|
[1]Feynman, R. P. There's plenty of room at the bottom. Engineering and Science 23, 22-36 (1960). [2]Binnig, G., Rohrer, H., Gerber, C., and Weibel, E. Tunneling through a controllable vacuum gap. Applied Physics Letters 40, 178-180 (1982). [3]Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., I. V. Grigorieva, and Firsov, A. A. Electric field effect in atomically thin carbon films. Science 306, 666-669 (2004). [4]Yeh, Y. C., Creran, B., and Rotello, V. M. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4, 1871-1880 (2012). [5]Skrabalak, S. E., Au, L., Li, X., and Xia, Y. Facile synthesis of Ag nanocubes and Au nanocages. Nature Protocols 2, 2181-2190 (2007). [6]Li, Z. H. and Ren, D. Y. Preparation of ITO transparent conductive film by sol-gel method. Transactions of Nonferrous Metals Society of China 16, 1358-1361 (2006). [7]Ma, H. L., Zhang, D. H., Ma, P., Win, S. Z., and Li, S. Y. Preparation and properties of transparent conducting indium tin oxide films deposited by reactive evaporation. Thin Solid Films 263, 105-110 (1995). [8]Kim, J. H. and Park, J. W. Improving the flexibility of large-area transparent conductive oxide electrodes on polymer substrates for flexible organic light emitting diodes by introducing surface roughness. Organic Electronics 14, 3444-3452 (2013). [9]Minami, T., Ida, S., and Miyata, T. High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation. Thin Solid Films 416, 92-96 (2002). [10]Yang, W., Broski, A., Wu, J., Fan, Q. H., and Li, W. Characteristics of transparent, PEDOT: PSS-coated indium-tin-oxide (ITO) microelectrodes. IEEE Transactions on Nanotechnology 17, 701-704 (2017). [11]Furukawa, T. and Koden, M. Novel roll-to-roll deposition and patterning of ITO on ultra-thin glass for flexible OLEDs. IEICE Transactions on Electronics 100, 949-954 (2017). [12]Wu, W. Inorganic nanomaterials for printed electronics: a review. Nanoscale 9, 7342-7372 (2017). [13]Liu, J., Yi, Y., Zhou, Y., and Cai, H. Highly stretchable and flexible graphene/ITO hybrid transparent electrode. Nanoscale Research Letters 11, 108 (2016). [14]Hssein, M., Tuo, S., Benayoun, S., Cattin, L., Morsli, M., Mouchaal, Y., Addou M., Khelil A., and Bernède, J. C. Cu-Ag bi-layer films in dielectric/metal/dielectric transparent electrodes as ITO free electrode in organic photovoltaic devices. Organic Electronics 42, 173-180 (2017). [15]Wang, Y., Xu, M., Li, J., Ma, J., Wang, X., Wei, Z., Chu, X., Fang, X., and Jin, F. Sol-combustion synthesis of Al-doped ZnO transparent conductive film at low temperature. Surface and Coatings Technology 330, 255-259 (2017). [16]Nasiri, M. and Rozati, S. M. Muscovite mica as a flexible substrate for transparent conductive AZO thin films deposited by spray pyrolysis. Materials Science in Semiconductor Processing 81, 38-43 (2018). [17]Yu, X., Yu, X., Zhang, J., Zhang, D., Ni, J., Cai, H., Zhang D., and Zhao, Y. Efficient inverted polymer solar cells based on surface modified FTO transparent electrodes. Solar Energy Materials and Solar Cells 136, 142-147 (2015). [18]Xia, Y., Sun, K., and Ouyang, J. Highly conductive poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells. Energy & Environmental Science 5, 5325-5332 (2012). [19]Xia, Y., Sun, K., and Ouyang, J. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Advanced Materials 24, 2436-2440 (2012). [20]De, S., Lyons, P. E., Sorel, S., Doherty, E. M., King, P. J., Blau, W. J., Nirmalraj, P. N., Boland, J. J., Scardaci, V., Joimel, J, Coleman, J. N. Transparent, flexible, and highly conductive thin films based on polymer-nanotube composites. Acs Nano 3, 714-720 (2009). [21]Gaynor, W., Burkhard, G. F., McGehee, M. D., and Peumans, P. Smooth nanowire/polymer composite transparent electrodes. Advanced Materials 23, 2905-2910 (2011). [22]Liu, C. H. and Yu, X. Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Research Letters 6, 75 (2011). [23]Kang, S. B., Kwon, K. C., Choi, K. S., Lee, R., Hong, K., Suh, J. M., Im, M. J., Sanger A., Choi, I. Y., Kim, S. Y., Shin, J. C., Jang, H.W., and Shin, J. C. Transfer of ultrathin molybdenum disulfide and transparent nanomesh electrode onto silicon for efficient heterojunction solar cells. Nano energy 50, 649-658 (2018). [24]Van De Groep, J., Spinelli, P., and Polman, A. Transparent conducting silver nanowire networks. Nano Letters 12, 3138-3144 (2012). [25]Lee, J. Y., Connor, S. T., Cui, Y., and Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Letters 8, 689-692 (2008). [26]Cheng, Y., Wang, S., Wang, R., Sun, J., and Gao, L. Copper nanowire based transparent conductive films with high stability and superior stretchability. Journal of Materials Chemistry C 2, 5309-5316 (2014). [27]Kou, P., Yang, L., Chi, K., and He, S. Large-area and uniform transparent electrodes fabricated by polymethylmethacrylate-assisted spin-coating of silver nanowires on rigid and flexible substrates. Optical Materials Express 5, 2347-2358 (2015). [28]Tokuno, T., Nogi, M., Jiu, J., Sugahara, T., and Suganuma, K. Transparent electrodes fabricated via the self-assembly of silver nanowires using a bubble template. Langmuir 28, 9298-9302 (2012). [29]Zhang, P., Wyman, I., Hu, J., Lin, S., Zhong, Z., Tu, Y., Huang, Z., and Wei, Y. Silver nanowires: Synthesis technologies, growth mechanism and multifunctional applications. Materials Science and Engineering: B 223, 1-23 (2017). [30]Coskun, S., Aksoy, B., and Unalan, H. E. Polyol synthesis of silver nanowires: an extensive parametric study. Crystal Growth & Design 11, 4963-4969 (2011). [31]Manepalli, R., Stepniak, F., Bidstrup-Allen, S. A., and Kohl, P. A. Silver metallization for advanced interconnects. IEEE Transactions on Advanced Packaging 22, 4-8 (1999). [32]Gao, L., Härter, P., Linsmeier, C., Wiltner, A., Emling, R., and Schmitt-Landsiedel, D. Silver metal organic chemical vapor deposition for advanced silver metallization. Microelectronic Engineering 82, 296-300 (2005). [33]Zhang, Z., Zhang, X., Xin, Z., Deng, M., Wen, Y., and Song, Y. Controlled inkjetting of a conductive pattern of silver nanoparticles based on the coffee‐ring effect. Advanced Materials 25, 6714-6718 (2013). [34]He, G. C., Lu, H., Dong, X. Z., Zhang, Y. L., Liu, J., Xie, C. Q., and Zhao, Z. S. Electrical and thermal properties of silver nanowire fabricated on a flexible substrate by two-beam laser direct writing for designing a thermometer. RSC Advances 8, 24893-24899 (2018). [35]Cheng, Z., Liu, L., Xu, S., Lu, M., and Wang, X. Temperature dependence of electrical and thermal conduction in single silver nanowire. Scientific Reports 5, 10718 (2015). [36]Tokuno, T., Nogi, M., Karakawa, M., Jiu, J., Nge, T. T., Aso, Y., and Suganuma, K. Fabrication of silver nanowire transparent electrodes at room temperature. Nano Research 4, 1215-1222 (2011). [37]Yan, X., Ma, J., Xu, H., Wang, C., and Liu, Y. Fabrication of silver nanowires and metal oxide composite transparent electrodes and their application in UV light-emitting diodes. Journal of Physics D: Applied Physics 49, 325103 (2016). [38]Gebeyehu, M. B., Chala, T. F., Chang, S. Y., Wu, C. M., and Lee, J. Y. Synthesis and highly effective purification of silver nanowires to enhance transmittance at low sheet resistance with simple polyol and scalable selective precipitation method. RSC Advances 7, 16139-16148 (2017). [39]Lee, J., Lee, P., Lee, H., Lee, D., Lee, S. S., and Ko, S. H. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 4, 6408-6414 (2012). [40]Li, B., Ye, S., Stewart, I. E., Alvarez, S., and Wiley, B. J. Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%. Nano Letters 15, 6722-6726 (2015). [41]Anh Dinh, D., Nam Hui, K., San Hui, K., Singh, J., Kumar, P., and Zhou, W. Silver nanowires: a promising transparent conducting electrode material for optoelectronic and electronic applications. Reviews in Advanced Sciences and Engineering 2, 324-345 (2013). [42]Xu, F., Xu, W., Mao, B., Shen, W., Yu, Y., Tan, R., and Song, W. Preparation and cold welding of silver nanowire based transparent electrodes with optical transmittances > 90% and sheet resistances < 10 ohm/sq. Journal of Colloid and Interface Science 512, 208-218 (2018). [43]Xue, Q., Yao, W., Liu, J., Tian, Q., Liu, L., Li, M., Lu, Q., Peng, R., and Wu, W. Facile synthesis of silver nanowires with different aspect ratios and used as high-performance flexible transparent electrodes. Nanoscale Research Letters 12, 480 (2017). [44]Jiu, J., Araki, T., Wang, J., Nogi, M., Sugahara, T., Nagao, S., Koga, H., Suganuma, H., Nakazawa, E., Hara, M., Uchida, H., and Shinozaki, K. Facile synthesis of very-long silver nanowires for transparent electrodes. Journal of Materials Chemistry A 2, 6326-6330 (2014). [45]Sun, Y., Yin, Y., Mayers, B. T., Herricks, T., and Xia, Y. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone). Chemistry of Materials 14, 4736-4745 (2002). [46]Jiu, J., Murai, K., Kim, D., Kim, K., and Suganuma, K. Preparation of Ag nanorods with high yield by polyol process. Materials Chemistry and Physics 114, 333-338 (2009). [47]Huang, Q. and Zhu, Y. Gravure printing of water-based silver nanowire ink on plastic substrate for flexible electronics. Scientific Reports 8, 15167 (2018). [48]Zhang, K., Du, Y., and Chen, S. Sub 30 nm silver nanowire synthesized using KBr as co-nucleant through one-pot polyol method for optoelectronic applications. Organic Electronics 26, 380-385 (2015). [49]Ran, Y., He, W., Wang, K., Ji, S., and Ye, C. A one-step route to Ag nanowires with a diameter below 40 nm and an aspect ratio above 1000. Chemical Communications 50, 14877-14880 (2014). [50]Zhang, Q., Li, Y. A. N., Xu, D., and Gu, Z. Preparation of silver nanowire arrays in anodic aluminum oxide templates. Journal of Materials Science Letters 20, 925-927 (2001). [51]Huang, M. H., Choudrey, A., and Yang, P. Ag nanowire formation within mesoporous silica. Chemical Communications 36, 1063-1064 (2000). [52]Kazeminezhad, I., Barnes, A. C., Holbrey, J. D., Seddon, K. R., and Schwarzacher, W. Templated electrodeposition of silver nanowires in a nanoporous polycarbonate membrane from a nonaqueous ionic liquid electrolyte. Applied Physics A 86, 373-375 (2007). [53]Feng, Y., Kim, K. D., Nemitz, C. A., Kim, P., Pfadler, T., Gerigk, M., Polarz, S., Dorman, J. A., Weickert, J., and Schmidt-Mende, L. Uniform large-area free-standing silver nanowire arrays on transparent conducting substrates. Journal of The Electrochemical Society 163, 447-452 (2016). [54]Yang, S. and Liu, Q. Guided growth of Ag nanowires by galvanic replacement on a flexible substrate. Langmuir 33, 11851-11856 (2017). [55]Wang, S. C., Chang, C. S., and Chen, L. J. Electromigration behaviors of Ag nanowires and complete replacement of ZnO nanowires via atomic diffusion. Department of Materials Science and Engineering, National Tsing Hua University (2014). [56]Liu, R. and Sen, A. Unified synthetic approach to silver nanostructures by galvanic displacement reaction on copper: from nanobelts to nanoshells. Chemistry of Materials 24, 48-54 (2011). [57]Avizienis, A. V., Martin-Olmos, C., Sillin, H. O., Aono, M., Gimzewski, J. K., and Stieg, A. Z. Morphological transitions from dendrites to nanowires in the electroless deposition of silver. Crystal Growth & Design 13, 465-469 (2013). [58]Sun, Y. Growth of silver nanowires on GaAs wafers. Nanoscale, 3, 2247-2255 (2011). [59]Alami, A. H., Rajab, B., and Aokal, K. Assessment of silver nanowires infused with zinc oxide as a transparent electrode for dye-sensitized solar cell applications. Energy 139, 1231-1236 (2017). [60]Wang, D., Zhou, W., Liu, H., Ma, Y., and Zhang, H. Performance improvement in flexible polymer solar cells based on modified silver nanowire electrode. Nanotechnology 27, 335203 (2016). [61]Kim, J. Y., Jeon, J. H., and Kwon, M. K. Indium tin oxide-free transparent conductive electrode for gan-based ultraviolet light-emitting diodes. ACS Applied Materials & Interfaces 7, 7945-7950 (2015). [62]Sun, J. G., Yang, T. N., Wang, C. Y., and Chen, L. J. A flexible transparent one-structure tribo-piezo-pyroelectric hybrid energy generator based on bio-inspired silver nanowires network for biomechanical energy harvesting and physiological monitoring. Nano Energy 48, 383-390 (2018). [63]Tseng, J. Y., Lee, L., Huang, Y. C., Chang, J. H., Su, T. Y., Shih, Y. C., Lin, H. W., and Chueh, Y. L. Pressure welding of silver nanowires networks at room temperature as transparent electrodes for efficient organic light‐emitting diodes. Small 14, 1800541 (2018). [64]Kim, D., Ko, Y., Kwon, G., Kim, U. J., and You, J. Micropatterning silver nanowire networks on cellulose nanopaper for transparent paper electronics. ACS Applied Materials & Interfaces 10, 38517-38525 (2018). [65]Zhang, L., Wang, B., Zhu, G., and Zhou, X. Synthesis of silver nanowires as a SERS substrate for the detection of pesticide thiram. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 133, 411-416 (2014). [66]Cui, Y., Chen, J., Di, Y., Zhang, X., and Lei, W. High performance field emission of silicon carbide nanowires and their applications in flexible field emission displays. AIP Advances 7, 125219 (2017). [67]Wang, D. H., Xu, D., Wang, Q., Hao, Y. J., Jin, G. Q., Guo, X. Y., and Tu, K. N. Periodically twinned SiC nanowires. Nanotechnology 19, 215602 (2008). [68]Sunde, T. O. L., Garskaite, E., Otter, B., Fossheim, H. E., Sæterli, R., Holmestad, R., Einarsrud, M. A., and Grande, T. Transparent and conducting ITO thin films by spin coating of an aqueous precursor solution. Journal of Materials Chemistry 22, 15740-15749 (2012). [69]Sun, J., Chen, Z., Yuan, L., Chen, Y., Ning, J., Liu, S., Ma, D., Song, S., Priydarshi, M. K., Bachmatiuk, A., Rümmeli, M. H., Ma, T., Zhi, L., Huang, L., Zhang, Y., and Liu, Z. Direct chemical-vapor-deposition-fabricated, large-scale graphene glass with high carrier mobility and uniformity for touch panel applications. ACS nano 10, 11136-11144 (2016) [70]Dhakal, K. P., Duong, D. L., Lee, J., Nam, H., Kim, M., Kan, M., Lee, Y. H., and Kim, J. Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. Nanoscale 6, 13028-13035 (2014). [71]Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C. Y., Galli, G., and Wang, F. Emerging photoluminescence in monolayer MoS2. Nano letters 10, 1271-1275 (2010). [72]George, A. S., Mutlu, Z., Ionescu, R., Wu, R. J., Jeong, J. S., Bay, H. H., Chai, Y., Mkhoyan, A., Ozkan M., and Ozkan, C. S. Wafer scale synthesis and high resolution structural characterization of atomically thin MoS2 layers. Advanced Functional Materials 24 7461-7466 (2014). [73]Kim, K. S., Kim, K. H., Nam, Y., Jeon, J., Yim, S., Singh, E., Lee, J. Y., Lee, S. J., Jung, Y. S., Yeom, G. Y., and Kim, D. W. Atomic layer etching mechanism of MoS2 for nanodevices. ACS Applied Materials & Interfaces 9, 11967-11976 (2017). [74]Wang, H. W., Skeldon, P., and Thompson, G. E. XPS studies of MoS2 formation from ammonium tetrathiomolybdate solutions. Surface and Coatings Technology 91, 200-207 (1997). [75]Tan, L. K., Liu, B., Teng, J. H., Guo, S., Low, H. Y., and Loh, K. P. Atomic layer deposition of a MoS2 film. Nanoscale 6, 10584-10588 (2014). [76]Liu, K. K., Zhang, W., Lee, Y. H., Lin, Y. C., Chang, M. T., Su, C. Y., Chang, C. S., Li, H., Shi, Y., Zhang, H., Lai, C. S., and Li, L. J. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Letters 12, 1538-1544 (2012). [77]Dhakal, K. P., Duong, D. L., Lee, J., Nam, H., Kim, M., Kan, M., Lee, Y. H., and Kim, J. Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. Nanoscale 6, 13028-13035 (2014). [78]Kozawa, D., Kumar, R., Carvalho, A., Amara, K. K., Zhao, W., Wang, S., Toh, M., Ribeiro, R. M., Neto, A. C., Matsuda, K., and Eda, G. Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nature Communications 5, 4543 (2014). [79]Qiu, D. Y., Felipe, H., and Louie, S. G. Optical spectrum of MoS2: many-body effects and diversity of exciton states. Physical Review Letters 111, 216805 (2013). [80]Frisenda, R., Niu, Y., Gant, P., Molina-Mendoza, A. J., Schmidt, R., Bratschitsch, R., Liu, J., Fu, L., Dumcenco, D., Kis, A., De Lara, D. P., and Castellanos-Gomez, A. Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials. Journal of Physics D: Applied Physics 50, 074002 (2017). |