帳號:guest(18.116.21.152)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳芃諼
作者(外文):Wu, Peng-Hsuan
論文名稱(中文):模擬非局部模型的電雙層結構
論文名稱(外文):Simulation of Electric Double Layer Structure for a Non-local Model
指導教授(中文):李金龍
指導教授(外文):Li, Chin-Lung
口試委員(中文):劉晉良
陳仁純
口試委員(外文):Liu, Jinn-Liang
Chen, Ren-Chuen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:計算與建模科學研究所
學號:106026508
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:32
中文關鍵詞:Electric Double Layercharge-conserving Poisson–BoltzmannFinite-Difference MethodComposite Simpson's Rule
外文關鍵詞:電雙層電荷守恆泊松-玻爾茲曼方程有限差分法辛普森法
相關次數:
  • 推薦推薦:0
  • 點閱點閱:56
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
電雙層(EDL)結構的模擬是各種研究領域中的一個有趣現象。電荷守恆Poisson-Boltzmann(CCPB)方程是描述靜電勢分佈的重要數學模型之一。該CCPB模型是非局部二階偏微分方程。本文提出了二維歐氏空間的特定有界域,通過有限差分方法逼近靜電勢。為了研究邊界層的漸近行為,還討論了各種參數值。最後,我們給出了數值近似,並透過CCPB模型了解電雙層的行為。
Simulation for the structure of electrical double layer (EDL) is an interesting phenomena in various research fields. The charge-conserving Poisson–Boltzmann (CCPB) equation is one of the important mathematical model to describe the electrostatic potential profiles. This CCPB model is a non-local second order partial differential equation. In this thesis, a specific bounded domain of two dimensional Euclidean space is presented to approach the electrostatic potential via the finite difference method. Various values of parameters are also discussed for investigating the asymptotic behavior of the boundary layer. As a conclusion, we give a numerical approximations to understand the behavior of electrical double layer through the CCPB model.
Abstract
Acknowledgements
Contents
1 Introduction--------------------------------------------------------------1
1.1 Background and problem formulation
1.2 Specific Boundary Conditions and Parameters
2 Numerical Methods for the CCPB Equation-------------------------------4
2.1 Finite-Difference Method for Second-Order Nonlinear Problems
2.2 Composite Simpson’s Rule for Two Dimensional Domain
2.3 Approximation for CCPB equation with Boundary Conditions
3 Numerical Simulations---------------------------------------------------15
3.1 The Effects of Partition Numbers n and m
3.2 The Effect of Singular Perturbation Parameter epsilon
3.3 The Effects of Various Values of A and B
3.4 The Effects of Various Values of p and q
4 Conclusions------------------------------------------------------------28
Reference----------------------------------------------------------------29
[1] Martin Z Bazant, Kevin T Chu, and Bruce J Bayly. Current-voltage rela- tions for electrochemical thin films. SIAM journal on applied mathematics, 65(5):1463–1484, 2005.
[2] Bryan Beresford-Smith, Derek YC Chan, and D John Mitchell. The electro- static interaction in colloidal systems with low added electrolyte. Journal of colloid and interface science, 105(1):216–234, 1985.
[3] Piotr Biler and Jean Dolbeault. Long time behavior of solutions to nernst- planck and debye-hu ̈ckel drift-di↵usion systems. In Annales Henri Poincar ́e, volume 1, pages 461–472. Springer, 2000.
[4] Itamar Borukhov, David Andelman, and Henri Orland. Steric e↵ects in elec- trolytes: A modified poisson-boltzmann equation. Physical review letters, 79(3):435, 1997.
[5] LI Daikhin, AA Kornyshev, and M Urbakh. Double layer capacitance on a rough metal surface: surface roughness measured by “debye ruler”. Elec- trochimica Acta, 42(19):2853–2860, 1997.
[6] Bob Eisenberg. Mass action in ionic solutions. Chemical Physics Letters, 511(1-3):1–6, 2011.
[7] Bob Eisenberg. Interacting ions in biophysics: real is not ideal. Biophysical journal, 104(9):1849–1866, 2013.
[8] Bob Eisenberg, Yunkyong Hyon, and Chun Liu. A mathematical model for the hard sphere repulsion in ionic solutions. Communications in Mathematical Sciences, 9(2):459–475, 2011.
[9] Guang Feng, De-en Jiang, and Peter T Cummings. Curvature e↵ect on the ca- pacitance of electric double layers at ionic liquid/onion-like carbon interfaces. Journal of chemical theory and computation, 8(3):1058–1063, 2012.
[10] Guang Feng, Rui Qiao, Jingsong Huang, Sheng Dai, Bobby G Sumpter, and Vincent Meunier. The importance of ion size and electrode curvature on electrical double layers in ionic liquids. Physical Chemistry Chemical Physics, 13(3):1152–1161, 2011.
[11] Marco A Fontelos and Luc ́ıa B Gamboa. On the structure of double layers in poisson-boltzmann equation. Discrete & Continuous Dynamical Systems- Series B, 17(6), 2012.
[12] AJM Garrett and L Poladian. Refined derivation, exact solutions, and singu- lar limits of the poisson-boltzmann equation. Annals of Physics, 188(2):386– 435, 1988.
[13] N Gavish and K Promislow. On the structure of generalized poisson– boltzmann equations. European Journal of Applied Mathematics, 27(4):667– 685, 2016.
[14] David C Grahame. Di↵use double layer theory for electrolytes of unsym- metrical valence types. The Journal of Chemical Physics, 21(6):1054–1060, 1953.
[15] Barry Honig and Anthony Nicholls. Classical electrostatics in biology and chemistry. Science, 268(5214):1144–1149, 1995.
[16] Yunkyong Hyon, Do Y Kwak, and Chun Liu. Energetic variational approach in complex fluids: maximum dissipation principle. 2008.
[17] Chiun-Chang Lee. Thin layer analysis of a non-local model for the double layer structure. Journal of Di↵erential Equations, 266(1):742–802, 2019.
[18] Chiun-Chang Lee, Hijin Lee, YunKyong Hyon, Tai-Chia Lin, and Chun Liu. New poisson–boltzmann type equations: one-dimensional solutions. Nonlin- earity, 24(2):431, 2010.
[19] Chiun-Chang Lee, Hijin Lee, Yunkyong Hyon, Tai-Chia Lin, and Chun Liu. Boundary layer solutions of charge conserving poisson-boltzmann equations: one-dimensional case. arXiv preprint arXiv:1504.06951, 2015.
[20] Tai-Chia Lin and Bob Eisenberg. A new approach to the lennard-jones poten- tial and a new model: Pnp-steric equations. Communications in Mathematical Sciences, 12(1):149–173, 2014.
[21] Jacob H Masliyah and Subir Bhattacharjee. Electrokinetic and colloid trans- port phenomena. John Wiley & Sons, 2006.
[22] Ramesh Natarajan and Robert S Schechter. The solution of the nonlinear poisson—boltzmann equation for thin, spherical double layers. Journal of colloid and interface science, 99(1):50–58, 1984.
[23] I Rubinstein. Counterion condensation as an exact limiting property of solu- tions of the poisson–boltzmann equation. SIAM Journal on Applied Mathe- matics, 46(6):1024–1038, 1986.
[24] Rolf Ryham, Chun Liu, and Z Wang. On electro-kinetic fluids: one dimen- sional configurations. DISCRETE AND CONTINUOUS DYNAMICAL SYS- TEMS SERIES B, 6(2):357, 2006.
[25] Renate Schaaf and Klaus Schmitt. Asymptotic behavior of positive solution branches of elliptic problems with linear part at resonance. Zeitschrift fu ̈r angewandte Mathematik und Physik ZAMP, 43(4):645–676, 1992.
[26] T Shibata. The steepest point of the boundary layers of singularly perturbed semilinear elliptic problems. Transactions of the American Mathematical So- ciety, 356(5):2123–2135, 2004.
[27] Tetsutaro Shibata. Asymptotic formulas for boundary layers and eigencurves for nonlinear elliptic eigenvalue problems. 2003.
[28] Patrice Simon and Yury Gogotsi. Materials for electrochemical capacitors. In Nanoscience And Technology: A Collection of Reviews from Nature Journals, pages 320–329. World Scientific, 2010.
[29] A Singer, D Gillespie, J Norbury, and RS Eisenberg. Singular perturbation analysis of the steady-state poisson–nernst–planck system: Applications to ion channels. European journal of applied mathematics, 19(5):541–560, 2008.
[30] Hideyuki Sugioka. Ion-conserving poisson-boltzmann theory. Physical Review E, 86(1):016318, 2012.
[31] Li Wan, Shixin Xu, Maijia Liao, Chun Liu, and Ping Sheng. Self-consistent approach to global charge neutrality in electrokinetics: A surface potential trap model. Physical Review X, 4(1):011042, 2014.
[32] Hainan Wang and Laurent Pilon. Accurate simulations of electric double layer capacitance of ultramicroelectrodes. The Journal of Physical Chemistry C, 115(33):16711–16719, 2011.
[33] Shenggao Zhou, Zhongming Wang, and Bo Li. Mean-field description of ionic size e↵ects with nonuniform ionic sizes: A numerical approach. Physical Review E, 84(2):021901, 2011.
[34] Falko Ziebert, Martin Z Bazant, and David Lacoste. E↵ective zero-thickness model for a conductive membrane driven by an electric field. Physical Review E, 81(3):031912, 2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *