帳號:guest(13.58.243.187)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪瑜萱
作者(外文):Hung, Yu-Hsuan
論文名稱(中文):以廢棄農作物製備之多孔活性碳材作為微生物燃料電池與植物微生物燃料電池電極材料之研究
論文名稱(外文):An Investigation of Bio-waste-derived Porous Carbons as Electrode Materials for Microbial Fuel Cells and Plant Microbial Fuel Cells
指導教授(中文):陳翰儀
指導教授(外文):Chen, Han-Yi
口試委員(中文):游萃蓉
劉姿吟
口試委員(外文):Yew, Tri-Rung
Liu, Tzu-Yin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031505
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:85
中文關鍵詞:微生物燃料電池植物微生物燃料電池活性碳咖啡渣
外文關鍵詞:Microbial fuel cellPlant microbial fuel cellactivated carboncoffee waste
相關次數:
  • 推薦推薦:0
  • 點閱點閱:940
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究主要分為兩部分,第一部分回收生物廢棄物咖啡渣,利用簡易的化學活化法調配不同咖啡渣與活化劑之重量比,將廢棄咖啡渣製備成多孔活性碳材(coffee-waste-derived activated carbon,以下簡稱CWAC),並將此作為微生物燃料電池之電極材料。第二部分則針對植物微生物燃料電池進行改良,包含植物選用以及電極製備,以期改善其功率密度。
在第一部分微生物燃料電池電極材料之研究中,我們使用微孔洞及表面分析儀偵測CWAC活性碳材的表面積與孔洞分布,並利用掃描式電子顯微鏡、X光繞射光譜、拉曼光譜、以及X光光電子能譜分析活性碳電極中的形貌與結構。再藉由線性掃描伏安法、循環伏安法以及電化學阻抗頻譜法分析活性碳電極在大腸桿菌液中之電化學特性。CWAC5 (前驅物咖啡渣:活化劑 = 1:5) 電極應用於微生物燃料電池之負極,可表現出高達3927 mW m−2之功率,並在連續運作五天後,在不需補充新營養源的條件下,仍具有約2000 mW m−2之功率,且CWAC5 電極相較於市售活性碳電極功率亦提升了4倍,顯示咖啡渣製備之活性碳材在微生物燃料電池應用上具有相當大之發展潛力。
在第二部分植物微生物燃料電池之研究中,我們使用生長週期較短的圓葉菸草與地瓜葉作為植物微生物燃料電池實驗組,先針對菸草植物微生物燃料電池設計不同裝置,再製備不同電極與不同植物數量參數,量測其電性進行比較。於此基礎上,測試地瓜葉植物微生物燃料電池,對其裝置、電極進一步改良,並探討不同栽培介質與益生菌對於其電性之影響。
In this study, coffee waste-derived activated carbon (CWAC) was synthesized with different activating agent ratios, including 1:1 (CWAC1), 1:5 (CWAC5), 1:10 (CWAC10) and also nonactivated CWAC 1:0 (CWAC0). In the first part, CWACs were fabricated as electrode material for microbial fuel cells (MFCs). In the second part, we investigated the plant microbial fuel cells (PMFCs) and aimed to improving its performance in power density.
First, CWACs was characterized by Field emission scanning electron microscopy, Brunauer–Emmett–Teller method, X-ray diffraction, and Raman spectroscopy for analysis of their material properties. Next, the electrochemical performance of MFCs with CWAC electrodes were characterized through linear sweep voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy in this study. The MFC with CWAC5 exhibited well cell performance with a power density more than 3927 mW m-2, which is 4 times higher than the one with commercial activated carbon electrode. Furthermore, it can continuously function for 5 days at a power density of 2000 mW m−2 without resupply of nutrient. This shows that the CWACs have great potential for sustainable bioelectricity generation in MFCs.
In the second part, we chose Nicotiana benthamiana, a close relative of tobacco, and sweet potato leaves as our experimental plants for PMFCs. We focused on the parameter optimization and compared the power performance of our tobacco PMFC settings, including device design, electrode materials, and plant numbers. Based on the results obtained from tobacco PMFCs, the design of devices and electrodes of PMFCs with sweet potato leaves were further ameliorated. In addition, the influence of different culture media and microbial co-cultivation on power performance were also discussed
摘要 -------------------------------------------------1
Abstract -----------------------------------------2
致謝 -------------------------------------------------3
目錄 -------------------------------------------------5
圖目錄 -------------------------------------------------9
表目錄 ------------------------------------------------12
第1章 緒論 ----------------------------------------13
1-1 研究背景 ----------------------------------------13
1-2 研究動機 ----------------------------------------13
第2章 文獻回顧與原理簡介 ------------------------15
2-1 活性碳簡介 --------------------------------15
2-1-1 活性碳製備 --------------------------------16
2-1-1-1 碳化 ----------------------------------------16
2-1-1-2 活化 ----------------------------------------16
2-1-2 活性碳吸附原理 --------------------------------17
2-1-2-1 等溫吸附曲線 --------------------------------17
2-1-2-2 遲滯曲線 ----------------------------------------19
2-2 微生物燃料電池發展 ------------------------20
2-2-1 微生物燃料電池原理 ------------------------21
2-2-2 微生物燃料電池之極化特性 ------------------------22
2-2-3 微生物燃料電池電極材料 ------------------------24
2-3 植物微生物燃料電池發展 ------------------------27
2-3-1 植物微生物燃料電池原理 ------------------------27
2-3-2 植物微生物燃料電池電極材料 ----------------28
第3章 實驗步驟與研究方法 ------------------------31
3-1 實驗架構 ----------------------------------------31
3-1-1 微生物燃料電池 --------------------------------31
3-1-2 植物微生物燃料電池 ------------------------32
3-2 實驗藥品 ----------------------------------------33
3-3 咖啡渣活性碳合成 --------------------------------34
3-4 微生物燃料電池組裝流程 ------------------------35
3-4-1 負極製備方法 --------------------------------35
3-4-2 正極製備方法 --------------------------------36
3-4-2-1 白金電極 ----------------------------------------36
3-4-2-2 活性碳電極 --------------------------------37
3-4-3 大腸桿菌培養 --------------------------------38
3-4-4 微生物燃料電池組裝 ------------------------38
3-5 植物微生物燃料電池組裝 ------------------------39
3-5-1 菸草種子種植 --------------------------------39
3-5-2 菸草水耕液配置 --------------------------------40
3-5-3 不同水耕裝置設計 --------------------------------40
3-5-4 電極製備 ----------------------------------------41
3-5-5 地瓜葉栽種 --------------------------------41
3-5-6 土壤益生菌之添加 --------------------------------42
3-6 材料特性量測方法 --------------------------------42
3-6-1 場發射掃描式電子顯微鏡分析 (Field Emission Scanning Electron Microscope, FESEM) --------------------------------42
3-6-2 BET (Brunauer–Emmett–Teller)比表面積與孔徑分析 42
3-6-3 X射線繞射分析 (X-ray Diffraction, XRD) --------43
3-6-4 拉曼光譜分析 --------------------------------43
3-6-5 X射線光電子能譜分析 (X-ray Photoelectron Spectroscopy, XPS) --------------------------------------------------------43
3-7 電化學性質分析 --------------------------------44
3-7-1 線性掃描伏安法 (Linear Sweep Voltammetry, LSV) 44
3-7-2 循環伏安法 (Cyclic Voltammetry, CV) --------45
3-7-3 電化學阻抗頻譜分析 (Electrochemical Impedance Spectroscopy, EIS) ------------------------------------------------45
第4章 結果與討論 --------------------------------46
4-1 以咖啡渣活性碳作為微生物燃料電池電極材料之研究 46
4-1-1 咖啡渣活性碳之材料特性分析 ----------------46
4-1-1-1 場發射掃描式電子顯微鏡分析 ----------------46
4-1-1-2 BET比表面積與孔徑分析 ------------------------47
4-1-1-3 X射線繞射分析 --------------------------------49
4-1-1-4 拉曼光譜分析 --------------------------------49
4-1-1-5 X射線光電子能譜分析 ------------------------50
4-1-2 咖啡渣活性碳應用於微生物燃料電池之電化學性質分析 54
4-1-2-1 循環伏安法分析 --------------------------------54
4-1-2-2 大腸桿菌分布情形之探討 ------------------------55
4-1-2-3 電化學阻抗頻譜分析 ------------------------56
4-1-2-4 線性掃描伏安法分析 ------------------------58
4-1-2-5 長時間穩定性分析 --------------------------------60
4-2 植物微生物燃料電池之設計與改良 ----------------62
4-2-1 菸草植物微生物燃料電池 ------------------------62
4-2-1-1 不同裝置設計比較 --------------------------------62
4-2-1-2 菸草植株顆數之影響 ------------------------------63
4-2-1-3 電極對電性之探討 --------------------------------64
4-2-2 地瓜葉植物微生物燃料電池 ------------------------65
4-2-2-1 裝置設計、栽培介質與電極改良之影響 ----------------65
4-2-2-2 益生菌添加對電性表現之影響 ----------------68
第5章 結論 ----------------------------------------72
第6章 未來展望 ----------------------------------------74
本研究相關之發表 ----------------------------------------75
參考文獻 ------------------------------------------------78

1. Hepbasli, A., A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renewable and Sustainable Energy Reviews, 2008. 12(3): p. 593-661.
2. Rahimnejad, M., A.A. Ghoreyshi, G. Najafpour, and T. Jafary, Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Applied Energy, 2011. 88(11): p. 3999-4004.
3. Rahimnejad, M., A.A. Ghoreyshi, G.D. Najafpour, H. Younesi, and M. Shakeri, A novel microbial fuel cell stack for continuous production of clean energy. International Journal of Hydrogen Energy, 2012. 37(7): p. 5992-6000.
4. Gil, G.-C., I.-S. Chang, B.H. Kim, M. Kim, J.-K. Jang, H.S. Park, and H.J. Kim, Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosensors and Bioelectronics, 2003. 18(4): p. 327-334.
5. Bettin, C., Applicability and Feasibility of Incorporating Microbial Fuel Cell Technology into Implantable Biomedical Devices. 2006.
6. Rabaey, K., K. Van de Sompel, L. Maignien, N. Boon, P. Aelterman, P. Clauwaert, L. De Schamphelaire, H.T. Pham, J. Vermeulen, M. Verhaege, P. Lens, and W. Verstraete, Microbial Fuel Cells for Sulfide Removal. Environmental Science & Technology, 2006. 40(17): p. 5218-5224.
7. Gotvajn, A.Ž., T. Tišler, and J. Zagorc-Končan, Comparison of different treatment strategies for industrial landfill leachate. Journal of Hazardous Materials, 2009. 162(2): p. 1446-1456.
8. Kumar, N. and D. Das, Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme and Microbial Technology, 2001. 29(4): p. 280-287.
9. Satar, I., M. Ghasemi, S.A. Aljlil, W.N.R.W. Isahak, A.M. Abdalla, J. Alam, W.R.W. Daud, M.A. Yarmo, and O. Akbarzadeh, Production of hydrogen by Enterobacter aerogenes in an immobilized cell reactor. International Journal of Hydrogen Energy, 2017. 42(14): p. 9024-9030.
10. Strik, D.P.B.T.B., Hamelers, H. V. M., Snel, Jan F. H., Buisman, Cees J. N., Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research, 2008. 32(9): p. 870-876.
11. Venkata Mohan, S., G. Mohanakrishna, and P. Chiranjeevi, Sustainable power generation from floating macrophytes based ecological microenvironment through embedded fuel cells along with simultaneous wastewater treatment. Bioresource technology, 2011. 102(14): p. 7036-7042.
12. Habibul, N., Y. Hu, Y.-K. Wang, W. Chen, H.-Q. Yu, and G.-P. Sheng, Bioelectrochemical Chromium(VI) Removal in Plant-Microbial Fuel Cells. Environmental Science & Technology, 2016. 50(7): p. 3882-3889.
13. Arends, J.B.A., J. Speeckaert, E. Blondeel, J. De Vrieze, P. Boeckx, W. Verstraete, K. Rabaey, and N. Boon, Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell. Applied Microbiology and Biotechnology, 2014. 98(7): p. 3205-3217.
14. Liu, S., H. Song, X. Li, and F. Yang, Power Generation Enhancement by Utilizing Plant Photosynthate in Microbial Fuel Cell Coupled Constructed Wetland System. International Journal of Photoenergy, 2013. 2013: p. 1-10.
15. Helder, M., W.-S. Chen, E.J.M. van der Harst, D.P.B.T.B. Strik, H.V.M. Hamelers, C.J.N. Buisman, and J. Potting, Electricity production with living plants on a green roof: environmental performance of the plant-microbial fuel cell. Biofuels, Bioproducts and Biorefining, 2013. 7(1): p. 52-64.
16. Helder, M., D.P.B.T.B. Strik, R.A. Timmers, S.M.T. Raes, H.V.M. Hamelers, and C.J.N. Buisman, Resilience of roof-top Plant-Microbial Fuel Cells during Dutch winter. Biomass and Bioenergy, 2013. 51(Supplement C): p. 1-7.
17. Logan, B.E., B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey, Microbial Fuel Cells:  Methodology and Technology. Environmental Science & Technology, 2006. 40(17): p. 5181-5192.
18. Yuan, H., Y. Hou, I.M. Abu-Reesh, J. Chen, and Z. He, Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: a review. Materials Horizons, 2016. 3(5): p. 382-401.
19. Organization, I.C., World coffee consumption. 2019.
20. Kinoshita, K., Carbon: electrochemical and physicochemical properties. 1988.
21. Wigmans, T., Industrial aspects of production and use of activated carbons. Carbon, 1989. 27(1): p. 13-22.
22. da Costa Lopes, A.S., S.M.L. de Carvalho, D.d.S.B. Brasil, R. de Alcântara Mendes, and M.O. Lima, Surface modification of commercial activated carbon (CAG) for the adsorption of benzene and toluene. American Journal of Analytical Chemistry, 2015. 6(06): p. 528.
23. Balathanigaimani, M.S., W.-G. Shim, M.-J. Lee, C. Kim, J.-W. Lee, and H. Moon, Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors. Electrochemistry Communications, 2008. 10(6): p. 868-871.
24. Wu, F.-C., R.-L. Tseng, C.-C. Hu, and C.-C. Wang, The capacitive characteristics of activated carbons—comparisons of the activation methods on the pore structure and effects of the pore structure and electrolyte on the capacitive performance. Journal of Power Sources, 2006. 159(2): p. 1532-1542.
25. Zhao, S., C.-Y. Wang, M.-M. Chen, J. Wang, and Z.-Q. Shi, Potato starch-based activated carbon spheres as electrode material for electrochemical capacitor. Journal of Physics and Chemistry of Solids, 2009. 70(9): p. 1256-1260.
26. Li, X., C. Han, X. Chen, and C. Shi, Preparation and performance of straw based activated carbon for supercapacitor in non-aqueous electrolytes. Microporous and Mesoporous Materials, 2010. 131(1): p. 303-309.
27. Guo, Y., J. Qi, Y. Jiang, S. Yang, Z. Wang, and H. Xu, Performance of electrical double layer capacitors with porous carbons derived from rice husk. Materials Chemistry and Physics, 2003. 80(3): p. 704-709.
28. Hong, K.-l., L. Qie, R. Zeng, Z.-q. Yi, W. Zhang, D. Wang, W. Yin, C. Wu, Q.-j. Fan, W.-x. Zhang, and Y.-h. Huang, Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. Journal of Materials Chemistry A, 2014. 2(32): p. 12733-12738.
29. Subramanian, V., C. Luo, A.M. Stephan, K.S. Nahm, S. Thomas, and B. Wei, Supercapacitors from Activated Carbon Derived from Banana Fibers. The Journal of Physical Chemistry C, 2007. 111(20): p. 7527-7531.
30. Wu, F.-C., R.-L. Tseng, C.-C. Hu, and C.-C. Wang, Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors. Journal of Power Sources, 2005. 144(1): p. 302-309.
31. Jisha, M.R., Y.J. Hwang, J.S. Shin, K.S. Nahm, T. Prem Kumar, K. Karthikeyan, N. Dhanikaivelu, D. Kalpana, N.G. Renganathan, and A.M. Stephan, Electrochemical characterization of supercapacitors based on carbons derived from coffee shells. Materials Chemistry and Physics, 2009. 115(1): p. 33-39.
32. Lv, W., F. Wen, J. Xiang, J. Zhao, L. Li, L. Wang, Z. Liu, and Y. Tian, Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries. Electrochimica Acta, 2015. 176: p. 533-541.
33. Kurzweil, P., CAPACITORS|electrochemical double-layer capacitors: Carbon materials. 2009.
34. EVERETT, D.H., Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure and Applied Chemistry, 1972. 31(4): p. 577–638.
35. Rodríguez-reinoso, F., The role of carbon materials in heterogeneous catalysis. Carbon, 1998. 36(3): p. 159-175.
36. Lewis, I.C., Chemistry of carbonization. Carbon, 1982. 20(6): p. 519-529.
37. Barroso-Bogeat, A., M. Alexandre-Franco, C. Fernández-González, A. Macías-García, and V. Gómez-Serrano, Temperature dependence of the electrical conductivity of activated carbons prepared from vine shoots by physical and chemical activation methods. Microporous and Mesoporous Materials, 2015. 209: p. 90-98.
38. Yang, H.M., D.H. Zhang, Y. Chen, M.J. Ran, and J.C. Gu, Study on the application of KOH to produce activated carbon to realize the utilization of distiller’s grains. IOP Conference Series: Earth and Environmental Science, 2017. 69: p. 012051.
39. Romanos, J., M. Beckner, T. Rash, L. Firlej, B. Kuchta, P. Yu, G. Suppes, C. Wexler, and P. Pfeifer, Nanospace engineering of KOH activated carbon. Nanotechnology, 2012. 23(1): p. 015401.
40. Thommes, M., Physical Adsorption Characterization of Nanoporous Materials. Chemie Ingenieur Technik, 2010. 82(7): p. 1059-1073.
41. Thommes, M., K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015. 87(9-10).
42. Potter, M.C., Electrical Effects Accompanying the Decomposition of Organic Compounds. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 1911. 84(571): p. 260.
43. Cohen, B., The bacterial culture as an electrical half-cell. Vol. 21. 1931. 18-19.
44. Bennetto, H., Electricity generation by microorganisms. Biotechnology education, 1990. 1(4): p. 163-168.
45. Fan, Y., E. Sharbrough, and H. Liu, Quantification of the Internal Resistance Distribution of Microbial Fuel Cells. Environmental Science & Technology, 2008. 42(21): p. 8101-8107.
46. Rosenbaum, M., F. Zhao, U. Schroder, and F. Scholz, Interfacing electrocatalysis and biocatalysis with tungsten carbide: a high-performance, noble-metal-free microbial fuel cell. Angew Chem Int Ed Engl, 2006. 45(40): p. 6658-61.
47. Choi, C. and Y. Cui, Recovery of silver from wastewater coupled with power generation using a microbial fuel cell. Bioresour Technol, 2012. 107: p. 522-5.
48. Qiao, Y., X.-S. Wu, C.-X. Ma, H. He, and C.M. Li, A hierarchical porous graphene/nickel anode that simultaneously boosts the bio- and electro-catalysis for high-performance microbial fuel cells. RSC Adv., 2014. 4(42): p. 21788-21793.
49. Li, H., B. Liao, J. Xiong, X. Zhou, H. Zhi, X. Liu, X. Li, and W. Li, Power output of microbial fuel cell emphasizing interaction of anodic binder with bacteria. Journal of Power Sources, 2018. 379: p. 115-122.
50. Liu, D., R. Wang, W. Chang, L. Zhang, B. Peng, H. Li, S. Liu, M. Yan, and C. Guo, Ti3C2 MXene as an excellent anode material for high-performance microbial fuel cells. Journal of Materials Chemistry A, 2018. 6(42): p. 20887-20895.
51. Rahimnejad, M., A. Adhami, S. Darvari, A. Zirepour, and S.-E. Oh, Microbial fuel cell as new technology for bioelectricity generation: A review. Alexandria Engineering Journal, 2015. 54(3): p. 745-756.
52. Lu, M., Y. Qian, L. Huang, X. Xie, and W. Huang, Improving the performance of microbial fuel cells through anode manipulation. ChemPlusChem, 2015. 80(8): p. 1216-1225.
53. Qiao, Y., C.M. Li, S.-J. Bao, and Q.-L. Bao, Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. Journal of Power Sources, 2007. 170(1): p. 79-84.
54. Fan, M., W. Zhang, J. Sun, L. Chen, P. Li, Y. Chen, S. Zhu, and S. Shen, Different modified multi-walled carbon nanotube–based anodes to improve the performance of microbial fuel cells. International Journal of Hydrogen Energy, 2017. 42(36): p. 22786-22795.
55. Jiang, H., L. Yang, W. Deng, Y. Tan, and Q. Xie, Macroporous graphitic carbon foam decorated with polydopamine as a high-performance anode for microbial fuel cell. Journal of Power Sources, 2017. 363: p. 27-33.
56. Mehdinia, A., E. Ziaei, and A. Jabbari, Facile microwave-assisted synthesized reduced graphene oxide/tin oxide nanocomposite and using as anode material of microbial fuel cell to improve power generation. International Journal of Hydrogen Energy, 2014. 39(20): p. 10724-10730.
57. Santoro, C., C. Arbizzani, B. Erable, and I. Ieropoulos, Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 2017. 356(Supplement C): p. 225-244.
58. Janicek, A., N. Gao, Y. Fan, and H. Liu, High Performance Activated Carbon/Carbon Cloth Cathodes for Microbial Fuel Cells. Fuel Cells, 2015. 15(6): p. 855-861.
59. Li, F., D. Wang, Q. Liu, B. Wang, W. Zhong, M. Li, K. Liu, Z. Lu, H. Jiang, Q. Zhao, and C. Xiong, The construction of rod-like polypyrrole network on hard magnetic porous textile anodes for microbial fuel cells with ultra-high output power density. Journal of Power Sources, 2019. 412: p. 514-519.
60. Chen, Y.-M., C.-T. Wang, Y.-C. Yang, and W.-J. Chen, Application of aluminum-alloy mesh composite carbon cloth for the design of anode/cathode electrodes in Escherichia coli microbial fuel cell. International Journal of Hydrogen Energy, 2013. 38(25): p. 11131-11137.
61. Zhang, Y., G. Mo, X. Li, W. Zhang, J. Zhang, J. Ye, X. Huang, and C. Yu, A graphene modified anode to improve the performance of microbial fuel cells. Journal of Power Sources, 2011. 196(13): p. 5402-5407.
62. Khare, P., J. Ramkumar, and N. Verma, Carbon Nanofiber-skinned Three Dimensional Ni/Carbon Micropillars: High Performance Electrodes of a Microbial Fuel Cell. Electrochimica Acta, 2016. 219: p. 88-98.
63. Sharma, T., A. Mohanareddy, T. Chandra, and S. Ramaprabhu, Development of carbon nanotubes and nanofluids based microbial fuel cell. International Journal of Hydrogen Energy, 2008. 33(22): p. 6749-6754.
64. Gnana kumar, G., C.J. Kirubaharan, S. Udhayakumar, C. Karthikeyan, and K.S. Nahm, Conductive Polymer/Graphene Supported Platinum Nanoparticles as Anode Catalysts for the Extended Power Generation of Microbial Fuel Cells. Industrial & Engineering Chemistry Research, 2014. 53(43): p. 16883-16893.
65. Singh, S., P.K. Bairagi, and N. Verma, Candle soot-derived carbon nanoparticles: An inexpensive and efficient electrode for microbial fuel cells. Electrochimica Acta, 2018. 264: p. 119-127.
66. Chen, X., D. Cui, X. Wang, X. Wang, and W. Li, Porous carbon with defined pore size as anode of microbial fuel cell. Biosens Bioelectron, 2015. 69: p. 135-141.
67. Mehdinia, A., E. Ziaei, and A. Jabbari, Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells. Electrochimica Acta, 2014. 130: p. 512-518.
68. Gnana kumar, G., C.J. Kirubaharan, S. Udhayakumar, K. Ramachandran, C. Karthikeyan, R. Renganathan, and K.S. Nahm, Synthesis, Structural, and Morphological Characterizations of Reduced Graphene Oxide-Supported Polypyrrole Anode Catalysts for Improved Microbial Fuel Cell Performances. ACS Sustainable Chemistry & Engineering, 2014. 2(10): p. 2283-2290.
69. Park, I.H., M. Christy, P. Kim, and K.S. Nahm, Enhanced electrical contact of microbes using Fe(3)O(4)/CNT nanocomposite anode in mediator-less microbial fuel cell. Biosens Bioelectron, 2014. 58: p. 75-80.
70. Nitisoravut, R. and R. Regmi, Plant microbial fuel cells: A promising biosystems engineering. Renewable and Sustainable Energy Reviews, 2017. 76(Supplement C): p. 81-89.
71. Helder, M., D.P.B.T.B. Strik, H.V.M. Hamelers, A.J. Kuhn, C. Blok, and C.J.N. Buisman, Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresource Technology, 2010. 101(10): p. 3541-3547.
72. Hubenova, Y. and M. Mitov, Conversion of solar energy into electricity by using duckweed in Direct Photosynthetic Plant Fuel Cell. Bioelectrochemistry, 2012. 87: p. 185-91.
73. Helder, M., D.P. Strik, H.V. Hamelers, R.C. Kuijken, and C.J. Buisman, New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell. Bioresour Technol, 2012. 104: p. 417-23.
74. Moqsud, M.A., J. Yoshitake, Q.S. Bushra, M. Hyodo, K. Omine, and D. Strik, Compost in plant microbial fuel cell for bioelectricity generation. Waste Manag, 2015. 36: p. 63-9.
75. Tapia, N.F., C. Rojas, C.A. Bonilla, and I.T. Vargas, Evaluation of Sedum as driver for plant microbial fuel cells in a semi-arid green roof ecosystem. Ecological Engineering, 2017. 108: p. 203-210.
76. Kaku, N., N. Yonezawa, Y. Kodama, and K. Watanabe, Plant/microbe cooperation for electricity generation in a rice paddy field. Appl Microbiol Biotechnol, 2008. 79.
77. Takanezawa, K., K. Nishio, S. Kato, K. Hashimoto, and K. Watanabe, Factors Affecting Electric Output from Rice-Paddy Microbial Fuel Cells. Bioscience, Biotechnology, and Biochemistry, 2010. 74(6): p. 1271-1273.
78. Helder, M., Design criteria for the plant-microbial fuel cell: electricity generation with living plants: from lab tot application. 2012.
79. He, Z. and L.T. Angenent, Application of Bacterial Biocathodes in Microbial Fuel Cells. Electroanalysis, 2006. 18(19-20): p. 2009-2015.
80. Wetser, K., E. Sudirjo, C.J.N. Buisman, and D.P.B.T.B. Strik, Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode. Applied Energy, 2015. 137: p. 151-157.
81. J., M.K., J. Kurian, Y. Gariépy, B. Tartakovsky, and G.S.V. Raghavan, Effects of salinity, growing media, and photoperiod on bioelectricity production in plant microbial fuel cells with weeping alkaligrass. Biomass and Bioenergy, 2018. 109: p. 1-9.
82. Lu, L., D. Xing, and Z.J. Ren, Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell. Bioresour Technol, 2015. 195: p. 115-21.
83. Md Khudzari, J., Y. Gariépy, J. Kurian, B. Tartakovsky, and G.S.V. Raghavan, Effects of biochar anodes in rice plant microbial fuel cells on the production of bioelectricity, biomass, and methane. Biochemical Engineering Journal, 2019. 141: p. 190-199.
84. Xu, L., Y. Zhao, L. Doherty, Y. Hu, and X. Hao, Promoting the bio-cathode formation of a constructed wetland-microbial fuel cell by using powder activated carbon modified alum sludge in anode chamber. Sci Rep, 2016. 6: p. 26514.
85. Sophia, A.C. and S. Sreeja, Green energy generation from plant microbial fuel cells (PMFC) using compost and a novel clay separator. Sustainable Energy Technologies and Assessments, 2017. 21: p. 59-66.
86. Timmers, R.A., D. Strik, H.V.M. Hamelers, and C.J.N. Buisman, Long-term performance of a plant microbial fuel cell with Spartina anglica. Applied Microbiology and Biotechnology, 2010. 86(3): p. 973-981.
87. Salinas-Juarez, M.G., P. Roquero, and M.D. Duran-Dominguez-de-Bazua, Plant and microorganisms support media for electricity generation in biological fuel cells with living hydrophytes. Bioelectrochemistry, 2016. 112: p. 145-152.
88. Zhang, P., J. Liu, Y. Qu, J. Zhang, Y. Zhong, and Y. Feng, Enhanced performance of microbial fuel cell with a bacteria/multi-walled carbon nanotube hybrid biofilm. Journal of Power Sources, 2017. 361: p. 318-325.
89. Park, M.H., Y.S. Yun, S.Y. Cho, N.R. Kim, and H.-J. Jin, Waste coffee grounds-derived nanoporous carbon nanosheets for supercapacitors. Carbon letters, 2016. 19: p. 66-71.
90. Um, J.H., Y. Kim, C.-Y. Ahn, J. Kim, Y.-E. Sung, Y.-H. Cho, S.-S. Kim, and W.-S. Yoon, Biomass Waste, Coffee Grounds-derived Carbon for Lithium Storage. J. Electrochem. Sci. Technol, 2018. 9(3): p. 163-168.
91. Ferrari, A.C., Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications, 2007. 143(1-2): p. 47-57.
92. Yun, Y.S., M.H. Park, S.J. Hong, M.E. Lee, Y.W. Park, and H.J. Jin, Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors. ACS Appl Mater Interfaces, 2015. 7(6): p. 3684-3690.
93. Heidari, A., H. Younesi, A. Rashidi, and A.A. Ghoreyshi, Evaluation of CO2 adsorption with eucalyptus wood based activated carbon modified by ammonia solution through heat treatment. Chemical Engineering Journal, 2014. 254: p. 503-513.
94. Han, J., S.-Y. Jeong, J.H. Lee, J.W. Choi, J.-W. Lee, and K.C. Roh, Structural and Electrochemical Characteristics of Activated Carbon Derived from Lignin-Rich Residue. ACS Sustainable Chemistry & Engineering, 2018. 7(2): p. 2471-2482.
95. Fung, A.W.P., A.M. Rao, K. Kuriyama, M.S. Dresselhaus, G. Dresselhaus, M. Endo, and N. Shindo, Raman scattering and electrical conductivity in highly disordered activated carbon fibers. Journal of Materials Research, 1993. 8(3): p. 489-500.
96. Deng, L., Y. Yuan, Y. Zhang, Y. Wang, Y. Chen, H. Yuan, and Y. Chen, Alfalfa Leaf-Derived Porous Heteroatom-Doped Carbon Materials as Efficient Cathodic Catalysts in Microbial Fuel Cells. ACS Sustainable Chemistry & Engineering, 2017. 5(11): p. 9766-9773.
97. Gao, F., J. Qu, Z. Zhao, Z. Wang, and J. Qiu, Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors. Electrochimica Acta, 2016. 190: p. 1134-1141.
98. Deng, Y., Y. Xie, K. Zou, and X. Ji, Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. Journal of Materials Chemistry A, 2016. 4(4): p. 1144-1173.
99. Ziqing, L., H. Wenxiu, Z. Yongqiang, Y. Huiying, L. Xingsheng, and L. Bin, Effect of Different Nitrogen Sources on Structure and Properties of Nitrogen-doped Graphene. CHINESE JOURNAL OF MATERIALS RESEARCH, 2018. 32(8): p. 616-624.
100. Jiang, X., H. Shi, J. Shen, W. Han, X. Sun, J. Li, and L. Wang, Synergistic effect of pyrrolic N and graphitic N for the enhanced nitrophenol reduction of nitrogen-doped graphene-modified cathode in the bioelectrochemical system. Journal of Electroanalytical Chemistry, 2018. 823: p. 32-39.
101. Li, B., F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, and M. Cai, Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy & Environmental Science, 2016. 9(1): p. 102-106.
102. You, S., M. Ma, W. Wang, D. Qi, X. Chen, J. Qu, and N. Ren, 3D Macroporous Nitrogen-Enriched Graphitic Carbon Scaffold for Efficient Bioelectricity Generation in Microbial Fuel Cells. Advanced Energy Materials, 2017. 7(4): p. 1601364.
103. Yan, X., Y. Jia, T. Odedairo, X. Zhao, Z. Jin, Z. Zhu, and X. Yao, Activated carbon becomes active for oxygen reduction and hydrogen evolution reactions. Chem Commun (Camb), 2016. 52(52): p. 8156-8159.
104. Santoro, C., F. Soavi, A. Serov, C. Arbizzani, and P. Atanassov, Self-powered supercapacitive microbial fuel cell: The ultimate way of boosting and harvesting power. Biosens Bioelectron, 2016. 78: p. 229-235.
105. Houghton, J., C. Santoro, F. Soavi, A. Serov, I. Ieropoulos, C. Arbizzani, and P. Atanassov, Supercapacitive microbial fuel cell: Characterization and analysis for improved charge storage/delivery performance. Bioresour Technol, 2016. 218: p. 552-60.
106. Finkel, S.E. and R. Kolter, DNA as a nutrient: novel role for bacterial competence gene homologs. J Bacteriol, 2001. 183(21): p. 6288-93.
107. Finkel, S.E. and R. Kolter, Evolution of microbial diversity during prolonged starvation. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(7): p. 4023-4027.
108. Finkel, S.E., Long-term survival during stationary phase: evolution and the GASP phenotype. Nat Rev Microbiol, 2006. 4(2): p. 113-120.
109. 黃瑞彰、江汶錦、林經偉、卓家榮, 菌根菌的特性及田間應用技術. 臺南區農業專訊, 2011. 75: p. 14-19.
110. 楊秋忠、沈佛亭, 溶磷微生物肥料之特性及效益. 農業生技產業專刊, 2008. 16: p. 57-59.
111. Zhu, N., X. Chen, T. Zhang, P. Wu, P. Li, and J. Wu, Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes. Bioresource Technology, 2011. 102(1): p. 422-426.
112. Liu, J., J. Liu, W. He, Y. Qu, N. Ren, and Y. Feng, Enhanced electricity generation for microbial fuel cell by using electrochemical oxidation to modify carbon cloth anode. Journal of Power Sources, 2014. 265: p. 391-396.
113. Liu, L., G. Zeng, J. Chen, L. Bi, L. Dai, and Z. Wen, N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices. Nano Energy, 2018. 49: p. 393-402.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *