帳號:guest(3.145.109.8)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱奕昌
作者(外文):Chu, Yi-Chang
論文名稱(中文):結合微小RNA干擾機制與長效表現系統以應用於治療肝癌
論文名稱(外文):Combining miRNA Regulation and Sleeping Beauty System For Liver Cancer Treatment
指導教授(中文):胡育誠
王潔
指導教授(外文):Hu, Yu-Chen
Wang, Jane
口試委員(中文):吳肇卿
梁恭豪
陳韻晶
口試委員(外文):Wu, Jaw-Ching
Liang, Kung-Hao
Chen, Yun-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106030604
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:60
中文關鍵詞:肝癌微小RNA-122基因治療合成生物學
外文關鍵詞:liver cancermiR-122gene therapysynthetic biology
相關次數:
  • 推薦推薦:0
  • 點閱點閱:850
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
微小RNA(miRNA)具可同時調控多個致病基因表現的特點,成為目前極具發展性的肝癌基因治療標的之一。成功的miRNA治療方法所需之基因遞送系統需要具有高專一性、高傳遞效率和長期表達治療性miRNA的特性。然而於全身性給藥的基因治療系統中,基因治療載體常被肺和血管內皮細胞非專一性的吸收,因而產生許多副作用和降低治療效率,且藥物效期極短。為改善此安全性問題,我們發展了創新的微小RNA治療方法。我們首先發現miR-200c和miR-126分別僅在正常肺細胞和靜脈上皮細胞中大量表達,而於肝細胞中低表達,此特性使我們能夠基於不同的miRNA表達特徵來設計miRNA結合位作為SB轉位系統之開關。接著,我們整合高選擇性之SB100X系統與miR-122表達系統至單一質體中以使我們的藥物實現高選擇性表現SB轉位酶和長期表達治療性miR-122的目標。雖於轉染時因低轉染效率導致無法長效表現miR-122,然經改用桿狀病毒載體運送後GFP+ 細胞比例長達1個月皆維持在20%,miR-122表現量也明顯較短效組與對照組高。未來將透過多功能奈米載體裝載之並抑制肝癌於小鼠中的發生。相信本治療策略能為肝癌治療提供一有效且高專一性又安全的平台。
miRNAs can regulate multiple genetic and epigenetic events simultaneously. Thus, miR-122 serves as potent nucleic acid therapeutics to treat liver cancer. Successful miRNA therapy requires suitable delivery systems with high specificity, high efficiency and long-term expression of therapeutic miRNAs. However, in vivo nanoparticle administration inevitably results in nucleic acid entry into non-hepatocyte cells, leading to leaky miRNA expression gene and possible toxicity. It also has a problem with short effect time. To improve safety and efficiency, we develop a novel miRNA therapy. We build the switch that exploits the Sleeping Beauty (SB) transposon-based system signature in hepatocytes. We first uncovered that miR-200c and miR-126 are exclusively expressed in normal lung cell and vein endothelial cell as well as lowly expressed in liver cancer cells, respectively, which allowed us to engineer a switch based on distinct miRNA expression signature, namely miRNA binding site technique. We have developed SB100X based system to enable hepatic specific and long-term expression of therapeutic miR-122, and then incorporated the entire device into a single plasmid. Next, we will validate the function of our plasmid in vitro. Although the low transfection efficiency leaded to low expression level, we still prove our hypothesis successfully through transduction of the baculovirus system. As a result, the GFP+ population kept around 20% at least one month, and the miR-122 expression level in long-term group was significantly higher than such in the short-term group and Mock group. In the future, we will evaluate antitumor effects after systemic administration of therapeutic SB vectors expression miR-122 loaded in the nanoparticle in the liver cancer models. We expect that this highly efficient and specific miRNA delivery system can serve as a potent anti-tumor therapeutic modality and a translational platform for clinical applications.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VI
第一章 文獻回顧 1
1-1 miRNA 系統 1
1-1-1 微小RNA (microRNAs; miRNAs) 1
1-1-2 以miRNAs為基礎的治療方式 2
1-2 肝細胞癌 (Hepatocellular carcinoma, HCC) 3
1-2-1 背景 3
1-2-2 miR-122在生理功能及在病程中所扮演的角色 4
1-3 長效表現系統 Sleeping beauty (SB) 6
1-4 結合miRNA與合成生物學發展新的治療型載體 7
1-4-1 調控基因表達的合成開關 (Synthetic switch) 7
1-5 多功能奈米載體 Multifunctional nanoparticles (NP) 8
1-6 研究動機 8
第二章 實驗材料與方法 15
2-1 細胞培養 15
2-2 質體建構 15
2-3 轉染策略 17
2-4 桿狀病毒轉導策略 18
2-5 實驗分析方法 19
2-5-1 及時偵測同步定量聚合酶連鎖反應分析(qRT-PCR analysis) 19
2-5-2 流式細胞儀分析螢光表現量 20
2-5-3 西方墨點法 21
第三章 結果與討論 26
3-1 辨認適合區分肝與非肝組織之微小 RNA表現圖譜 26
3-2 以合成生物學之switch概念設計具選擇性之SB100X轉殖基因表現平台 27
3-3 miR-122 表現系統於Hep3B中功能性分析 28
3-4 轉染SB100X-m122系統於Hep3B細胞之基因嵌入效率與基因表現之延長 29
3-5 利用桿狀病毒轉導SB100X-m122系統於Hep3B細胞調控miR-122 30
3-6 不同Promoter對於桿狀病毒的轉導SB100X-m122系統於Hep3B細胞調控miR-122的影響 31
3-7 小結 31
第四章 討論與未來展望 40
4-1 針對選擇性SB100X之設計概念討論 40
4-2 關於HUVEC與NCI-H520表現量較低之疑慮 41
4-3 低轉染效率導致miR-122與GFP基因無法長效表現 42
4-4 病毒轉導與質體轉染之抉擇 43
4-5 啟動子相互干擾 43
4-6 miR-122的上調對肝之負面影響與對於其他非肝細胞之影響探討 44
4-7 CSM-S平台之延伸應用 44
第五章 參考文獻 46
[1] M.C. Siomi, K. Sato, D. Pezic, A.A. Aravin, PIWI-interacting small RNAs: the vanguard of genome defence, Nature reviews. Molecular cell biology 12(4) (2011) 246-58.
[2] A. Kozomara, S. Griffiths-Jones, miRBase: integrating microRNA annotation and deep-sequencing data, Nucleic acids research 39(Database issue) (2011) D152-7.
[3] S.M. Hammond, An overview of microRNAs, Adv. Drug Deliv. Rev. 87 (2015) 3-14.
[4] R. Rupaimoole, F.J. Slack, MicroRNA therapeutics: towards a new era for the management of cancer and other diseases, Nature reviews. Drug discovery 16(3) (2017) 203-222.
[5] A.G. Bader, miR-34 - a microRNA replacement therapy is headed to the clinic, Frontiers in genetics 3 (2012) 120.
[6] C. Stahlhut, F.J. Slack, Combinatorial Action of MicroRNAs let-7 and miR-34 Effectively Synergizes with Erlotinib to Suppress Non-small Cell Lung Cancer Cell Proliferation, Cell cycle (Georgetown, Tex.) 14(13) (2015) 2171-80.
[7] R.L. Montgomery, G. Yu, P.A. Latimer, C. Stack, K. Robinson, C.M. Dalby, N. Kaminski, E. van Rooij, MicroRNA mimicry blocks pulmonary fibrosis, EMBO molecular medicine 6(10) (2014) 1347-56.
[8] E. van Rooij, S. Kauppinen, Development of microRNA therapeutics is coming of age, EMBO molecular medicine 6(7) (2014) 851-64.
[9] R.E. Lanford, E.S. Hildebrandt-Eriksen, A. Petri, R. Persson, M. Lindow, M.E. Munk, S. Kauppinen, H. Orum, Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection, Science 327(5962) (2010) 198-201.
[10] Y.P. Li, J.M. Gottwein, T.K. Scheel, T.B. Jensen, J. Bukh, MicroRNA-122 antagonism against hepatitis C virus genotypes 1-6 and reduced efficacy by host RNA insertion or mutations in the HCV 5' UTR, Proceedings of the National Academy of Sciences of the United States of America 108(12) (2011) 4991-4996.
[11] M. Lindow, S. Kauppinen, Discovering the first microRNA-targeted drug, The Journal of cell biology 199(3) (2012) 407-412.
[12] H.L. Janssen, H.W. Reesink, E.J. Lawitz, S. Zeuzem, M. Rodriguez-Torres, K. Patel, A.J. van der Meer, A.K. Patick, A. Chen, Y. Zhou, R. Persson, B.D. King, S. Kauppinen, A.A. Levin, M.R. Hodges, Treatment of HCV infection by targeting microRNA, The New England journal of medicine 368(18) (2013) 1685-94.
[13] E.S. Hildebrandt-Eriksen, V. Aarup, R. Persson, H.F. Hansen, M.E. Munk, H. Orum, A locked nucleic acid oligonucleotide targeting microRNA 122 is well-tolerated in cynomolgus monkeys, Nucleic acid therapeutics 22(3) (2012) 152-161.
[14] C. Monroig Pdel, L. Chen, S. Zhang, G.A. Calin, Small molecule compounds targeting miRNAs for cancer therapy, Adv. Drug Deliv. Rev. 81 (2015) 104-16.
[15] Z. Shi, J. Zhang, X. Qian, L. Han, K. Zhang, L. Chen, J. Liu, Y. Ren, M. Yang, A. Zhang, P. Pu, C. Kang, AC1MMYR2, an inhibitor of dicer-mediated biogenesis of Oncomir miR-21, reverses epithelial-mesenchymal transition and suppresses tumor growth and progression, Cancer Res. 73(17) (2013) 5519-31.
[16] K. Gumireddy, D.D. Young, X. Xiong, J.B. Hogenesch, Q. Huang, A. Deiters, Small-molecule inhibitors of microrna miR-21 function, Angew. Chem. Int. Ed. Engl. 47(39) (2008) 7482-4.
[17] Z. Xiao, C.H. Li, S.L. Chan, F. Xu, L. Feng, Y. Wang, J.D. Jiang, J.J. Sung, C.H. Cheng, Y. Chen, A small-molecule modulator of the tumor-suppressor miR34a inhibits the growth of hepatocellular carcinoma, Cancer Res. 74(21) (2014) 6236-47.
[18] D. Miyaki, H. Aikata, H. Kan, H. Fujino, A. Urabe, K. Masaki, T. Fukuhara, T. Kobayashi, N. Naeshiro, T. Nakahara, T. Kawaoka, A. Hiramatsu, S. Takahashi, M. Ishikawa, H. Kakizawa, K. Awai, K. Chayama, Clinical outcome of sorafenib treatment in patients with advanced hepatocellular carcinoma refractory to hepatic arterial infusion chemotherapy, Journal of gastroenterology and hepatology 28(12) (2013) 1834-41.
[19] H.Y. Woo, J. Heo, Sorafenib in liver cancer, Expert opinion on pharmacotherapy 13(7) (2012) 1059-1067.
[20] V. Ramakrishnan, M. Timm, J.L. Haug, T.K. Kimlinger, T. Halling, L.E. Wellik, T.E. Witzig, S.V. Rajkumar, A.A. Adjei, S. Kumar, Sorafenib, a multikinase inhibitor, is effective in vitro against non-Hodgkin lymphoma and synergizes with the mTOR inhibitor rapamycin, American journal of hematology 87(3) (2012) 277-283.
[21] M. Scartozzi, L. Faloppi, G. Svegliati Baroni, C. Loretelli, F. Piscaglia, M. Iavarone, P. Toniutto, G. Fava, S. De Minicis, A. Mandolesi, M. Bianconi, R. Giampieri, A. Granito, F. Facchetti, D. Bitetto, S. Marinelli, L. Venerandi, S. Vavassori, S. Gemini, A. D'Errico, M. Colombo, L. Bolondi, I. Bearzi, A. Benedetti, S. Cascinu, VEGF and VEGFR genotyping in the prediction of clinical outcome for HCC patients receiving sorafenib: The ALICE-1 study, International journal of cancer. Journal international du cancer (2014).
[22] A. Villanueva, J.M. Llovet, Targeted therapies for hepatocellular carcinoma, Gastroenterology 140(5) (2011) 1410-1426.
[23] T. Thurnherr, W.C. Mah, Z. Lei, Y. Jin, S.G. Rozen, C.G. Lee, Differentially Expressed miRNAs in Hepatocellular Carcinoma Target Genes in the Genetic Information Processing and Metabolism Pathways, Scientific reports 6 (2016) 20065.
[24] S. Meding, U. Nitsche, B. Balluff, M. Elsner, S. Rauser, C. Schone, M. Nipp, M. Maak, M. Feith, M.P. Ebert, H. Friess, R. Langer, H. Hofler, H. Zitzelsberger, R. Rosenberg, A. Walch, Tumor classification of six common cancer types based on proteomic profiling by MALDI imaging, Journal of proteome research 11(3) (2012) 1996-2003.
[25] R.K. Sterling, E.C. Wright, T.R. Morgan, L.B. Seeff, J.C. Hoefs, A.M. Di Bisceglie, J.L. Dienstag, A.S. Lok, Frequency of elevated hepatocellular carcinoma (HCC) biomarkers in patients with advanced hepatitis C, The American journal of gastroenterology 107(1) (2012) 64-74.
[26] T. Kawaguchi, K. Ohkawa, K. Imanaka, C. Tamai, N. Kawada, K. Ikezawa, H. Uehara, Y. Itou, K. Nakanishi, K. Katayama, Lipiodol accumulation and transarterial chemoembolization efficacy for HCC patients, Hepato-gastroenterology 59(113) (2012) 219-223.
[27] M. Peck-Radosavljevic, Back to basics: staging and prognosis in HCC for medical oncologist, Journal of hepatology 56(2) (2012) 488-489.
[28] M. Klingenberg, A. Matsuda, S. Diederichs, T. Patel, Non-coding RNA in hepatocellular carcinoma: Mechanisms, biomarkers and therapeutic targets, J. Hepatol. 67(3) (2017) 603-618.
[29] A. Kriz, K. Schmid, N. Baumgartner, U. Ziegler, I. Berger, K. Ballmer-Hofer, P. Berger, A plasmid-based multigene expression system for mammalian cells, Nature communications 1 (2010) 120.
[30] Y. Song, F. Wang, Q. Huang, Y. Cao, Y. Zhao, C. Yang, MicroRNAs Contribute to Hepatocellular Carcinoma, Mini reviews in medicinal chemistry 15(6) (2015) 459-66.
[31] J. Chang, E. Nicolas, D. Marks, C. Sander, A. Lerro, M.A. Buendia, C. Xu, W.S. Mason, T. Moloshok, R. Bort, K.S. Zaret, J.M. Taylor, miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1, RNA biology 1(2) (2004) 106-13.
[32] J. Krützfeldt, N. Rajewsky, R. Braich, K.G. Rajeev, T. Tuschl, M. Manoharan, M. Stoffel, Silencing of microRNAs in vivo with 'antagomirs', Nature 438(7068) (2005) 685-9.
[33] C. Esau, S. Davis, S.F. Murray, X.X. Yu, S.K. Pandey, M. Pear, L. Watts, S.L. Booten, M. Graham, R. McKay, A. Subramaniam, S. Propp, B.A. Lollo, S. Freier, C.F. Bennett, S. Bhanot, B.P. Monia, miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting, Cell Metab 3(2) (2006) 87-98.
[34] N. Kim, H. Kim, I. Jung, Y. Kim, D. Kim, Y.M. Han, Expression profiles of miRNAs in human embryonic stem cells during hepatocyte differentiation, Hepatol. Res. 41(2) (2011) 170-83.
[35] D. Gatfield, G. Le Martelot, C.E. Vejnar, D. Gerlach, O. Schaad, F. Fleury-Olela, A.L. Ruskeepää, M. Oresic, C.C. Esau, E.M. Zdobnov, U. Schibler, Integration of microRNA miR-122 in hepatic circadian gene expression, Genes & development 23(11) (2009) 1313-26.
[36] C.L. Jopling, M. Yi, A.M. Lancaster, S.M. Lemon, P. Sarnow, Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA, Science (New York, N.Y.) 309(5740) (2005) 1577-81.
[37] M. Castoldi, M. Vujic Spasic, S. Altamura, J. Elmén, M. Lindow, J. Kiss, J. Stolte, R. Sparla, L.A. D'Alessandro, U. Klingmüller, R.E. Fleming, T. Longerich, H.J. Gröne, V. Benes, S. Kauppinen, M.W. Hentze, M.U. Muckenthaler, The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice, The Journal of clinical investigation 121(4) (2011) 1386-96.
[38] S.H. Hsu, B. Wang, J. Kota, J. Yu, S. Costinean, H. Kutay, L. Yu, S. Bai, K. La Perle, R.R. Chivukula, H. Mao, M. Wei, K.R. Clark, J.R. Mendell, M.A. Caligiuri, S.T. Jacob, J.T. Mendell, K. Ghoshal, Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver, The Journal of clinical investigation 122(8) (2012) 2871-83.
[39] W.C. Tsai, S.D. Hsu, C.S. Hsu, T.C. Lai, S.J. Chen, R. Shen, Y. Huang, H.C. Chen, C.H. Lee, T.F. Tsai, M.T. Hsu, J.C. Wu, H.D. Huang, M.S. Shiao, M. Hsiao, A.P. Tsou, MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis, J Clin Invest 122(8) (2012) 2884-97.
[40] C. Baeck, A. Wehr, K.R. Karlmark, F. Heymann, M. Vucur, N. Gassler, S. Huss, S. Klussmann, D. Eulberg, T. Luedde, C. Trautwein, F. Tacke, Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury, Gut 61(3) (2012) 416-26.
[41] E.J. Park, J.H. Lee, G.Y. Yu, G. He, S.R. Ali, R.G. Holzer, C.H. Osterreicher, H. Takahashi, M. Karin, Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression, Cell 140(2) (2010) 197-208.
[42] C. Coulouarn, V.M. Factor, J.B. Andersen, M.E. Durkin, S.S. Thorgeirsson, Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties, Oncogene 28(40) (2009) 3526-36.
[43] M.B. Zeisel, S. Pfeffer, T.F. Baumert, miR-122 acts as a tumor suppressor in hepatocarcinogenesis in vivo, J. Hepatol. 58(4) (2013) 821-3.
[44] J. Wen, J.R. Friedman, miR-122 regulates hepatic lipid metabolism and tumor suppression, The Journal of clinical investigation 122(8) (2012) 2773-6.
[45] F. Fornari, L. Gramantieri, C. Giovannini, A. Veronese, M. Ferracin, S. Sabbioni, G.A. Calin, G.L. Grazi, C.M. Croce, S. Tavolari, P. Chieco, M. Negrini, L. Bolondi, MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells, Cancer Res. 69(14) (2009) 5761-7.
[46] C. Zeng, R. Wang, D. Li, X.J. Lin, Q.K. Wei, Y. Yuan, Q. Wang, W. Chen, S.M. Zhuang, A novel GSK-3 beta-C/EBP alpha-miR-122-insulin-like growth factor 1 receptor regulatory circuitry in human hepatocellular carcinoma, Hepatology (Baltimore, Md.) 52(5) (2010) 1702-12.
[47] S. Bai, M.W. Nasser, B. Wang, S.H. Hsu, J. Datta, H. Kutay, A. Yadav, G. Nuovo, P. Kumar, K. Ghoshal, MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib, J. Biol. Chem. 284(46) (2009) 32015-27.
[48] W.C. Tsai, P.W. Hsu, T.C. Lai, G.Y. Chau, C.W. Lin, C.M. Chen, C.D. Lin, Y.L. Liao, J.L. Wang, Y.P. Chau, M.T. Hsu, M. Hsiao, H.D. Huang, A.P. Tsou, MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma, Hepatology (Baltimore, Md.) 49(5) (2009) 1571-82.
[49] J. Xu, X. Zhu, L. Wu, R. Yang, Z. Yang, Q. Wang, F. Wu, MicroRNA-122 suppresses cell proliferation and induces cell apoptosis in hepatocellular carcinoma by directly targeting Wnt/β-catenin pathway, Liver Int. 32(5) (2012) 752-60.
[50] D.W. Ho, R.C. Lo, L.K. Chan, I.O. Ng, Molecular Pathogenesis of Hepatocellular Carcinoma, Liver cancer 5(4) (2016) 290-302.
[51] H. Xu, J.H. He, Z.D. Xiao, Q.Q. Zhang, Y.Q. Chen, H. Zhou, L.H. Qu, Liver-enriched transcription factors regulate microRNA-122 that targets CUTL1 during liver development, Hepatology (Baltimore, Md.) 52(4) (2010) 1431-42.
[52] K. Kojima, A. Takata, C. Vadnais, M. Otsuka, T. Yoshikawa, M. Akanuma, Y. Kondo, Y.J. Kang, T. Kishikawa, N. Kato, Z. Xie, W.J. Zhang, H. Yoshida, M. Omata, A. Nepveu, K. Koike, MicroRNA122 is a key regulator of α-fetoprotein expression and influences the aggressiveness of hepatocellular carcinoma, Nature communications 2 (2011) 338.
[53] C. Li, Y. Wang, S. Wang, B. Wu, J. Hao, H. Fan, Y. Ju, Y. Ding, L. Chen, X. Chu, W. Liu, X. Ye, S. Meng, Hepatitis B virus mRNA-mediated miR-122 inhibition upregulates PTTG1-binding protein, which promotes hepatocellular carcinoma tumor growth and cell invasion, Journal of virology 87(4) (2013) 2193-205.
[54] K. Nakao, H. Miyaaki, T. Ichikawa, Antitumor function of microRNA-122 against hepatocellular carcinoma, Journal of gastroenterology 49(4) (2014) 589-93.
[55] Z.Y. Li, Y. Xi, W.N. Zhu, C. Zeng, Z.Q. Zhang, Z.C. Guo, D.L. Hao, G. Liu, L. Feng, H.Z. Chen, F. Chen, X. Lv, D.P. Liu, C.C. Liang, Positive regulation of hepatic miR-122 expression by HNF4α, J. Hepatol. 55(3) (2011) 602-611.
[56] I. Grabundzija, M. Irgang, L. Mates, E. Belay, J. Matrai, A. Gogol-Doring, K. Kawakami, W. Chen, P. Ruiz, M.K.L. Chuah, T. VandenDriessche, Z. Izsvak, Z. Ivics, Comparative Analysis of Transposable Element Vector Systems in Human Cells, Mol Ther 18(6) (2010) 1200-1209.
[57] P.B. Hackett, D.A. Largaespada, L.J. Cooper, A transposon and transposase system for human application, Mol Ther 18(4) (2010) 674-683.
[58] H. Singh, P.R. Manuri, S. Olivares, N. Dara, M.J. Dawson, H. Huls, P.B. Hackett, D.B. Kohn, E.J. Shpall, R.E. Champlin, L.J. Cooper, Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system, Cancer research 68(8) (2008) 2961-71.
[59] X. Huang, H. Guo, J. Kang, S. Choi, T.C. Zhou, S. Tammana, C.J. Lees, Z.Z. Li, M. Milone, B.L. Levine, J. Tolar, C.H. June, R. Scott McIvor, J.E. Wagner, B.R. Blazar, X. Zhou, Sleeping Beauty transposon-mediated engineering of human primary T cells for therapy of CD19+ lymphoid malignancies, Mol Ther 16(3) (2008) 580-589.
[60] A. Donsante, D.G. Miller, Y. Li, C. Vogler, E.M. Brunt, D.W. Russell, M.S. Sands, AAV vector integration sites in mouse hepatocellular carcinoma, Science 317(5837) (2007) 477-477.
[61] C. Baum, What are the consequences of the fourth case?, Mol Ther 15(8) (2007) 1401-2.
[62] B. Moldt, C. Miskey, N.H. Staunstrup, A. Gogol-Doring, R.O. Bak, N. Sharma, L. Mates, Z. Izsvak, W. Chen, Z. Ivics, J.G. Mikkelsen, Comparative genomic integration profiling of Sleeping Beauty transposons mobilized with high efficacy from integrase-defective lentiviral vectors in primary human cells, Molecular therapy : the journal of the American Society of Gene Therapy 19(8) (2011) 1499-510.
[63] W.Y. Luo, S.Y. Lin, K.W. Lo, C.H. Lu, C.L. Hung, C.Y. Chen, C.C. Chang, Y.C. Hu, Adaptive immune responses elicited by baculovirus and impacts on subsequent transgene expression in vivo, J Virol 87(9) (2013) 4965-73.
[64] D. Na, S.M. Yoo, H. Chung, H. Park, J.H. Park, S.Y. Lee, Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs, Nature biotechnology 31(2) (2013) 170-4.
[65] T.L. Deans, C.R. Cantor, J.J. Collins, A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells, Cell 130(2) (2007) 363-72.
[66] P. Mohammadi, N. Beerenwinkel, Y. Benenson, Automated Design of Synthetic Cell Classifier Circuits Using a Two-Step Optimization Strategy, Cell systems 4(2) (2017) 207-218.e14.
[67] Z. Xie, L. Wroblewska, L. Prochazka, R. Weiss, Y. Benenson, Multi-input RNAi-based logic circuit for identification of specific cancer cells, Science (New York, N.Y.) 333(6047) (2011) 1307-11.
[68] M.W. Lin, Y.W. Tseng, C.C. Shen, M.N. Hsu, J.R. Hwu, C.W. Chang, C.J. Yeh, M.Y. Chou, J.C. Wu, Y.C. Hu, Synthetic switch-based baculovirus for transgene expression control and selective killing of hepatocellular carcinoma cells, Nucleic acids research (2018).
[69] C.H. Liu, G.J. Chern, F.F. Hsu, K.W. Huang, Y.C. Sung, H.C. Huang, J.T. Qiu, S.K. Wang, C.C. Lin, C.H. Wu, H.C. Wu, J.Y. Liu, Y. Chen, A multifunctional nanocarrier for efficient TRAIL-based gene therapy against hepatocellular carcinoma with desmoplasia in mice, Hepatology (Baltimore, Md.) 67(3) (2018) 899-913.
[70] S. Bandiera, S. Pfeffer, T.F. Baumert, M.B. Zeisel, miR-122--a key factor and therapeutic target in liver disease, J Hepatol 62(2) (2015) 448-57.
[71] C.L. Chen, J.C. Wu, G.Y. Chen, P.H. Yuan, Y.W. Tseng, K.C. Li, S.M. Hwang, Y.C. Hu, Baculovirus-mediated miRNA regulation to suppress hepatocellular carcinoma tumorigenicity and metastasis, Molecular therapy : the journal of the American Society of Gene Therapy 23(1) (2015) 79-88.
[72] L.Y. Sung, C.L. Chen, S.Y. Lin, K.C. Li, C.L. Yeh, G.Y. Chen, C.Y. Lin, Y.C. Hu, Efficient gene delivery into cell lines and stem cells using baculovirus, Nature protocols 9(8) (2014) 1882-99.
[73] C.I. Wooddell, T. Reppen, J.A. Wolff, H. Herweijer, Sustained liver-specific transgene expression from the albumin promoter in mice following hydrodynamic plasmid DNA delivery, The journal of gene medicine 10(5) (2008) 551-63.
[74] B. Panwar, G.S. Omenn, Y. Guan, miRmine: a database of human miRNA expression profiles, Bioinformatics (Oxford, England) 33(10) (2017) 1554-1560.
[75] S. Wang, A.B. Aurora, B.A. Johnson, X. Qi, J. McAnally, J.A. Hill, J.A. Richardson, R. Bassel-Duby, E.N. Olson, The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis, Developmental cell 15(2) (2008) 261-71.
[76] J. Meister, M.H.H. Schmidt, miR-126 and miR-126*: new players in cancer, TheScientificWorldJournal 10 (2010) 2090-100.
[77] W.E. Delaney, T.G. Miller, H.C. Isom, Use of the hepatitis B virus recombinant baculovirus-HepG2 system to study the effects of (-)-beta-2',3'-dideoxy-3'-thiacytidine on replication of hepatitis B virus and accumulation of covalently closed circular DNA, Antimicrobial agents and chemotherapy 43(8) (1999) 2017-26.
[78] F. Schwenter, N. Déglon, P. Aebischer, Optimization of human erythropoietin secretion from MLV-infected human primary fibroblasts used for encapsulated cell therapy, The journal of gene medicine 5(3) (2003) 246-57.
[79] R. Klein, B. Ruttkowski, E. Knapp, B. Salmons, W.H. Günzburg, C. Hohenadl, WPRE-mediated enhancement of gene expression is promoter and cell line specific, Gene 372 (2006) 153-61.
[80] I. Grabundzija, M. Irgang, L. Mates, E. Belay, J. Matrai, A. Gogol-Doring, K. Kawakami, W. Chen, P. Ruiz, M.K. Chuah, T. VandenDriessche, Z. Izsvak, Z. Ivics, Comparative analysis of transposable element vector systems in human cells, Molecular therapy : the journal of the American Society of Gene Therapy 18(6) (2010) 1200-9.
[81] A.M. Geurts, Y. Yang, K.J. Clark, G. Liu, Z. Cui, A.J. Dupuy, J.B. Bell, D.A. Largaespada, P.B. Hackett, Gene transfer into genomes of human cells by the sleeping beauty transposon system, Mol. Ther. 8(1) (2003) 108-17.
[82] C.L. Chen, Y.W. Tseng, J.C. Wu, G.Y. Chen, K.C. Lin, S.M. Hwang, Y.C. Hu, Suppression of hepatocellular carcinoma by baculovirus-mediated expression of long non-coding RNA PTENP1 and MicroRNA regulation, Biomaterials 44 (2015) 71-81.
[83] B. Dhungel, C.A. Ramlogan-Steel, J.C. Steel, MicroRNA-Regulated Gene Delivery Systems for Research and Therapeutic Purposes, Molecules (Basel, Switzerland) 23(7) (2018).
[84] C. Wu, J. Lin, M. Hong, Y. Choudhury, P. Balani, D. Leung, L.H. Dang, Y. Zhao, J. Zeng, S. Wang, Combinatorial control of suicide gene expression by tissue-specific promoter and microRNA regulation for cancer therapy, Mol. Ther. 17(12) (2009) 2058-66.
[85] B.D. Brown, B. Gentner, A. Cantore, S. Colleoni, M. Amendola, A. Zingale, A. Baccarini, G. Lazzari, C. Galli, L. Naldini, Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state, Nature biotechnology 25(12) (2007) 1457-67.
[86] B. Gentner, G. Schira, A. Giustacchini, M. Amendola, B.D. Brown, M. Ponzoni, L. Naldini, Stable knockdown of microRNA in vivo by lentiviral vectors, Nature methods 6(1) (2009) 63-6.
[87] A. Grimson, K.K. Farh, W.K. Johnston, P. Garrett-Engele, L.P. Lim, D.P. Bartel, MicroRNA targeting specificity in mammals: determinants beyond seed pairing, Molecular cell 27(1) (2007) 91-105.
[88] M.S. Ebert, J.R. Neilson, P.A. Sharp, MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells, Nature methods 4(9) (2007) 721-6.
[89] G. Haas, S. Cetin, M. Messmer, B. Chane-Woon-Ming, O. Terenzi, J. Chicher, L. Kuhn, P. Hammann, S. Pfeffer, Identification of factors involved in target RNA-directed microRNA degradation, Nucleic Acids Res. 44(6) (2016) 2873-87.
[90] V.K. Mayya, T.F. Duchaine, On the availability of microRNA-induced silencing complexes, saturation of microRNA-binding sites and stoichiometry, Nucleic Acids Res. 43(15) (2015) 7556-65.
[91] A. Arvey, E. Larsson, C. Sander, C.S. Leslie, D.S. Marks, Target mRNA abundance dilutes microRNA and siRNA activity, Molecular systems biology 6 (2010) 363.
[92] S.L. Ameres, J. Martinez, R. Schroeder, Molecular basis for target RNA recognition and cleavage by human RISC, Cell 130(1) (2007) 101-12.
[93] R.O. Bak, A.K. Hollensen, M.N. Primo, C.D. Sørensen, J.G. Mikkelsen, Potent microRNA suppression by RNA Pol II-transcribed 'Tough Decoy' inhibitors, RNA (New York, N.Y.) 19(2) (2013) 280-93.
[94] M.S. Ebert, P.A. Sharp, MicroRNA sponges: progress and possibilities, RNA (New York, N.Y.) 16(11) (2010) 2043-50.
[95] F.C. Tay, J.K. Lim, H. Zhu, L.C. Hin, S. Wang, Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells, Adv. Drug Deliv. Rev. 81 (2015) 117-27.
[96] G. Otaegi, A. Pollock, T. Sun, An Optimized Sponge for microRNA miR-9 Affects Spinal Motor Neuron Development in vivo, Frontiers in neuroscience 5 (2011) 146.
[97] R. Shao, X. Guo, Human microvascular endothelial cells immortalized with human telomerase catalytic protein: a model for the study of in vitro angiogenesis, Biochem. Biophys. Res. Commun. 321(4) (2004) 788-94.
[98] N. Fakhrudin, B. Waltenberger, M. Cabaravdic, A.G. Atanasov, C. Malainer, D. Schachner, E.H. Heiss, R. Liu, S.M. Noha, A.M. Grzywacz, J. Mihaly-Bison, E.M. Awad, D. Schuster, J.M. Breuss, J.M. Rollinger, V. Bochkov, H. Stuppner, V.M. Dirsch, Identification of plumericin as a potent new inhibitor of the NF-κB pathway with anti-inflammatory activity in vitro and in vivo, British journal of pharmacology 171(7) (2014) 1676-86.
[99] H.B. Schiller, A. Szekeres, B.R. Binder, H. Stockinger, V. Leksa, Mannose 6-phosphate/insulin-like growth factor 2 receptor limits cell invasion by controlling alphaVbeta3 integrin expression and proteolytic processing of urokinase-type plasminogen activator receptor, Molecular biology of the cell 20(3) (2009) 745-56.
[100] B.D. Hornstein, D. Roman, L.M. Arévalo-Soliz, M.A. Engevik, L. Zechiedrich, Effects of Circular DNA Length on Transfection Efficiency by Electroporation into HeLa Cells, PLoS ONE 11(12) (2016) e0167537.
[101] Y. Fukuda, H. Kawasaki, K. Taira, Construction of microRNA-containing vectors for expression in mammalian cells, Methods in molecular biology (Clifton, N.J.) 338 (2006) 167-73.
[102] M.R. Schlabach, J.K. Hu, M. Li, S.J. Elledge, Synthetic design of strong promoters, Proceedings of the National Academy of Sciences of the United States of America 107(6) (2010) 2538-43.
[103] P. Cohen, J.G. Foulkes, The Hormonal Control of Gene Transcription, Elsevier Science2012.
[104] U. Sahin, K. Karikó, Ö. Türeci, mRNA-based therapeutics--developing a new class of drugs, Nature reviews. Drug discovery 13(10) (2014) 759-80.
[105] P.S. Kowalski, A. Rudra, L. Miao, D.G. Anderson, Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery, Mol. Ther. 27(4) (2019) 710-728.
[106] A. Wilber, J.L. Frandsen, J.L. Geurts, D.A. Largaespada, P.B. Hackett, R.S. McIvor, RNA as a source of transposase for Sleeping Beauty-mediated gene insertion and expression in somatic cells and tissues, Mol. Ther. 13(3) (2006) 625-30.
[107] A. Wilber, K.J. Wangensteen, Y. Chen, L. Zhuo, J.L. Frandsen, J.B. Bell, Z.J. Chen, S.C. Ekker, R.S. McIvor, X. Wang, Messenger RNA as a source of transposase for sleeping beauty transposon-mediated correction of hereditary tyrosinemia type I, Mol. Ther. 15(7) (2007) 1280-7.
[108] J.M. Wiehe, P. Ponsaerts, M.T. Rojewski, J.M. Homann, J. Greiner, D. Kronawitter, H. Schrezenmeier, V. Hombach, M. Wiesneth, O. Zimmermann, J. Torzewski, mRNA-mediated gene delivery into human progenitor cells promotes highly efficient protein expression, J. Cell. Mol. Med. 11(3) 521-30.
[109] R. Monjezi, C. Miskey, T. Gogishvili, M. Schleef, M. Schmeer, H. Einsele, Z. Ivics, M. Hudecek, Enhanced CAR T-cell engineering using non-viral Sleeping Beauty transposition from minicircle vectors, Leukemia 31(1) (2017) 186-194.
[110] L. Wroblewska, T. Kitada, K. Endo, V. Siciliano, B. Stillo, H. Saito, R. Weiss, Mammalian synthetic circuits with RNA binding proteins for RNA-only delivery, Nature biotechnology 33(8) (2015) 839-41.
[111] H. Nakanishi, H. Saito, Mammalian gene circuits with biomolecule-responsive RNA devices, Current Opinion in Chemical Biology 52 (2019) 16-22.
[112] J. Lockhart, J. Canfield, E.F. Mong, J. VanWye, H. Totary-Jain, Nucleotide Modification Alters MicroRNA-Dependent Silencing of MicroRNA Switches, Molecular Therapy - Nucleic Acids 14 (2019) 339-350.
[113] N. Nayerossadat, T. Maedeh, P.A. Ali, Viral and nonviral delivery systems for gene delivery, Advanced biomedical research 1 (2012) 27.
[114] J. Zhou, G.W. Blissard, Display of Heterologous Proteins on gp64null Baculovirus Virions and Enhanced Budding Mediated by a Vesicular Stomatitis Virus G-Stem Construct, Journal of virology 82(3) (2008) 1368.
[115] J.P. Condreay, S.M. Witherspoon, W.C. Clay, T.A. Kost, Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector, Proceedings of the National Academy of Sciences of the United States of America 96(1) (1999) 127-132.
[116] J. Li, H. Liang, J. Liu, Z. Wang, Poly (amidoamine) (PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy, International Journal of Pharmaceutics 546(1) (2018) 215-225.
[117] M.U. Kaikkonen, S. Ylä-Herttuala, K.J. Airenne, How to avoid complement attack in baculovirus-mediated gene delivery, J. Invertebr. Pathol. 107 Suppl (2011) S71-9.
[118] Y. Yang, S.L. Lo, J. Yang, J. Yang, S.S. Goh, C. Wu, S.S. Feng, S. Wang, Polyethylenimine coating to produce serum-resistant baculoviral vectors for in vivo gene delivery, Biomaterials 30(29) (2009) 5767-74.
[119] Y.K. Kim, J.Y. Choi, M.K. Yoo, H.L. Jiang, R. Arote, Y.H. Je, M.H. Cho, C.S. Cho, Receptor-mediated gene delivery by folate-PEG-baculovirus in vitro, Journal of biotechnology 131(3) (2007) 353-61.
[120] M. Iyori, D.S. Yamamoto, M. Sakaguchi, M. Mizutani, S. Ogata, H. Nishiura, T. Tamura, H. Matsuoka, S. Yoshida, DAF-shielded baculovirus-vectored vaccine enhances protection against malaria sporozoite challenge in mice, Malar. J. 16(1) (2017) 390.
[121] M.U. Kaikkonen, A.I. Maatta, S. Ylä-Herttuala, K.J. Airenne, Screening of complement inhibitors: shielded baculoviruses increase the safety and efficacy of gene delivery, Mol. Ther. 18(5) (2010) 987-92.
[122] H. Zhu, L. Zhang, S. Tong, C.M. Lee, H. Deshmukh, G. Bao, Spatial control of in vivo CRISPR-Cas9 genome editing via nanomagnets, Nature biomedical engineering 3(2) (2019) 126-136.
[123] A.C. Palmer, J.B. Egan, K.E. Shearwin, Transcriptional interference by RNA polymerase pausing and dislodgement of transcription factors, Transcription 2(1) (2011) 9-14.
[124] K. Hasegawa, N. Nakatsuji, Insulators prevent transcriptional interference between two promoters in a double gene construct for transgenesis, FEBS letters 520(1-3) (2002) 47-52.
[125] J.F. Villemure, N. Savard, A. Belmaaza, Promoter suppression in cultured mammalian cells can be blocked by the chicken beta-globin chromatin insulator 5'HS4 and matrix/scaffold attachment regions, Journal of molecular biology 312(5) (2001) 963-74.
[126] S. Thakral, K. Ghoshal, miR-122 is a unique molecule with great potential in diagnosis, prognosis of liver disease, and therapy both as miRNA mimic and antimir, Current gene therapy 15(2) (2015) 142-50.
[127] R.A. Villanueva, R.K. Jangra, M. Yi, R. Pyles, N. Bourne, S.M. Lemon, miR-122 does not modulate the elongation phase of hepatitis C virus RNA synthesis in isolated replicase complexes, Antiviral research 88(1) (2010) 119-23.
[128] M.G. Mavilia, G.Y. Wu, HBV-HCV Coinfection: Viral Interactions, Management, and Viral Reactivation, Journal of clinical and translational hepatology 6(3) (2018) 296-305.
[129] J.T. Blackard, K.E. Sherman, Hepatitis B virus (HBV) reactivation-The potential role of direct-acting agents for hepatitis C virus (HCV), Reviews in medical virology 28(4) (2018) e1984.
[130] M. Pokorska-Śpiewak, B. Kowalik-Mikołajewska, M. Aniszewska, B. Walewska-Zielecka, M. Marczyńska, The influence of hepatitis B and C virus coinfection on liver histopathology in children, European journal of pediatrics 174(3) (2015) 345-53.
[131] G. Indolfi, L. Hierro, A. Dezsofi, J. Jahnel, D. Debray, N. Hadzic, P. Czubkowski, G. Gupte, Y. Mozer-Glassberg, W. van der Woerd, F. Smets, H.J. Verkade, B. Fischler, Treatment of Chronic Hepatitis C Virus Infection in Children: A Position Paper by the Hepatology Committee of European Society of Paediatric Gastroenterology, Hepatology and Nutrition, Journal of pediatric gastroenterology and nutrition 66(3) (2018) 505-515.
[132] L. Ma, J. Liu, J. Shen, L. Liu, J. Wu, W. Li, J. Luo, Q. Chen, C. Qian, Expression of miR-122 mediated by adenoviral vector induces apoptosis and cell cycle arrest of cancer cells, Cancer biology & therapy 9(7) (2010) 554-61.
[133] H. Qin, J. Sha, C. Jiang, X. Gao, L. Qu, H. Yan, T. Xu, Q. Jiang, H. Gao, miR-122 inhibits metastasis and epithelial-mesenchymal transition of non-small-cell lung cancer cells, OncoTargets and therapy 8 (2015) 3175-84.
[134] N. Chandimali, D.L. Huynh, J.J. Zhang, J.C. Lee, D.Y. Yu, D.K. Jeong, T. Kwon, MicroRNA-122 negatively associates with peroxiredoxin-II expression in human gefitinib-resistant lung cancer stem cells, Cancer gene therapy (2018).
[135] D. Ma, H. Jia, M. Qin, W. Dai, T. Wang, E. Liang, G. Dong, Z. Wang, Z. Zhang, F. Feng, MiR-122 Induces Radiosensitization in Non-Small Cell Lung Cancer Cell Line, International journal of molecular sciences 16(9) (2015) 22137-50.
[136] J. Myllyharju, Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis, Matrix biology : journal of the International Society for Matrix Biology 22(1) (2003) 15-24.
[137] L. Bonfanti, A.A. Mironov, Jr., J.A. Martinez-Menarguez, O. Martella, A. Fusella, M. Baldassarre, R. Buccione, H.J. Geuze, A.A. Mironov, A. Luini, Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation, Cell 95(7) (1998) 993-1003.
[138] J. Li, M. Ghazwani, Y. Zhang, J. Lu, J. Li, J. Fan, C.R. Gandhi, S. Li, miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression, J Hepatol 58(3) (2013) 522-8.
[139] I. Sakaida, Y. Matsumura, M. Kubota, K. Kayano, K. Takenaka, K. Okita, The prolyl 4-hydroxylase inhibitor HOE 077 prevents activation of Ito cells, reducing procollagen gene expression in rat liver fibrosis induced by choline-deficient L-amino acid-defined diet, Hepatology (Baltimore, Md.) 23(4) (1996) 755-63.
[140] C.J. Lin, H.Y. Gong, H.C. Tseng, W.L. Wang, J.L. Wu, miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines, Biochemical and biophysical research communications 375(3) (2008) 315-20.
[141] B. Saile, P. DiRocco, J. Dudas, H. El-Armouche, H. Sebb, C. Eisenbach, K. Neubauer, G. Ramadori, IGF-I induces DNA synthesis and apoptosis in rat liver hepatic stellate cells (HSC) but DNA synthesis and proliferation in rat liver myofibroblasts (rMF), Laboratory investigation; a journal of technical methods and pathology 84(8) (2004) 1037-49.
[142] B. Saile, T. Knittel, N. Matthes, P. Schott, G. Ramadori, CD95/CD95L-mediated apoptosis of the hepatic stellate cell. A mechanism terminating uncontrolled hepatic stellate cell proliferation during hepatic tissue repair, Am J Pathol 151(5) (1997) 1265-72.
[143] L. Xu, A.Y. Hui, E. Albanis, M.J. Arthur, S.M. O'Byrne, W.S. Blaner, P. Mukherjee, S.L. Friedman, F.J. Eng, Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis, Gut 54(1) (2005) 142-51.
(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. Doxorubicin誘導rAAV2病毒進行p53腫瘤抑制基因傳遞與表現應用於化療結合基因治療在肝癌治療之研究
2. 以桿狀病毒作為基因載體調控microRNA表現並抑制Mahlavu肝癌細胞株於小鼠體內之增生及轉移
3. 以桿狀病毒轉導老鼠關節軟骨細胞和人類間葉幹細胞以及在軟骨組織工程上之應用
4. 桿狀病毒/哺乳動物細胞表現系統轉導條件最適化之研究
5. 結合超過濾系統與固定化金屬親合力層析法以純化昆蟲桿狀病毒
6. 探討軟骨細胞的細胞週期及抗病毒機制對桿狀病毒轉導效率的影響
7. 腸病毒71型類病毒顆粒的表現、特性分析及其應用為抗腸病毒疫苗之評估
8. 以桿狀病毒於新型生物反應器BelloCell500®轉導BHK細胞表現D型肝炎類病毒顆粒:生產與純化程序之最適化
9. SARS-CoV之結構蛋白質在昆蟲細胞內之表現與純化程序之探討
10. 利用桿狀病毒/昆蟲細胞表現系統表現家禽流行性感冒病毒血球凝集素 (HA)蛋白質並以親和性管柱層析法純化
11. 應用於軟骨組織工程的醣胺素/幾丁聚醣材料開發及其調控ECM產生及基因表現機制探討
12. 桿狀病毒結合新型生化反應器在軟骨組織工程之應用
13. 昆蟲桿狀病毒對哺乳動物細胞的轉導能力之測定及影響其轉導能力之因素
14. 桿狀病毒表現之生長因子促進軟骨細胞分化狀態之研究
15. 以桿狀病毒/哺乳動物細胞表現系統生產D型肝炎病毒蛋白質與類病毒顆粒之研究
 
* *