帳號:guest(18.119.29.105)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黎又明
作者(外文):LI, YU-MING
論文名稱(中文):單層二硫化鎢之生長機制與摻雜
論文名稱(外文):Growth Mechanism and Doping of Monolayer Tungsten Disulfide
指導教授(中文):李奕賢
指導教授(外文):Lee, Yi-Hsien
口試委員(中文):張哲豪
楊智超
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031503
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:77
中文關鍵詞:二維材料二硫化鎢化學氣相沉積法
外文關鍵詞:2D materialTungsten DisulfideCVD
相關次數:
  • 推薦推薦:0
  • 點閱點閱:70
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  過渡金屬硫族化合物為新穎之二維材料,豐富的物理與優異的材料特性讓該材料獲得國際高度關注。本論文藉由常壓下之化學氣相沉積法,合成高品質之單層二硫化鎢材料,結合不同促進劑之使用,調控二硫化鎢的合成反應與摻雜,並透過各種參數調控,深入探討促進劑對於二硫化鎢合成的影響,了解促進劑於材料合成過程中之生長機制,及材料物理性質的改變。
  本研究成功在較低溫的常壓環境,合成出大面積二硫化鎢,並發現促進劑的添加,會對材料產生氯摻雜效果,並利用掃描穿隧顯微術觀察並解析摻雜二硫化鎢的原子結構,而此氯摻雜能促進二硫化鎢的光學特性,預期摻雜的調控與其機制,將對於未來二硫化鎢在光學與各項基礎研究上的相關研究,有重要幫助。
  Transition Metal Dichalcogenides (TMDs) is one of emergent two-dimensional material family that is widely highlighted because of novel physical phenomenon and excellent optoelectronic properties. In this thesis, we study growth mechanism of the synthesized monolayer of tungsten disulfide (WS2) by ambient-pressure chemical vapor deposition (APCVD) synthesis with different promoters. Growth behaviors and diverse physical properties of the monolayer will be discussed and presented.
We successfully synthesized large-area tungsten disulfide in low-temperature ambient pressure and the controlled doping of the synthesized monolayer is achieved by using halide promoter. Ultra-clean monolayer transfer enables clear and detailed characterizations of the Cl dopants with atomically-resolved scanning tunneling microscope (STM) experiments. Optical properties of the grown Cl-doped WS2 were significantly enhanced. We expected that the controlled doping and monolayer synthesis would open a new avenue toward novel 2D nano-photonics and high performances electronics.
第一章 緒論 5
第二章 文獻回顧 7
2-1 過渡金屬硫族化合物 7
2-1-1 晶體結構 7
2-1-2 電子能帶結構 7
2-1-3 能谷電子學 (Valleytronics) 9
2-1-4 光學性質 9
2-2 過渡金屬硫族化物的製備方法 11
2-2-1 機械剥離法 11
2-2-2 化學離子插層法 11
2-2-3 物理氣相沉積法 12
2-2-4 化學氣相傳輸法 12
2-2-5 化學氣相沉積法 13
2-3 化學氣相沉積法合成過渡金屬硫化物的重要參數 14
2-3-1 溫度 14
2-3-2 還原氣氛 15
2-3-3 化學反應途徑 15
2-4 二維材料之掃描穿隧顯微術分析 17
2-4-1 過渡金屬硫族化合物之原子級檢測 17
2-4-2 過渡金屬硫族化合物之缺陷類型 18
第三章 實驗方法 27
3-1 實驗大綱 27
3-2 實驗系統 28
3-2-1 試片前處理 28
3-2-2 實驗步驟 28
3-3 材料分析與量測 31
3-3-1 光學顯微鏡 31
3-3-2 拉曼光譜分析 31
3-3-3 光致螢光光譜分析 32
3-3-4 掃描穿隧電子顯微鏡 33
3-3-5 歐傑電子能譜儀 35
3-3-6 X射線光電子能譜 35
第四章 二硫化鎢的合成與分析 41
4-1 概述 41
4-2 促劑進對二硫化鎢生長的影響 42
4-2-1 使用PTAS作為促進劑對二硫化鎢生長的影響 43
4-2-1-1 PTAS濃度對二硫化鎢生長的影響 43
4-2-1-2 PTAS在不同反應溫度對二硫化鎢生長的影響 45
4-2-1-3 還原氣氛(氫氣)的影響 45
4-2-2 使用氯化鉀作為促進劑對二硫化鎢生長的影響 50
4-2-2-1 還原氣氛(氫氣)的影響 51
4-2-2-2 硫反應物進入時間的影響 52
4-2-2-3 鹼金屬鹵化物(氯化鉀)用量的影響 53
4-2-2-4 總結 53
4-2-3 PTAS與氯化鉀對二硫化鎢生長的差異 54
4-3 摻雜之二硫化鎢 60
4-3-1 摻雜之二硫化鎢材料 60
4-3-2 歐傑電子能譜分析 60
4-3-3 掃描穿隧顯微術分析 61
4-3-4 光致螢光光譜分析 62
4-3-5 拉曼光譜分析 63
4-3-6 X射線光電子能譜分析 64
第五章 結論 72
參考文獻 74
1. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
2. Lee, Y.H., et al., Synthesis of large‐area MoS2 atomic layers with chemical vapor deposition. Advanced materials, 2012. 24(17): p. 2320-2325.
3. Radisavljevic, B., et al., Single-layer MoS 2 transistors. Nature nanotechnology, 2011. 6(3): p. 147.
4. Zhang, X., et al., Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Reviews, 2015. 44(9): p. 2757-2785.
5. Kuc, A., N. Zibouche, and T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2. Physical Review B, 2011. 83(24): p. 245213.
6. Li, T. and G. Galli, Electronic properties of MoS2 nanoparticles. The Journal of Physical Chemistry C, 2007. 111(44): p. 16192-16196.
7. Kobayashi, K. and J. Yamauchi, Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces. Physical Review B, 1995. 51(23): p. 17085.
8. Ding, Y., et al., First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M= Mo, Nb, W, Ta; X= S, Se, Te) monolayers. Physica B: Condensed Matter, 2011. 406(11): p. 2254-2260.
9. Ataca, C., H. Sahin, and S. Ciraci, Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. The Journal of Physical Chemistry C, 2012. 116(16): p. 8983-8999.
10. Kan, M., et al., Structures and phase transition of a MoS2 monolayer. The Journal of Physical Chemistry C, 2014. 118(3): p. 1515-1522.
11. Mak, K.F., et al., Atomically thin MoS 2: a new direct-gap semiconductor. Physical review letters, 2010. 105(13): p. 136805.
12. Splendiani, A., et al., Emerging photoluminescence in monolayer MoS2. Nano letters, 2010. 10(4): p. 1271-1275.
13. Xiao, D., et al., Coupled spin and valley physics in monolayers of MoS 2 and other group-VI dichalcogenides. Physical review letters, 2012. 108(19): p. 196802.
14. Cao, T., et al., Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature communications, 2012. 3: p. 887.
15. Gutiérrez, H.R., et al., Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano letters, 2012. 13(8): p. 3447-3454.
16. Kim, M.S., et al., Biexciton emission from edges and grain boundaries of triangular WS2 monolayers. ACS nano, 2016. 10(2): p. 2399-2405.
17. Mak, K.F., et al., Tightly bound trions in monolayer MoS 2. Nature materials, 2013. 12(3): p. 207.
18. Lee, C., et al., Anomalous lattice vibrations of single-and few-layer MoS2. ACS nano, 2010. 4(5): p. 2695-2700.
19. Zhao, W., et al., Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS nano, 2012. 7(1): p. 791-797.
20. Nicolosi, V., et al., Liquid exfoliation of layered materials. Science, 2013. 340(6139): p. 1226419.
21. Jiang, L., et al., Optimizing hybridization of 1T and 2H phases in MoS2 monolayers to improve capacitances of supercapacitors. Materials Research Letters, 2015. 3(4): p. 177-183.
22. Clark, G., et al., Vapor-transport growth of high optical quality WSe2 monolayers. Apl Materials, 2014. 2(10): p. 101101.
23. Wu, S., et al., Vapor–solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. Acs Nano, 2013. 7(3): p. 2768-2772.
24. Zhou, H., et al., Large area growth and electrical properties of p-type WSe2 atomic layers. Nano letters, 2014. 15(1): p. 709-713.
25. Schmidt, P., et al., Chemical vapor transport reactions–methods, materials, modeling, in Advanced Topics on Crystal Growth. 2013, IntechOpen.
26. Zhang, Y., et al., Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS nano, 2013. 7(10): p. 8963-8971.
27. Kobayashi, Y., et al., Growth and optical properties of high-quality monolayer WS2 on graphite. ACS nano, 2015. 9(4): p. 4056-4063.
28. Rong, Y., et al., Controlling sulphur precursor addition for large single crystal domains of WS 2. Nanoscale, 2014. 6(20): p. 12096-12103.
29. Liu, K.-K., et al., Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano letters, 2012. 12(3): p. 1538-1544.
30. Ling, X., et al., Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano letters, 2014. 14(2): p. 464-472.
31. Fu, Q., et al., Controllable synthesis of high quality monolayer WS 2 on a SiO 2/Si substrate by chemical vapor deposition. RSC Advances, 2015. 5(21): p. 15795-15799.
32. Hu, S., et al., Controlled synthesis and mechanism of large-area WS 2 flakes by low-pressure chemical vapor deposition. Journal of materials science, 2017. 52(12): p. 7215-7223.
33. Huang, J.-K., et al., Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS nano, 2013. 8(1): p. 923-930.
34. Li, S., et al., Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Applied Materials Today, 2015. 1(1): p. 60-66.
35. Yun, S.J., et al., A systematic study of the synthesis of monolayer tungsten diselenide films on gold foil. Current Applied Physics, 2016. 16(9): p. 1216-1222.
36. Luna, A.E.C., M.I. Ponzi, and J.B. Rivarola, Vapor pressure of tungsten chloride oxide (WOCl4). Journal of Chemical and Engineering Data, 1983. 28(4): p. 349-350.
37. Carmalt, C.J., I.P. Parkin, and E.S. Peters, Atmospheric pressure chemical vapour deposition of WS2 thin films on glass. Polyhedron, 2003. 22(11): p. 1499-1505.
38. Bosi, M., Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review. RSC Advances, 2015. 5(92): p. 75500-75518.
39. Santosh, K., et al., Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers. Nanotechnology, 2014. 25(37): p. 375703.
40. Barja, S., et al., Charge density wave order in 1D mirror twin boundaries of single-layer MoSe 2. Nature Physics, 2016. 12(8): p. 751.
41. Chang, C.C., Auger electron spectroscopy. Surface Science, 1971. 25(1): p. 53-79.
42. Watt, I.M., The principles and practice of electron microscopy. 1997: Cambridge University Press.
43. Zhu, D., et al., Capture the growth kinetics of CVD growth of two-dimensional MoS 2. npj 2D Materials and Applications, 2017. 1(1): p. 8.
44. Zhou, W., et al., Intrinsic structural defects in monolayer molybdenum disulfide. Nano letters, 2013. 13(6): p. 2615-2622.
45. Hong, J., et al., Exploring atomic defects in molybdenum disulphide monolayers. Nature communications, 2015. 6: p. 6293.
46. Komsa, H.-P. and A.V. Krasheninnikov, Native defects in bulk and monolayer MoS 2 from first principles. Physical Review B, 2015. 91(12): p. 125304.
47. McCreary, K.M., et al., The effect of preparation conditions on Raman and photoluminescence of monolayer WS 2. Scientific reports, 2016. 6: p. 35154.
48. Chang, R.-J., et al., Postgrowth Substitutional Tin Doping of 2D WS2 Crystals Using Chemical Vapor Deposition. ACS applied materials & interfaces, 2019.
49. Sasaki, S., et al., Growth and optical properties of Nb-doped WS2 monolayers. Applied Physics Express, 2016. 9(7): p. 071201.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *