|
1. Jeong, H. J.; Kim, Y. C.; Lee, S. K.; Jeong, Y.; Song, J. W.; Yun, J. H.; Jang, J. H. Ultrawide spectral response of CIGS solar cells integrated with luminescent down-shifting quantum dots. ACS Appl. Mater. Interfaces 2017, 9, 25404 2. Siebentritt, S. What Limits the Efficiency of Chalcopyrite Solar Cells? Sol. Energy Mater. Sol. Cells 2011, 95, 1471 3. Maruyama, T.; Enomoto, A.; Shirasawa, K. Solar cell module colored with fluorescent plate. Sol. Energy Mater. Sol. Cells 2000, 64,269, DOI: 10.1016/S0927-0248(00)00227-0 4. Marchionna, S.; Meinardi, F.; Acciari, M.; Binetti, S.; Papagni, A.; Pizzini, S.; Malatesta, V.; Tubino, R. Photovoltaic quantum efficiency enhancement by light harvesting of organo-lanthanide complexes. J. Lumin. 2006, 118, 325 5. Rowan, B. C.; Wilson, L. R.; Richards, B. S. Advanced material concepts for luminescent solar concentrators. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 1312 6. Kim, J. K.; Park, M. J.; Kim, S. J.; Wang, D. H.; Cho, S. P.; Bae, S.; Park, J. H.; Hong, B. H. Balancing Light Absorptivity and Carrier Conductivity of Graphene Quantum Dots for High-Efficiency Bulk Heterojunction Solar Cells. ACS Nano 2013, 7, 7207– 7212 7. Tsai, M. L.; Wei, W. R.; Tang, L.; Chang, H. C.; Tai, S. H.; Yang, P. K.; Lau, S. P.; Chen, L. J.; He, J. H. Si hybrid solar cells with 13% efficiency via concurrent improvement in optical and electrical properties by employing graphene quantum dots. ACS Nano 2016, 10,815– 821 8. Lee, K. D.; Park, M. J.; Kim, D. Y.; Kim, S. M.; Kang, B.; Kim, S.; Kim, H.; Lee, H. S.; Kang, Y.; Yoon, S. S.; Hong, B. H.; Kim, D. Graphene quantum dot layers with energy-down-shift effect on crystalline-silicon solar cells. ACS Appl. Mater. Interfaces 2015, 7, 19043 9. M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore and A. E. Wetsel. Observation of discrete electronic states in a zero-dimensional semiconductor nano-structure. Phys. Rev. Lett., 1988, 60(6), 535–537 10. A. Cayuela, M. Soriano, C. Carrillo-Carrión, M. Valcárcel, Semiconductor and carbon-based fluorescent nanodots: the need for consistency,Chem. Commun., 52 (7) (2016), pp. 1311-1326 11. M. J. Krysmann, A. Kelarakis, P. Dallas and E. P. Giannelis, J. Am. Chem. Soc., 2011, 134(2), 747–750 12. U. Kaiser, D. J. de Aberasturi, M. Vázquez-González, C. Carrillo-Carrión, T. Niebling, W. J. Parak and W. Heimbrodt, J. Appl. Phys., 2015, 117(2), 024701 13. Yuning Hong, Jacky W. Y. Lam, Ben Zhong Tang,Aggregation-induced emission : phenomenon, mechanism and applications, Chem. Commun., 2009, 4332-4353 14. L. Li and T. Dong, J. Mater. Chem. C, 2019, 7, 3105 15. W. Kwon , G. Lee , S. Do , T. Joo and S. W. Rhee , Small, 2014, 10 , 506 -513 16. M. Xu, W. Zhang , Z. Yang , F. Yu , Y. Ma , N. Hu , D. He , Q. Liang , Y. Su and Y. Zhang , Nanoscale, 2015, 7 , 10527 -10534 17. X. Wang, K. Qu , B. Xu , J. Ren and X. Qu , J. Mater. Chem., 2011, 21 , 2445 18. V. Strauss , J. T. Margraf , C. Dolle , B. Butz , T. J. Nacken , J. Walter , W. Bauer , W. Peukert , E. Spiecker , T. Clark and D. M. Guldi , J. Am. Chem. Soc., 2014, 136 , 17308 -17316 19. J. Liu , X. Liu , H. Luo and Y. Gao , RSC Adv., 2014, 4 , 7648 20. Lu, S.; Guo, S.; Xu, P.; Li, X.; Zhao, Y.; Gu, W.; Xue, M. Int. J. Nanomed. 2016,11, 6325-6336. 21. Qu, D.; Zheng, M.; Zhang, L. G.; Zhao, H. F.; Xie, Z. G.; Jing, X. B.; Haddad, R. E.; Fan, H. Y.; Sun, Z. C. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep. 2014, 4, 5294. 22. Choi, Y.; Kang, B.; Lee, J.; Kim, S.; Kim, G. T.; Kang, H.; Lee, B. R.; Kim, H.; Shim, S.-H.; Lee, G. Integrative approach toward uncovering the origin of photoluminescence in dual heteroatom-doped carbon nanodots. Chem. Mater. 2016, 28, 6840– 6847 23. De Mello, J. C., Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater., 1997.,9, 230–232 24. Guo, R.; Li, T.; Shi, S. Aggregation-Induced Emission Enhancement of Carbon Quantum Dots and Applications in Light Emitting Devices J. Mater. Chem. C 2019, 7, 5148 25. Yang, H.; Liu, Y.; Guo, Z.; Lei, B.; Zhuang, J.; Zhang, X.; Liu, Z.; Hu, C. Hydrophobic Carbon Dots with Blue Dispersed Emission and Red Aggregation-Induced Emission Nat. Commun.,2019, 10, 1789 26. Li, Y.; Lin, H.; Luo, C.; Wang, Y.; Jiang, C.; Qi, R.; Huang, R.; Travas-Sejdic, J.; Peng, H. Aggregation Induced Red Shift Emission of Phosphorus Doped Carbon Dots RSC Adv. 2017, 7, 32225– 32228 27. Jiang, K.; Wang, Y.; Gao, X.; Cai, C.; Lin, H. Facile Quick and Gram-Scale Synthesis of Ultralong-Lifetime Room Temperature-Phosphorescent Carbon Dot by Microwave Irradiation Angew. Chem., Int. Ed. 2018, 57, 6216– 6220 28. Pan, D. Y.; Zhang, J. C.; Li, Z.; Wu, M. H. Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots Adv. Mater. 2010, 22, 734– 738 29. Dong, Y. Q.; Pang, H. C.; Yang, H. B.; Guo, C. X.; Shao, J. W.; Chi, Y. W.; Li, C. M.; Yu, T. Carbon-Based Dots Co-doped with Nitrogen and Sulfur for High Quantum Yield and Excitation-Independent Emission Angew. Chem., Int. Ed. 2013, 52, 7800– 7804 30. Sun, J.; Yang, S.; Wang, Z.; Shen, H.; Xu, T.; Sun, L.; Li, H.; Chen, W.; Jiang, X.; Ding, G.; Kang, Z.; Xie, X.; Jiang, M. Ultra-high quantum yield of graphene quantum dots: aromatic-nitrogen doping and photoluminescence mechanism. Part. Part. Syst. Charact. 2015, 32, 434−440 31. Que, D.; Zheng, M.; Zhang, L.; Zhao, H.; Xie, Z.; Jing, X.; Haddad, R. E.; Fan, H.; Sun, Z. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep. 2015, 4, 5294 32. Khan, F. & Kim, J. H. N-functionalized graphene quantum dots with ultrahigh quantum yield and large Stokes shift: efficient downconverters for CIGS solar cells. ACS Photon. 2018, 5, 4637–4643
|