帳號:guest(18.118.255.238)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):巴黎恩
作者(外文):Kumar, Parveen
論文名稱(中文):藉發光奈米點增加短波長響應以增加CIGS太陽能電池之效率
論文名稱(外文):Increase in short-wavelength response for the efficiency enhancement of CIGS solar cell/module using luminescent Nano-dots
指導教授(中文):賴志煌
指導教授(外文):Lai, Chih-Huang
口試委員(中文):闕郁倫
王致喨
口試委員(外文):CHUEH, YU-LUN
Wang, Chih-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:106031424
出版年(民國):108
畢業學年度:108
語文別:英文
論文頁數:51
中文關鍵詞:太陽能電池下轉換銅銦鎵硒量子點碳量子點聚乙烯醇
外文關鍵詞:solar cellquantum dotsCIGSluminescent down-shiftingPolyvinyl alcoholCarbon quantum dots
相關次數:
  • 推薦推薦:0
  • 點閱點閱:215
  • 評分評分:*****
  • 下載下載:21
  • 收藏收藏:0
在薄膜太陽能技術中,Cu(In,Ga)Se2(CIGS)太陽能電池是取代矽晶太陽能電池最有潛力的候選者之一。一般CIGSe結構中,因為其氧化鋅窗口層和緩衝層的寄生吸收,在短波長的光譜響應普遍較弱。使用下轉換螢光(LDS)材料可以減少短波長的光學損耗,該材料可吸收短波長光子並且發出對吸收層較有利的光子。 LDS一般鍍製在元件頂部,為增強短λ響應的被動方式,且不論太陽能電池的製程為何,皆可以增強元件效率。
現今對於不同螢光材料的研究主要使用無機量子點(QDs)有機染料和稀土離子/複合物。無機量子點可藉由調整尺寸改變其吸收和發射能譜,且具有高發射強度。然而另一方面,由於吸收和發射能譜的大幅重疊,導致大量的吸收損失,且材料本身為高度毒性元素,如鎘和鉛。而有機染料具有相對高的吸收係數並接近於一的PL QY,但其較窄吸收能譜和相對小的Stoke shift,阻礙了有機染料的應用。此外,稀土離子表現出高PL QY但極低的吸收係數且其原料太過昂貴。
因此,碳核奈米點更受歡迎,其中石墨烯量子點(GQDs)表現出獨特的半導體特性。因此,GQDs 可用於光電,生物傳感,有機光伏和聚合物裝置。CQDs 具有功能穩定性,並且具低毒性,高螢光,高化學惰性,以及在極性和非極性溶劑中的優異溶解性。然而,此材料很難在固體基板上獲得均勻薄層分佈。例如,使用CQDs水溶液度沈積均勻薄層特別困難,因為CQDs在乾燥後易於團聚。為了克服這個缺點,我們在聚合物中參雜,例如羧甲基纖維素(CMC)和聚乙烯醇(PVA),有助於保持由表面官能基以及核心產生的CQDs的光學性質.
Thin-film solar cell based on Cu(In,Ga)Se2 (CIGS) absorber is one of the most attractive candidate among the thin film solar technologies having the potential to replace crystalline silicon solar cell. The typical structure of a CIGS cell shows poor spectral response at short wavelengths due to the parasitic absorption losses in the commonly used zinc oxide window and buffer layers. The optical losses in short wavelength can be reduced using a luminescent down-shifting (LDS) material, which absorbs short-wavelength photons and re-emits them at a more favorable wavelength. LDS layer is applied on top of the cell structure, therefore it is a passive approach to enhance the short-λ response, which is supposed to enhance the cell performance irrespective of any modulation in the growth and fabrication of active material of solar cell.
Investigation for various luminescent materials have been done for LDS mainly utilizing inorganic quantum dots (QDs) organic dyes and rare-earth ions/complexes. Inorganic QDs possess tunable absorption and emission bands according to their size, with high emission intensity. On the other hand, they result in high reabsorption losses due to the large overlap of absorption and emission bands, and involve toxic elements. Organic dyes show relatively high absorption coefficients and close to unity PL QY (photoluminescence quantum yield) but their narrow absorption bands and relatively small Stokes shifts hinders their application. Further, rare-earth ions exhibit high PL QY but have extremely low absorption coefficients and are generally too expensive.
Nano dots (CQDs) based on carbon core more popularly, the Graphene quantum dots (GQDs) exhibiting unique semiconducting properties. Therefore, GQDs are potential candidates for use in optoelectronic devices, biological sensing, organic photovoltaics, and polymeric devices. CQDs exhibits functional stabilities and also have very mild toxicity, Strong fluorescence, good chemical inertness, and excellent solubility in non-polar and polar solvents. On the other hand, it is quite difficult to obtain a uniformly thin layer or distribution of such material on solid substrates. For example, producing thin layers of aqueous CQDs is especially difficult because CQDs are prone to agglomeration after drying. To overcome this drawback, we used the method of incorporating into polymer matrix such as Carboxymethyl cellulose (CMC) and Polyvinyl alcohol (PVA) which can help to retain the optical properties of CQDs arising from the surface functional groups as well as the core.
Abstract 2
List of figures 7
List of tables 9
List of abbreviations and notations 10
1. Introduction 11
1.1. Forward 11
2. Fluorescent Nano dots 14
2.1. Mechanism and origins of photoluminescence 15
2.1.1. Photoluminescence in pure quantum dots 16
2.1.2. Photoluminescence in CQDs/GQDs 16
2.1.3. Photoluminescence in CNDs 17
2.2. Similarities and differences among types 17
2.3. Luminescence Quenching 19
2.3.1. Förster resonance energy transfer 19
2.3.2. Aggregation‐caused PL quenching 20
2.4. Carbon Dots 20
2.4.1. Overview 20
2.5. Synthesis of C-dots 21
2.6. Purification of Carbon Dots 23
2.7. Surface passivation and/or functionalization (SPF) strategy 23
3. Characterization 24
3.1. UV/vis Absorption Spectroscopy 24
3.2. Fluorescence Emission Spectroscopy 25
3.3. Atomic force microscopy (AFM) 26
3.4. Transmission electron microscopy(TEM) 27
3.5. Raman Spectroscopy 27
3.6. X-ray photoelectron spectroscopy (XPS) 27
3.7. Photoluminescence Quantum Yield (PLQY) measurement 27
3.8. External quantum efficiency (EQE) 28
4. Results and discussion 29
4.1. Experimental Procedure 29
4.1.1 Hydro-thermal process(N-CQDs) 29
4.1.2. N-CQDs/PVA films 32
4.1.3. N-CQDs/CMC films 32
4.1.4. BN-CQDS 33
4.2. AFM analysis 36
4.3. X-ray photoelectron spectroscopy (XPS) 38
4.4. Transmission electron microscopy(TEM) 39
4.5. EQE measurement of CIGS solar cell with LDS 41
5. Conclusion and Future Perspective 46
6. References 47
7. Appendix 50

1. Jeong, H. J.; Kim, Y. C.; Lee, S. K.; Jeong, Y.; Song, J. W.; Yun, J. H.; Jang, J. H. Ultrawide spectral response of CIGS solar cells integrated with luminescent down-shifting quantum dots. ACS Appl. Mater. Interfaces 2017, 9, 25404
2. Siebentritt, S. What Limits the Efficiency of Chalcopyrite Solar Cells? Sol. Energy Mater. Sol. Cells 2011, 95, 1471
3. Maruyama, T.; Enomoto, A.; Shirasawa, K. Solar cell module colored with fluorescent plate. Sol. Energy Mater. Sol. Cells 2000, 64,269, DOI: 10.1016/S0927-0248(00)00227-0
4. Marchionna, S.; Meinardi, F.; Acciari, M.; Binetti, S.; Papagni, A.; Pizzini, S.; Malatesta, V.; Tubino, R. Photovoltaic quantum efficiency enhancement by light harvesting of organo-lanthanide complexes. J. Lumin. 2006, 118, 325
5. Rowan, B. C.; Wilson, L. R.; Richards, B. S. Advanced material concepts for luminescent solar concentrators. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 1312
6. Kim, J. K.; Park, M. J.; Kim, S. J.; Wang, D. H.; Cho, S. P.; Bae, S.; Park, J. H.; Hong, B. H. Balancing Light Absorptivity and Carrier Conductivity of Graphene Quantum Dots for High-Efficiency Bulk Heterojunction Solar Cells. ACS Nano 2013, 7, 7207– 7212
7. Tsai, M. L.; Wei, W. R.; Tang, L.; Chang, H. C.; Tai, S. H.; Yang, P. K.; Lau, S. P.; Chen, L. J.; He, J. H. Si hybrid solar cells with 13% efficiency via concurrent improvement in optical and electrical properties by employing graphene quantum dots. ACS Nano 2016, 10,815– 821
8. Lee, K. D.; Park, M. J.; Kim, D. Y.; Kim, S. M.; Kang, B.; Kim, S.; Kim, H.; Lee, H. S.; Kang, Y.; Yoon, S. S.; Hong, B. H.; Kim, D. Graphene quantum dot layers with energy-down-shift effect on crystalline-silicon solar cells. ACS Appl. Mater. Interfaces 2015, 7, 19043
9. M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore and A. E. Wetsel. Observation of discrete electronic states in a zero-dimensional semiconductor nano-structure. Phys. Rev. Lett., 1988, 60(6), 535–537
10. A. Cayuela, M. Soriano, C. Carrillo-Carrión, M. Valcárcel, Semiconductor and carbon-based fluorescent nanodots: the need for consistency,Chem. Commun., 52 (7) (2016), pp. 1311-1326
11. M. J. Krysmann, A. Kelarakis, P. Dallas and E. P. Giannelis, J. Am. Chem. Soc., 2011, 134(2), 747–750
12. U. Kaiser, D. J. de Aberasturi, M. Vázquez-González, C. Carrillo-Carrión, T. Niebling, W. J. Parak and W. Heimbrodt, J. Appl. Phys., 2015, 117(2), 024701
13. Yuning Hong, Jacky W. Y. Lam, Ben Zhong Tang,Aggregation-induced emission : phenomenon, mechanism and applications, Chem. Commun., 2009, 4332-4353
14. L. Li and T. Dong, J. Mater. Chem. C, 2019, 7, 3105
15. W. Kwon , G. Lee , S. Do , T. Joo and S. W. Rhee , Small, 2014, 10 , 506 -513
16. M. Xu, W. Zhang , Z. Yang , F. Yu , Y. Ma , N. Hu , D. He , Q. Liang , Y. Su and Y. Zhang , Nanoscale, 2015, 7 , 10527 -10534
17. X. Wang, K. Qu , B. Xu , J. Ren and X. Qu , J. Mater. Chem., 2011, 21 , 2445
18. V. Strauss , J. T. Margraf , C. Dolle , B. Butz , T. J. Nacken , J. Walter , W. Bauer , W. Peukert , E. Spiecker , T. Clark and D. M. Guldi , J. Am. Chem. Soc., 2014, 136 , 17308 -17316
19. J. Liu , X. Liu , H. Luo and Y. Gao , RSC Adv., 2014, 4 , 7648
20. Lu, S.; Guo, S.; Xu, P.; Li, X.; Zhao, Y.; Gu, W.; Xue, M. Int. J. Nanomed. 2016,11, 6325-6336.
21. Qu, D.; Zheng, M.; Zhang, L. G.; Zhao, H. F.; Xie, Z. G.; Jing, X. B.; Haddad, R. E.; Fan, H. Y.; Sun, Z. C. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep. 2014, 4, 5294.
22. Choi, Y.; Kang, B.; Lee, J.; Kim, S.; Kim, G. T.; Kang, H.; Lee, B. R.; Kim, H.; Shim, S.-H.; Lee, G. Integrative approach toward uncovering the origin of photoluminescence in dual heteroatom-doped carbon nanodots. Chem. Mater. 2016, 28, 6840– 6847
23. De Mello, J. C., Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater., 1997.,9, 230–232
24. Guo, R.; Li, T.; Shi, S. Aggregation-Induced Emission Enhancement of Carbon Quantum Dots and Applications in Light Emitting Devices J. Mater. Chem. C 2019, 7, 5148
25. Yang, H.; Liu, Y.; Guo, Z.; Lei, B.; Zhuang, J.; Zhang, X.; Liu, Z.; Hu, C. Hydrophobic Carbon Dots with Blue Dispersed Emission and Red Aggregation-Induced Emission Nat. Commun.,2019, 10, 1789
26. Li, Y.; Lin, H.; Luo, C.; Wang, Y.; Jiang, C.; Qi, R.; Huang, R.; Travas-Sejdic, J.; Peng, H. Aggregation Induced Red Shift Emission of Phosphorus Doped Carbon Dots RSC Adv. 2017, 7, 32225– 32228
27. Jiang, K.; Wang, Y.; Gao, X.; Cai, C.; Lin, H. Facile Quick and Gram-Scale Synthesis of Ultralong-Lifetime Room Temperature-Phosphorescent Carbon Dot by Microwave Irradiation Angew. Chem., Int. Ed. 2018, 57, 6216– 6220
28. Pan, D. Y.; Zhang, J. C.; Li, Z.; Wu, M. H. Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots Adv. Mater. 2010, 22, 734– 738
29. Dong, Y. Q.; Pang, H. C.; Yang, H. B.; Guo, C. X.; Shao, J. W.; Chi, Y. W.; Li, C. M.; Yu, T. Carbon-Based Dots Co-doped with Nitrogen and Sulfur for High Quantum Yield and Excitation-Independent Emission Angew. Chem., Int. Ed. 2013, 52, 7800– 7804
30. Sun, J.; Yang, S.; Wang, Z.; Shen, H.; Xu, T.; Sun, L.; Li, H.; Chen, W.; Jiang, X.; Ding, G.; Kang, Z.; Xie, X.; Jiang, M. Ultra-high quantum yield of graphene quantum dots: aromatic-nitrogen doping and photoluminescence mechanism. Part. Part. Syst. Charact. 2015, 32, 434−440
31. Que, D.; Zheng, M.; Zhang, L.; Zhao, H.; Xie, Z.; Jing, X.; Haddad, R. E.; Fan, H.; Sun, Z. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep. 2015, 4, 5294
32. Khan, F. & Kim, J. H. N-functionalized graphene quantum dots with ultrahigh quantum yield and large Stokes shift: efficient downconverters for CIGS solar cells. ACS Photon. 2018, 5, 4637–4643
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *