帳號:guest(3.138.114.113)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李欣樺
作者(外文):Lee, Hsin-Hua
論文名稱(中文):高耐化學性碳複合薄膜於正滲透系統之應用
論文名稱(外文):Carbon-based Thin-film Composite Membrane with High Chemical Resistance for Forward Osmosis Application
指導教授(中文):戴念華
李紫原
指導教授(外文):Tai, Nyan-Hwa
Lee, Chi-Young
口試委員(中文):洪仁陽
林冠佑
口試委員(外文):Hong, Ren-Yang
Lin, Guan-You
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031517
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:102
中文關鍵詞:正滲透脫鹽奈米碳管複合薄膜
外文關鍵詞:Forward OsmosisDesalinationCarbon NanotubesThin-film Composite Membrane
相關次數:
  • 推薦推薦:0
  • 點閱點閱:241
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究開發出一種新型的碳基複合薄膜,它具有高耐化學性、高正滲透(Forward Osmosis, FO)效能,且因為製程簡單,使其十分具有量產的潛力。此複合薄膜包含以下主要結構:不織布背襯層、親水支撐層和超薄的活性選擇層。支撐層是由聚多巴胺包覆奈米碳管(Polydopamine-coated Carbon Nanotube, pCNT)所組成,其被塗佈於聚對苯二甲酸乙二酯纖維不織布上,形成之多孔性的pCNT支撐層厚度僅約3 μm;選擇層則是透過界面聚合法製備出緻密的聚醯胺層。
實驗結果顯示,相較於未經表面改質的奈米碳管支撐層,利用pCNT所製備的支撐層接觸角從70.1°下降至33.7°,親水性大幅提升。而在本研究所開發之碳複合薄膜中,A30-pCNT-PA擁有最佳FO效能,水通量為15.13 Lm-2h-1,逆溶質通量為5.20 gm-2h-1,此水通量比在較厚不織布上塗佈未改質之奈米碳管層的薄膜高出將近250%。此外,A30-pCNT-PA薄膜的N-甲基吡咯烷酮阻擋率高達97.7%,此性質大大提升了本研究製備之正滲透碳複合薄膜應用於極端水處理環境的可行性。
In this study, a novel carbon-based thin-film composite membrane which possesses high chemical resistance, great forward osmosis (FO) performance is developed. This membrane has potential to be scaled up due to its simple process. The membrane consists of a nonwoven backing layer, hydrophilic support layer and an ultrathin active layer. The support layer, designated as pCNT, is made of polydopamine-coated carbon nanotubes (CNTs) with a thickness of 3 µm, and it is cast onto a polyethylene terephthalate nonwoven fabric. Subsequently, a polyamide film synthesized by interfacial polymerization is coated onto the support layer, acting as the active layer.
The pCNT support layer possesses a contact angle of 33.7°, which is much lower than that of the pristine CNT support layer of 70.1°. Among all membranes, the A30-pCNT-PA membrane exhibits great FO performance with the water flux of 15.13 Lm-2h-1 and the reverse salt flux of 5.20 gm-2h-1. The water flux is almost 250% higher than that of the membrane with the pristine CNT support layer and thicker nonwoven layer. Besides, the N-Methyl-2-Pyrrolidone rejection of the A30-pCNT-PA membrane is as high as 97.7%. These properties significantly increase the potential of application of the FO membranes in extreme conditions of polluted water treatment.
摘要 I
Abstract II
目次 III
表目次 VII
圖目次 IX
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 4
2.1 薄膜技術簡介 4
2.1.1 薄膜技術之發展 4
2.1.2 薄膜分離程序 5
2.1.3 薄膜型態 7
2.2 複合薄膜簡介與製備 9
2.2.1 多孔支撐層之製備 10
2.2.2 緻密選擇層之製備 12
2.3 正向滲透技術簡介 16
2.3.1 正向滲透技術之發展 16
2.3.2 正向滲透分離程序及應用 17
2.3.3 正向滲透之關鍵技術與瓶頸 19
2.4 奈米碳管簡介 22
2.4.1 奈米碳管之結構與性質 23
2.4.2 奈米碳管之製備方式 24
2.4.3 奈米碳管於水處理薄膜之應用 24
第三章 實驗方法 37
3.1 實驗步驟及流程 37
3.1.1 聚多巴胺包覆奈米碳管之製備 37
3.1.2 基材膜製備 38
3.1.3 聚醯胺選擇層之合成 40
3.2 分析技術與設備 41
3.2.1 場發射掃描式電子顯微鏡 41
3.2.2 穿透式電子顯微鏡/掃描穿透式電子顯微鏡 42
3.2.3 高解析X光光電子能譜儀 44
3.2.4 水接觸角量測儀 45
3.2.5 正滲透效能測試系統 46
第四章 結果與討論 56
4.1 聚醯胺選擇層成長於奈米碳管上之可行性探討 57
4.2 不同形式之聚多巴胺結合奈米碳管支撐層分析 57
4.2.1 SEM表面形貌分析 58
4.2.2 水接觸角分析 59
4.2.3 TEM / STEM分析 59
4.2.4 XPS元素與鍵結分析 60
4.2.5 FO效能比較 61
4.3 不織布背襯層厚度之影響 63
4.3.1 SEM表面形貌分析 63
4.3.2 FO效能比較 64
4.4 聚醯胺選擇層之分析 65
4.4.1 SEM表面形貌分析 65
4.4.2 XPS元素分析 66
4.4.3 FO效能比較 67
4.5 碳複合薄膜之正滲透效能分析 68
4.5.1 A、B、S與R值 68
4.5.2 提取液濃度對FO效能之影響 69
4.5.3 有機溶液濃縮測試 70
第五章 結論 91
參考文獻 93
[1] Unesco, World Water Assessment Programme (United Nations), UN-Water, The United Nations World Water Development Report 2019: Leaving No One Behind, United Nations Educational, Scientific and Cultural Organization, Paris, 2019.
[2] 虞國興, 貯蓄防洪 兩全其美─水庫與水資源, 科學月刊 479 (2009) 840-845.
[3] E.T. Igunnu, G.Z. Chen, Produced water treatment technologies, International Journal of Low-Carbon Technologies 9(3) (2014) 157-177.
[4] S. Zhao, L. Zou, C.Y. Tang, D. Mulcahy, Recent developments in forward osmosis: Opportunities and challenges, Journal of Membrane Science 396 (2012) 1-21.
[5] 行政院環境保護署, 放流水標準, 2019. https://oaout.epa.gov.tw/law/LawContent.aspx?id=FL015489.
[6] M. Mulder, Basic principles of membrane technology, 2nd ed ed., Kluwer, Dordrecht; London, 1996.
[7] S. Chou, L. Shi, R. Wang, C.Y. Tang, C. Qiu, A.G. Fane, Characteristics and potential applications of a novel forward osmosis hollow fiber membrane, Desalination 261(3) (2010) 365-372.
[8] I.S. Fahim, W. Mamdouh, H.G. Salem, Chitosan Nanocomposite Mesoporous Membranes: Mechanical and Barrier Properties as a Function of Temperature, Journal of Materials Science Research 4(4) (2015).
[9] J.S. Vrentas, J.L. Duda, Diffusion in polymer—solvent systems. I. Reexamination of the free-volume theory, Journal of Polymer Science: Polymer Physics Edition 15(3) (1977) 403-416.
[10] J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review, Journal of Membrane Science 107(1-2) (1995) 1-21.
[11] H. Strathmann, Membrane separation processes: Current relevance and future opportunities, AIChE Journal 47(5) (2001) 1077-1087.
[12] A.G. Fane, C.Y. Tang, R. Wang, Membrane Technology for Water: Microfiltration, Ultrafiltration, Nanofiltration, and Reverse Osmosis., Treatise on Water Science, Elsevier Science2011, pp. 301-335.
[13] 鄭東文, 林智偉, 薄膜過濾家族, 科學發展 500 (2014) 36-41.
[14] G. Zakrzewska-Trznadel, Advances in membrane technologies for the treatment of liquid radioactive waste, Desalination 321 (2013) 119-130.
[15] Y. Zhu, D. Wang, L. Jiang, J. Jin, Recent progress in developing advanced membranes for emulsified oil/water separation, NPG Asia Materials 6(5) (2014) e101-e101.
[16] P.S. Goh, A.F. Ismail, A review on inorganic membranes for desalination and wastewater treatment, Desalination 434 (2018) 60-80.
[17] A. Kayvani Fard, G. McKay, A. Buekenhoudt, H. Al Sulaiti, F. Motmans, M. Khraisheh, M. Atieh, Inorganic Membranes: Preparation and Application for Water Treatment and Desalination, Materials (Basel) 11(1) (2018).
[18] J. Yin, B. Deng, Polymer-matrix nanocomposite membranes for water treatment, Journal of Membrane Science 479 (2015) 256-275.
[19] J.A. Idarraga-Mora, A.S. Childress, P.S. Friedel, D.A. Ladner, A.M. Rao, S.M. Husson, Role of Nanocomposite Support Stiffness on TFC Membrane Water Permeance, Membranes (Basel) 8(4) (2018).
[20] M. Kumar, T. Culp, Y. Shen, Water Desalination: History, Advances, and Challenges, Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2016 Symposium, The National Academies Press, Washington, DC, 2017, pp. 55-66.
[21] T. Matsuura, Synthetic membranes and membrane separation processes, CRC Press, Boca Raton ; London, 1994.
[22] 簡明紳, 具蕾絲結構與底表面阻鹽層的聚丙烯腈複合膜在正滲透之應用, 材料科學工程學系, 國立清華大學, 臺灣新竹, 2018, p. 92.
[23] R.E. Kesting, Synthetic polymeric membranes : a structural perspective, 2nd ed ed., Wiley, New York, 1985.
[24] C. Klaysom, T.Y. Cath, T. Depuydt, I.F. Vankelecom, Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply, Chem Soc Rev 42(16) (2013) 6959-89.
[25] W.J. Lau, A.F. Ismail, N. Misdan, M.A. Kassim, A recent progress in thin film composite membrane: A review, Desalination 287 (2012) 190-199.
[26] S.-J. Park, W. Choi, S.-E. Nam, S. Hong, J.S. Lee, J.-H. Lee, Fabrication of polyamide thin film composite reverse osmosis membranes via support-free interfacial polymerization, Journal of Membrane Science 526 (2017) 52-59.
[27] N.-N. Bui, M.L. Lind, E.M.V. Hoek, J.R. McCutcheon, Electrospun nanofiber supported thin film composite membranes for engineered osmosis, Journal of Membrane Science 385-386 (2011) 10-19.
[28] J. Wei, X. Liu, C. Qiu, R. Wang, C.Y. Tang, Influence of monomer concentrations on the performance of polyamide-based thin film composite forward osmosis membranes, Journal of Membrane Science 381(1-2) (2011) 110-117.
[29] B. Khorshidi, I. Biswas, T. Ghosh, T. Thundat, M. Sadrzadeh, Robust fabrication of thin film polyamide-TiO2 nanocomposite membranes with enhanced thermal stability and anti-biofouling propensity, Sci Rep 8(1) (2018) 784.
[30] L. Shen, S. Xiong, Y. Wang, Graphene oxide incorporated thin-film composite membranes for forward osmosis applications, Chemical Engineering Science 143 (2016) 194-205.
[31] G.-Y. Chai, W.B. Krantz, Formation and characterization of polyamide membranes via interfacial polymerization, Journal of Membrane Science 93(2) (1994) 175-192.
[32] W. Jin, A. Toutianoush, B. Tieke, Use of Polyelectrolyte Layer-by-Layer Assemblies as Nanofiltration and Reverse Osmosis Membranes, Langmuir 19(7) (2003) 2550-2553.
[33] P.M. Johnson, J. Yoon, J.Y. Kelly, J.A. Howarter, C.M. Stafford, Molecular layer-by-layer deposition of highly crosslinked polyamide films, Journal of Polymer Science Part B: Polymer Physics 50(3) (2012) 168-173.
[34] S.-B. Kwon, J.S. Lee, S.J. Kwon, S.-T. Yun, S. Lee, J.-H. Lee, Molecular layer-by-layer assembled forward osmosis membranes, Journal of Membrane Science 488 (2015) 111-120.
[35] G.-R. Xu, S.-H. Wang, H.-L. Zhao, S.-B. Wu, J.-M. Xu, L. Li, X.-Y. Liu, Layer-by-layer (LBL) assembly technology as promising strategy for tailoring pressure-driven desalination membranes, Journal of Membrane Science 493 (2015) 428-443.
[36] 林佶鋒, 聚多巴胺/氧化石墨烯改良分子級逐層堆疊法於正滲透複合薄膜之應用, 材料科學工程學系, 國立清華大學, 臺灣新竹, 2019, p. 95.
[37] R.E. Pattle, Production of Electric Power by mixing Fresh and Salt Water in the Hydroelectric Pile, Nature 174(4431) (1954) 660-660.
[38] H.T. Innovations, History of HTI, 2010. http://www.htiwater.com/company/hti_history.html.
[39] B. Liang, X. He, J. Hou, L. Li, Z. Tang, Membrane Separation in Organic Liquid: Technologies, Achievements, and Opportunities, Adv Mater (2018) e1806090.
[40] Y. Li, S.S. Yuan, C. Zhou, Y. Zhao, B. Van der Bruggen, A high flux organic solvent nanofiltration membrane from Kevlar aramid nanofibers with in situ incorporation of microspheres, Journal of Materials Chemistry A 6(45) (2018) 22987-22997.
[41] R.P. Lively, D.S. Sholl, From water to organics in membrane separations, Nat Mater 16(3) (2017) 276-279.
[42] X. Zhang, Z. Ning, D.K. Wang, J.C. Diniz da Costa, A novel ethanol dehydration process by forward osmosis, Chemical Engineering Journal 232 (2013) 397-404.
[43] Y. Cui, T.S. Chung, Pharmaceutical concentration using organic solvent forward osmosis for solvent recovery, Nat Commun 9 (2018).
[44] Y. Cui, T.-S. Chung, Solvent Recovery via Organic Solvent Pressure Assisted Osmosis, Industrial & Engineering Chemistry Research 58(12) (2019) 4970-4978.
[45] J. Wei, C.Q. Qiu, C.Y.Y. Tang, R. Wang, A.G. Fane, Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes, Journal of Membrane Science 372(1-2) (2011) 292-302.
[46] D. Emadzadeh, W.J. Lau, T. Matsuura, M. Rahbari-Sisakht, A.F. Ismail, A novel thin film composite forward osmosis membrane prepared from PSf–TiO2 nanocomposite substrate for water desalination, Chemical Engineering Journal 237 (2014) 70-80.
[47] J.R. McCutcheon, M. Elimelech, Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis, Journal of Membrane Science 284(1-2) (2006) 237-247.
[48] N.Y. Yip, A. Tiraferri, W.A. Phillip, J.D. Schiffman, M. Elimelech, High performance thin-film composite forward osmosis membrane, Environ Sci Technol 44(10) (2010) 3812-8.
[49] J.S. Yong, W.A. Phillip, M. Elimelech, Coupled reverse draw solute permeation and water flux in forward osmosis with neutral draw solutes, Journal of Membrane Science 392-393 (2012) 9-17.
[50] B. Mi, M. Elimelech, Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents, Journal of Membrane Science 348(1-2) (2010) 337-345.
[51] X. Zhang, J. Tian, S. Gao, Z. Zhang, F. Cui, C.Y. Tang, In situ surface modification of thin film composite forward osmosis membranes with sulfonated poly(arylene ether sulfone) for anti-fouling in emulsified oil/water separation, Journal of Membrane Science 527 (2017) 26-34.
[52] S. Iijima, Helical Microtubules of Graphitic Carbon, Nature 354(6348) (1991) 56-58.
[53] M.F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys Rev Lett 84(24) (2000) 5552-5555.
[54] M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, T. Shimizu, Measuring the thermal conductivity of a single carbon nanotube, Phys Rev Lett 95(6) (2005) 065502.
[55] Y.Y. Wei, G. Eres, V.I. Merkulov, D.H. Lowndes, Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition, Applied Physics Letters 78(10) (2001) 1394-1396.
[56] O.A. Nerushev, S. Dittmar, R.E. Morjan, F. Rohmund, E.E.B. Campbell, Particle size dependence and model for iron-catalyzed growth of carbon nanotubes by thermal chemical vapor deposition, Journal of Applied Physics 93(7) (2003) 4185-4190.
[57] 陳鑫錨, 以流動觸媒法於直立管爐中製作單壁奈米碳管之最佳化分析及機制探討, 材料科學工程學系, 國立清華大學, 臺灣新竹, 2009, p. 103.
[58] M. Okai, T. Muneyoshi, T. Yaguchi, S. Sasaki, Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition, Applied Physics Letters 77(21) (2000) 3468-3470.
[59] K. Goh, H.E. Karahan, L. Wei, T.-H. Bae, A.G. Fane, R. Wang, Y. Chen, Carbon nanomaterials for advancing separation membranes: A strategic perspective, Carbon 109 (2016) 694-710.
[60] M. Sianipar, S.H. Kim, Khoiruddin, F. Iskandar, I.G. Wenten, Functionalized carbon nanotube (CNT) membrane: progress and challenges, Rsc Advances 7(81) (2017) 51175-51198.
[61] R. Das, M.E. Ali, S.B. Abd Hamid, S. Ramakrishna, Z.Z. Chowdhury, Carbon nanotube membranes for water purification: A bright future in water desalination, Desalination 336 (2014) 97-109.
[62] B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Aligned multiwalled carbon nanotube membranes, Science 303(5654) (2004) 62-5.
[63] J.K. Holt, H.G. Park, Y.M. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science 312(5776) (2006) 1034-1037.
[64] X. Song, L. Wang, L. Mao, Z. Wang, Nanocomposite Membrane with Different Carbon Nanotubes Location for Nanofiltration and Forward Osmosis Applications, ACS Sustainable Chemistry & Engineering 4(6) (2016) 2990-2997.
[65] M. Tian, Y.-N. Wang, R. Wang, Synthesis and characterization of novel high-performance thin film nanocomposite (TFN) FO membranes with nanofibrous substrate reinforced by functionalized carbon nanotubes, Desalination 370 (2015) 79-86.
[66] F.Y. Zhao, Y.L. Ji, X.D. Weng, Y.F. Mi, C.C. Ye, Q.F. An, C.J. Gao, High-Flux Positively Charged Nanocomposite Nanofiltration Membranes Filled with Poly(dopamine) Modified Multiwall Carbon Nanotubes, ACS Appl Mater Interfaces 8(10) (2016) 6693-700.
[67] Q. Wei, F. Zhang, J. Li, B. Li, C. Zhao, Oxidant-induced dopamine polymerization for multifunctional coatings, Polymer Chemistry 1(9) (2010).
[68] B.-H. Jeong, E.M.V. Hoek, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, A.K. Ghosh, A. Jawor, Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes, Journal of Membrane Science 294(1-2) (2007) 1-7.
[69] A.K. Ghosh, E.M.V. Hoek, Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes, Journal of Membrane Science 336(1-2) (2009) 140-148.
[70] Y. Cui, X.-Y. Liu, T.-S. Chung, Enhanced osmotic energy generation from salinity gradients by modifying thin film composite membranes, Chemical Engineering Journal 242 (2014) 195-203.
[71] III. An essay on the cohesion of fluids, Philosophical Transactions of the Royal Society of London 95 (1805) 65-87.
[72] J. Martin, E.J. Diaz-Montana, A.G. Asuero, Recovery of Anthocyanins Using Membrane Technologies: A Review, Crit Rev Anal Chem 48(3) (2018) 143-175.
[73] N. Akther, A. Sodiq, A. Giwa, S. Daer, H.A. Arafat, S.W. Hasan, Recent advancements in forward osmosis desalination: A review, Chemical Engineering Journal 281 (2015) 502-522.
[74] A. Tiraferri, N.Y. Yip, A.P. Straub, S. Romero-Vargas Castrillon, M. Elimelech, A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes, Journal of Membrane Science 444 (2013) 523-538.
[75] 蔡孟庭, 奈米碳管-聚丙烯腈-分子級逐層堆疊聚醯胺選擇層複合膜於正向滲透之應用, 材料科學工程學系, 國立清華大學, 臺灣新竹, 2018, p. 95.
[76] 劉宗光, 屈樹新, 翁杰, 聚多巴胺在生物材料表面改性中的應用, 化學進展 27 (2015) 212-219.
[77] F. Wei, J. Liu, Y.-N. Zhu, X.-S. Wang, C.-Y. Cao, W.-G. Song, In situ facile loading of noble metal nanoparticles on polydopamine nanospheres via galvanic replacement reaction for multifunctional catalysis, Science China Chemistry 60(9) (2017) 1236-1242.
[78] Y. Xie, P.M.A. Sherwood, X-ray photoelectron-spectroscopic studies of carbon fiber surfaces. 11. Differences in the surface chemistry and bulk structure of different carbon fibers based on poly(acrylonitrile) and pitch and comparison with various graphite samples, Chemistry of Materials 2(3) (1990) 293-299.
[79] A.S. Subramanian, J.N. Tey, L. Zhang, B.H. Ng, S. Roy, J. Wei, X.M. Hu, Synergistic bond strengthening in epoxy adhesives using polydopamine/MWCNT hybrids, Polymer 82 (2016) 285-294.
[80] G. Zhang, S. Sun, D. Yang, J.-P. Dodelet, E. Sacher, The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment, Carbon 46(2) (2008) 196-205.
[81] E. Mazario, J. Sánchez-Marcos, N. Menéndez, P. Herrasti, M. García-Hernández, A. Muñoz-Bonilla, One-pot electrochemical synthesis of polydopamine coated magnetite nanoparticles, RSC Adv. 4(89) (2014) 48353-48361.
[82] M. Sianipar, S.H. Kim, K. Khoiruddin, F. Iskandar, I.G. Wenten, Functionalized carbon nanotube (CNT) membrane: progress and challenges, RSC Advances 7(81) (2017) 51175-51198.
[83] M. Paul, S.D. Jons, Chemistry and fabrication of polymeric nanofiltration membranes: A review, Polymer 103 (2016) 417-456.
[84] Y. Cui, X.-Y. Liu, T.-S. Chung, Ultrathin Polyamide Membranes Fabricated from Free-Standing Interfacial Polymerization: Synthesis, Modifications, and Post-treatment, Industrial & Engineering Chemistry Research 56(2) (2017) 513-523.
[85] B. Khorshidi, T. Thundat, B.A. Fleck, M. Sadrzadeh, Thin film composite polyamide membranes: parametric study on the influence of synthesis conditions, RSC Advances 5(68) (2015) 54985-54997.
[86] S.-J. Park, W.-G. Ahn, W. Choi, S.-H. Park, J.S. Lee, H.W. Jung, J.-H. Lee, A facile and scalable fabrication method for thin film composite reverse osmosis membranes: dual-layer slot coating, Journal of Materials Chemistry A 5(14) (2017) 6648-6655.
[87] Y. Mansourpanah, K. Alizadeh, S.S. Madaeni, A. Rahimpour, H. Soltani Afarani, Using different surfactants for changing the properties of poly(piperazineamide) TFC nanofiltration membranes, Desalination 271(1-3) (2011) 169-177.
[88] N. Ma, J. Wei, S. Qi, Y. Zhao, Y. Gao, C.Y. Tang, Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes, Journal of Membrane Science 441 (2013) 54-62.
[89] X. Zhao, J. Li, C. Liu, A novel TFC-type FO membrane with inserted sublayer of carbon nanotube networks exhibiting the improved separation performance, Desalination 413 (2017) 176-183.
[90] M. Son, H. Park, L. Liu, H. Choi, J.H. Kim, H. Choi, Thin-film nanocomposite membrane with CNT positioning in support layer for energy harvesting from saline water, Chemical Engineering Journal 284 (2016) 68-77.
[91] J.T. Arena, S.S. Manickam, K.K. Reimund, P. Brodskiy, J.R. McCutcheon, Characterization and Performance Relationships for a Commercial Thin Film Composite Membrane in Forward Osmosis Desalination and Pressure Retarded Osmosis, Industrial & Engineering Chemistry Research 54(45) (2015) 11393-11403.
[92] I. Alsvik, M.-B. Hägg, Pressure Retarded Osmosis and Forward Osmosis Membranes: Materials and Methods, Polymers 5(1) (2013) 303-327.
[93] W.A. Phillip, J.S. Yong, M. Elimelech, Reverse draw solute permeation in forward osmosis: modeling and experiments, Environ Sci Technol 44(13) (2010) 5170-6.
[94] Z. Zhou, Y. Hu, C. Boo, Z. Liu, J. Li, L. Deng, X. An, High-Performance Thin-Film Composite Membrane with an Ultrathin Spray-Coated Carbon Nanotube Interlayer, Environmental Science & Technology Letters 5(5) (2018) 243-248.
[95] T.Y. Cath, M. Elimelech, J.R. McCutcheon, R.L. McGinnis, A. Achilli, D. Anastasio, A.R. Brady, A.E. Childress, I.V. Farr, N.T. Hancock, J. Lampi, L.D. Nghiem, M. Xie, N.Y. Yip, Standard Methodology for Evaluating Membrane Performance in Osmotically Driven Membrane Processes, Desalination 312 (2013) 31-38.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *