jagle, C. Kunzel, D. Eberhard, G. Plescher, A. Schubert, K.-H. J. J. o. m. s. Schlereth, New thermoelectric components using microsystem technologies. J. Microelectromech. Syst. 13, 414-420 (2004)
[27] A. Chen, D. Madan, P. K. Wright, J. W. Evans, Dispenser-printed planar thick-film thermoelectric energy generators. J. Micromech. Microeng. 21, 104006 (2011)
[28] Z. Cao, E. Koukharenko, M. J. Tudor, R. N. Torah, S. P. Beeby, Flexible screen printed thermoelectric generator with enhanced processes and materials. Sens. Actuators, A. 238, 196-206 (2016)
[29] J.-H. Bahk, H. Fang, K. Yazawa, A. Shakouri, Flexible thermoelectric materials and device optimization for wearable energy harvesting. J. Mater. Chem. C. 3, 10362-10374 (2015)
[30] S. J. Kim, J. H. We, B. J. Cho, A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 7, 959-1965 (2014)
[31] N. Miljkovic, E. N. Wang, Modeling and optimization of hybrid solar thermoelectric systems with thermosyphons. Sol. Energy 85, 2843-2855 (2011)
[32] R. Stobart, M. Wijewardane, Z. J. A. T. E. Yang, Comprehensive analysis of thermoelectric generation systems for automotive applications. Appl. Therm. Eng 112, 1433-1444 (2017)
[33] M.-K. Kim, M.-S. Kim, S. Lee, C. Kim, Y.-J. Kim, Wearable thermoelectric generator for harvesting human body heat energy. Smart Mater. Struct. 23, 105002 (2014)
[34] D. Madan, A. Chen, P. K. Wright, J. W. Evans, Dispenser printed composite thermoelectric thick films for thermoelectric generator applications. J. Appl. Phys. 109, 034904 (2011)
[35] G. Delaizir, G. Bernard-Granger, J. Monnier, R. Grodzki, O. Kim-Hak, P. D. Szkutnik, M. Soulier, S. Saunier, D. Goeuriot, O. Rouleau, J. Simon, C. Godart, C. Navone, A comparative study of Spark Plasma Sintering (SPS), Hot Isostatic Pressing (HIP) and microwaves sintering techniques on p-type Bi2Te3 thermoelectric properties. Mater. Res. Bull. 47, 1954-1960 (2012)
[36] S. J. Kim, J. H. We, J. S. Kim, G. S. Kim, B. J. Cho, Thermoelectric properties of P-type Sb2Te3 thick film processed by a screen-printing technique and a subsequent annealing process. J. Alloys Compd. 582, 177-180 (2014)
[37] D. M. Hulbert, A. Anders, D. V. Dudina, J. Andersson, D. Jiang, C. Unuvar, U. Anselmi-Tamburini, E. J. Lavernia, A. K. Mukherjee, The absence of plasma in “spark plasma sintering”. J. Appl. Phys. 104, 033305 (2008)
[38] Z. A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763-777 (2006)
[39] S. V. Faleev, F. Léonard, Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys. Rev. B 77, 214304 (2008)
[40] J. de Boor, E. Muller, Data analysis for Seebeck coefficient measurements. Rev. Sci. Instrum. 84, 065102 (2013)
[41] A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2, 466-479 (2009)
[42] L. J. v. d. PAUW, A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep 13, 1-9 (1958)
[43] M. Hajizadeh-Oghaz, R. S. Razavi, M. R. J. J. o. s.-g. s. Loghman-Estarki, technology, Synthesis and characterization of non-transformable tetragonal YSZ nanopowder by means of Pechini method for thermal barrier coatings (TBCs) applications. J. Sol-Gel Sci. Technol. 70, 6-13 (2014)
[44] H. M. Gilder, D. Lazarus, Effect of High Electronic Current Density on the Motion of Au195 and Sb125 in Gold. Phys. Rev. 145, 507-518 (1966)
[45] Z. Cao, E. Koukharenko, R. N. Torah, J. Tudor, S. P. Beeby, Flexible screen printed thick film thermoelectric generator with reduced material resistivity. J. Phys.: Conf. Ser. 557, 012016 (2014)
[46] W. Hou, X. Nie, W. Zhao, H. Zhou, X. Mu, W. Zhu, Q. Zhang, Fabrication and excellent performances of Bi0.5Sb1.5Te3/epoxy flexible thermoelectric cooling devices. Nano Energy 50, 766-776 (2018)
[47] S. Shin, R. Kumar, J. W. Roh, D. S. Ko, H. S. Kim, S. I. Kim, L. Yin, S. M. Schlossberg, S. Cui, J. M. You, S. Kwon, J. Zheng, J. Wang, R. Chen, High-Performance Screen-Printed Thermoelectric Films on Fabrics. Sci Rep 7, 7317 (2017)
[48] A. F. Mayadas, M. Shatzkes, Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces. Phys. Rev. B 1, 1382-1389 (1970)
[49] F. J. J. o. I. Lotgering, N. Chemistry, Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I. J. Inorg. Nucl. Chem. 9, 113-123 (1959)
[50] L. P. Bulat, I. A. Drabkin, V. V. Karataev, V. B. Osvenskiĭ, D. A. Pshenaĭ-Severin, Effect of boundary scattering on the thermal conductivity of a nanostructured semiconductor material based on the BixSb2−xTe3 solid solution. Phys. Solid State 52, 1836-1841 (2010)
[51] M. Stordeur, M. Stölzer, H. Sobotta, V. J. p. s. s. Riede, Investigation of the valence band structure of thermoelectric (Bi1− xSbx)2Te3 single crystals. Phys. Status Solidi B 150, 165-176 (1988)

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *