帳號:guest(3.144.3.43)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陸哲軒
作者(外文):Thieme, Travis J.
論文名稱(中文):從克卜勒旋轉、吸積流、與非理想磁流體動力學探索原行星盤的形成與演化
論文名稱(外文):Investigating the Formation and Evolution of Protostellar Disks via Keplerian Rotation, Streamers, and Non-Ideal MHD
指導教授(中文):賴詩萍
指導教授(外文):Lai, Shih-Ping
口試委員(中文):安德魯古柏
何英宏
李景輝
李悅寧
大橋永芳
口試委員(外文):Cooper, Andrew
Harsono, Daniel
Lee, Chin-Fei
Lee, Yuen-Ning
Ohashi, Nagayoshi
學位類別:博士
校院名稱:國立清華大學
系所名稱:天文研究所
學號:106025421
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:114
中文關鍵詞:恆星形成原恆星盤長條狀氣體結構雙極擴散
外文關鍵詞:Star FormationProtostellar DisksStreamersAmbipolar Diffusion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:547
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
原恆星盤在將質量轉移到原恆星時扮演著重要角色,也是未來孕育新生行星之地。觀測結果顯示,仍然深埋在分子雲中並受旋轉支撐的原恆星盤在早期階段便從原恆星的包層中形成,並積極地吸積質量。然而,原恆星盤形成的環境因磁場和紊流的存在複雜化,磁流體力學的數值模擬也顯示磁場和紊流對於原恆星盤的是否能夠形成具有顯著的影響。本論文旨在分析幾個處於Class 0階段的原恆星,以了解原恆星盤如何通過吸積流從包層積累質量、極低質量原恆星的原恆星盤的早期演化,以及雙極擴散作用在其中所扮演的角色。
在Lupus 3-MMS中,我使用簡單的三維旋轉塌縮模型,擬合在C$^{18}$O中找到的多個長條狀的氣體結構,得到質量塌縮速率介於$0.5$到$1.1\times10^{-6}\,M_\odot\,\mathrm{yr^{-1}}$之間。此結果與其他Class 0原恆星的觀測結果以及磁流體力學模擬一致,這表示此簡化的塌縮模型即提供一個良好的近似,可以產生與觀測大致相符的結果。在IRAS 15398-3359中,我將緊實而高速的SO發射譜線觀測結果與克卜勒旋轉曲線擬合進行運動學分析,發現其中心原恆星的質量極低,約為$0.034\,M_\odot$,且氣體原恆星盤半徑約為$\sim20\,\mathrm{au}$。根據原恆星質量的吸積率估計,IRAS 15398-3359的年齡小於13,000年。因此,原恆星盤的形成發生在非常早期的階段。在HOPS-370中,我使用了基於雙極擴散效應推導的原恆星盤半徑公式,估計HOPS-370原恆星盤邊緣的雙極擴散係數約為$\sim1.6\times10^{18}\,\mathrm{cm^{2}\,s^{-1}}$。這個結果對應的無因次Els\"{a}sser數約為$\sim2.4$,顯示雙極擴散效應在原恆星盤形成的過程中具有影響力。此外,我還使用了一個理論上自洽的方法計算雙極擴散係數,得到的數值與從觀測結果推導的一致。因此,在理解早期原恆星盤的演化時,應考慮非理想磁流體力學中磁場的擴散效應。
Protostellar disks are important for transferring mass to the protostar, and are the future sites of planet formation. Observations of rotationally-supported protostellar disks in the deeply embedded stages of low-mass star formation show that they form early and are actively accreting mass from the natal protostellar envelope. However, these environments are complicated by magnetic fields and turbulence, which numerical MHD simulations show have a significant impact on whether these disks can even form. This thesis analyzes several Class 0 protostars to understand the envelope mass accretion via streamers, early disk evolution in an extremely low-mass protostar and the role of ambipolar diffusion in the disk environment.
In Lupus 3-MMS, I model multiple extended gas structures found in C$^{18}$O using a simple, 3D rotating-collapse model. The mass-infall rates are between $0.5-1.1\times10^{-6}\,M_\odot\,\mathrm{yr^{-1}}$, which is consistent with other Class 0 sources and MHD simulations, indicating even a simplified infall model can be a good approximation when comparing to observations. In IRAS 15398-3359, I perform kinematic analysis by fitting the compact, high-velocity SO emission with a Keplerian rotation profile to reveal a gas disk radius of $\sim20\,\mathrm{au}$ around an extremely low-mass $\sim0.034\,M_\odot$ protostar. Using the protostellar mass-accretion rate, the age of IRAS 15398-3359 is estimated to be $<$13,000$\,$yr. Thus, protostellar disk formation happens in the very early stages.
In HOPS-370, I use a previously derived analytical expression of the expected protostellar disk radius due to ambipolar diffusion to estimate the ambipolar diffusion coefficient to be $\sim1.6\times10^{18}\,\mathrm{cm^{2}\,s^{-1}}$ at the edge of the HOPS-370 disk. This yields a dimensionless Els\"{a}sser number for ambipolar diffusion of $\sim2.4$, indicating it is influencing the dynamics in this region. Additionally, when using a self-consistent method to calculate the ambipolar diffusion coefficient, it is consistent with the derived value. The diffusion of the magnetic field by non-ideal MHD effects should be considered when understanding the evolution of embedded protostellar disks.
Contents
Abstract (Chinese) ................................................................................ I
Abstract ................................................................................................ II
Acknowledgments ................................................................................ III
Contents ............................................................................................... V
List of Figures ....................................................................................... IX
List of Tables ........................................................................................ XI

1 Introduction ....................................................................................... 1
1.1 The Formation of a Protostellar Disk ............................................... 1
1.1.1 Gravitational Collapse: A Simple Case .......................................... 1
1.1.2 Magnetized Collapse: a Complex Case ........................................ 2
1.2 Observations of Protostellar Environments .................................... 2
1.3 Thesis Overview ............................................................................. 4
1.3.1 Streamers in Class 0 Protostars................................................... 4
1.3.2 A Very Young Class 0 Protostellar Disk ....................................... 4
1.3.3 Ambipolar Diffusion in Protostellar Disk Environments ............... 5

2 Accretion Flows or Outflow Cavities? Uncovering the Gas Dynamics around
Lupus 3-MMS 6
2.1 Abstract ......................................................................................... 6
2.2 Introduction ................................................................................... 7
2.3 Observations ................................................................................ 10
2.4 Results .......................................................................................... 11
2.5 Analysis......................................................................................... 13
2.5.1 The CMU Model ......................................................................... 13
2.5.2 Disk Properties and System Velocity ......................................... 16
2.5.3 Outflow Velocity Structure ......................................................... 16
2.5.4 Infall Velocity Structure .............................................................. 17
2.6 Discussion ..................................................................................... 23
2.6.1 Outflow Cavities or Accretion Flows? .......................................... 23
2.6.2 The Nature of S4 ........................................................................ 24
2.6.3 Degeneracy of the CMU Model .................................................. 25
2.6.4 Accretion Flow Properties and Comparison ............................... 28
2.6.5 The Origin of Accretion Flows ..................................................... 31
2.7 Conclusion ..................................................................................... 32
A Does the CMU Model Produce Streams? ......................................... 34
B PV Diagrams ..................................................................................... 34
C Column Density Maps ...................................................................... 36

3 A Small Protostellar Disk around the Extremely Low-Mass and Young Class
0 Protostar, IRAS 15398-3359 40
3.1 Abstract ......................................................................................... 41
3.2 Introduction ................................................................................... 42
3.3 Observations & Data Reduction .................................................... 44
3.4 Results .......................................................................................... 48
3.4.1 Dust Continuum .......................................................................... 48
3.4.2 Molecular Lines .......................................................................... 51
3.5 Analysis ......................................................................................... 54
3.5.1 Position-Velocity Diagrams ......................................................... 54
3.5.2 PV Analysis with SLAM: Overview .............................................. 56
3.5.3 PV Analysis with SLAM: Single Power-Law ................................. 57
3.5.4 PV Analysis with SLAM: Modified Single Power-Law .................. 60
3.5.5 PV Analysis with SLAM: Double Power-Law ................................ 61
3.6 Discussion ...................................................................................... 62
3.6.1 A Very Low-Mass Protostar and Disk ........................................... 62
3.6.2 Disk-to-Stellar Mass Ratio ........................................................... 64
3.6.3 Mass-Accretion Rate ................................................................... 65
3.6.4 A Proto-Brown Dwarf Candidate? ................................................ 66
3.6.5 An Extremely Small Protostellar Disk ........................................... 66
3.6.6 Dust vs. Gas Disk Radius ............................................................. 67
3.6.7 Specific Angular Momentum ........................................................ 67
3.6.8 A Dynamical Overview of the IRAS 15398-3359 Protostellar
System .................................................................................................. 68
3.7 Conclusion ...................................................................................... 70
A Gallery of Dust Continuum Images .................................................... 73
B Channel Maps of Molecular Lines ...................................................... 73
C SB-only Images of Molecular Lines ................................................... 73

4 The First Estimation of the Ambipolar Diffusion Coefficient from Multi-
Scale Observations of the Class 0/I Protostar, HOPS-370 ................... 80
4.1 Abstract .......................................................................................... 80
4.2 Introduction .................................................................................... 81
4.3 Methods ......................................................................................... 83
4.3.1 The Relation Between the Disk Radius and the Ambipolar Diffusion
Coefficient ........................................................................................... 83
4.3.2 Previously Derived Disk Properties ............................................ 84
4.3.3 Estimating the Poloidal Magnetic Field Strength at the Edge of
the Disk ............................................................................................... 85
4.4 Results .......................................................................................... 89
4.4.1 The First Estimation of the Ambipolar Diffusion Coefficient
from Observations .............................................................................. 89
4.4.2 The Dimensionless Els¨asser Number for Ambipolar Diffusion . 90
4.4.3 Comparing with the Non-Ideal MHD Coefficient and Ionisation
Library ................................................................................................ 91
4.5 Discussion .................................................................................... 97
4.5.1 Is Ambipolar Diffusion the Dominant Non-Ideal MHD Effect at
the Edge of the HOPS-370 Protostellar Disk?.................................... 97
4.5.2 How Measurement Uncertainties Could Impact the Calculation
of the Ambipolar Diffusion Coefficient? ............................................. 98
4.5.3 Non-Ideal MHD Simulations of Disk Formation and the Validity
of this Method .................................................................................... 99
4.6 Conclusion ................................................................................... 100

5 Summary ......................................................................................... 102
Bibliography ....................................................................................... 104
Bibliography

Allen, A., Li, Z.-Y., & Shu, F. H. 2003a, ApJ, 599, 363, doi: 10.1086/379243
Allen, A., Shu, F. H., & Li, Z.-Y. 2003b, ApJ, 599, 351, doi: 10.1086/379242
ALMA Partnership, Brogan, C. L., P´erez, L. M., et al. 2015, ApJ, 808, L3, doi: 10.
1088/2041-8205/808/1/L3
Andrews, S. M., Wilner, D. J., Hughes, A. M., et al. 2012, ApJ, 744, 162, doi: 10.
1088/0004-637X/744/2/162
Andrews, S. M., Wilner, D. J., Zhu, Z., et al. 2016, ApJ, 820, L40, doi: 10.3847/
2041-8205/820/2/L40
Andrews, S. M., Huang, J., P´erez, L. M., et al. 2018, ApJ, 869, L41, doi: 10.3847/
2041-8213/aaf741
Ansdell, M.,Williams, J. P., van der Marel, N., et al. 2016, ApJ, 828, 46, doi: 10.3847/
0004-637X/828/1/46
Ansdell, M., Williams, J. P., Trapman, L., et al. 2018, ApJ, 859, 21, doi: 10.3847/
1538-4357/aab890
Aso, Y., & Machida, M. N. 2020, ApJ, 905, 174, doi: 10.3847/1538-4357/abc6fc
Aso, Y., & Sai, J. 2023, jinshisai/SLAM: First Release of SLAM, v1.0.0, Zenodo,
doi: 10.5281/zenodo.7783868
Aso, Y., Ohashi, N., Saigo, K., et al. 2015, ApJ, 812, 27, doi: 10.1088/0004-637X/
812/1/27
Aso, Y., Ohashi, N., Aikawa, Y., et al. 2017, ApJ, 849, 56, doi: 10.3847/1538-4357/
aa8264
Bachiller, R. 1996, ARA&A, 34, 111, doi: 10.1146/annurev.astro.34.1.111
Bally, J. 2016, ARA&A, 54, 491, doi: 10.1146/annurev-astro-081915-023341
Beckwith, S. V. W., Sargent, A. I., Chini, R. S., & Guesten, R. 1990, AJ, 99, 924,
doi: 10.1086/115385
B ergin, E. A., & Tafalla, M. 2007, ARA&A, 45, 339, doi: 10.1146/annurev.astro.
45.071206.100404
Bjerkeli, P., Jørgensen, J. K., & Brinch, C. 2016a, A&A, 587, A145, doi: 10.1051/
0004-6361/201527310
Bjerkeli, P., Jørgensen, J. K., Bergin, E. A., et al. 2016b, A&A, 595, A39, doi: 10.
1051/0004-6361/201628795
Bourke, T. L., Myers, P. C., Robinson, G., & Hyland, A. R. 2001, ApJ, 554, 916,
doi: 10.1086/321405
Boyden, R. D., & Eisner, J. A. 2020, ApJ, 894, 74, doi: 10.3847/1538-4357/ab86b7
Burrows, A., Marley, M., Hubbard, W. B., et al. 1997, ApJ, 491, 856, doi: 10.1086/
305002
CASA Team, Bean, B., Bhatnagar, S., et al. 2022, PASP, 134, 114501, doi: 10.1088/
1538-3873/ac9642
Caselli, P., Walmsley, C. M., Terzieva, R., & Herbst, E. 1998, ApJ, 499, 234, doi: 10.
1086/305624
Cassen, P., & Moosman, A. 1981, Icarus, 48, 353, doi: 10.1016/0019-1035(81)
90051-8
Chandrasekhar, S., & Fermi, E. 1953, ApJ, 118, 113, doi: 10.1086/145731
Cheong, P.-I. 2018, Master’s thesis, National Tsing Hua University, Taiwan
Chevalier, R. A. 1983, ApJ, 268, 753, doi: 10.1086/160997
Codella, C., Cabrit, S., Gueth, F., et al. 2014, A&A, 568, L5, doi: 10.1051/
0004-6361/201424103
Commerc¸on, B., Gonz´alez, M., Mignon-Risse, R., Hennebelle, P., & Vaytet, N. 2022,
A&A, 658, A52, doi: 10.1051/0004-6361/202037479
Crutcher, R. M. 1999, ApJ, 520, 706, doi: 10.1086/307483
—. 2012, ARA&A, 50, 29, doi: 10.1146/annurev-astro-081811-125514
Crutcher, R. M., & Kemball, A. J. 2019, Frontiers in Astronomy and Space Sciences, 6,
66, doi: 10.3389/fspas.2019.00066
Crutcher, R. M., Nutter, D. J., Ward-Thompson, D., & Kirk, J. M. 2004, ApJ, 600, 279,
doi: 10.1086/379705
Crutcher, R. M., Wandelt, B., Heiles, C., Falgarone, E., & Troland, T. H. 2010, ApJ,
725, 466, doi: 10.1088/0004-637X/725/1/466
Cui, C., & Bai, X.-N. 2021, MNRAS, 507, 1106, doi: 10.1093/mnras/stab2220
D avis, L. 1951, Physical Review, 81, 890, doi: 10.1103/PhysRev.81.890.2
de Gregorio-Monsalvo, I., M´enard, F., Dent,W., et al. 2013, A&A, 557, A133, doi: 10.
1051/0004-6361/201321603
Dunham, M. M., Arce, H. G., Allen, L. E., et al. 2013, AJ, 145, 94, doi: 10.1088/
0004-6256/145/4/94
Dzib, S. A., Loinard, L., Ortiz-Le´on, G. N., Rodr´ıguez, L. F., & Galli, P. A. B. 2018,
ApJ, 867, 151, doi: 10.3847/1538-4357/aae687
Enoch, M. L., Evans, Neal J., I., Sargent, A. I., et al. 2008, ApJ, 684, 1240, doi: 10.
1086/589963
Evans, Neal J., I., Dunham, M. M., Jørgensen, J. K., et al. 2009, ApJS, 181, 321, doi: 10.
1088/0067-0049/181/2/321
Facchini, S., Birnstiel, T., Bruderer, S., & van Dishoeck, E. F. 2017, A&A, 605, A16,
doi: 10.1051/0004-6361/201630329
Frerking, M. A., Langer, W. D., & Wilson, R. W. 1982, ApJ, 262, 590, doi: 10.1086/
160451
Furlan, E., Fischer,W. J., Ali, B., et al. 2016, ApJS, 224, 5, doi: 10.3847/0067-0049/
224/1/5
Galli, P. A. B., Bouy, H., Olivares, J., et al. 2020, A&A, 643, A148, doi: 10.1051/
0004-6361/202038717
Gaudel, M., Maury, A. J., Belloche, A., et al. 2020, A&A, 637, A92, doi: 10.1051/
0004-6361/201936364
Girart, J. M., Rao, R., & Marrone, D. P. 2006, Science, 313, 812, doi: 10.1126/
science.1129093
Gobat, C. 2022, Asymmetric Uncertainty: Handling nonstandard numerical uncertainties,
Astrophysics Source Code Library, record ascl:2208.005. http://ascl.net/
2208.005
Gray, W. J., McKee, C. F., & Klein, R. I. 2018, MNRAS, 473, 2124, doi: 10.1093/
mnras/stx2406
Guilloteau, S., Simon, M., Pi´etu, V., et al. 2014, A&A, 567, A117, doi: 10.1051/
0004-6361/201423765
Harsono, D., Bjerkeli, P., van derWiel, M. H. D., et al. 2018, Nature Astronomy, 2, 646,
doi: 10.1038/s41550-018-0497-x
H arsono, D., Jørgensen, J. K., van Dishoeck, E. F., et al. 2014, A&A, 562, A77, doi: 10.
1051/0004-6361/201322646
Harsono, D., van Dishoeck, E. F., Bruderer, S., Li, Z. Y., & Jørgensen, J. K. 2015, A&A,
577, A22, doi: 10.1051/0004-6361/201424550
Hartmann, L., Cassen, P., & Kenyon, S. J. 1997, ApJ, 475, 770, doi: 10.1086/303547
Hayashi, C., & Nakano, T. 1963, Progress of Theoretical Physics, 30, 460, doi: 10.
1143/PTP.30.460
Heiles, C., & Crutcher, R. 2005, in Cosmic Magnetic Fields, ed. R. Wielebinski &
R. Beck, Vol. 664, 137, doi: 10.1007/3540313966_7
Hennebelle, P., & Ciardi, A. 2009, A&A, 506, L29, doi: 10.1051/0004-6361/
200913008
Hennebelle, P., Commerc¸on, B., Chabrier, G., & Marchand, P. 2016, ApJ, 830, L8,
doi: 10.3847/2041-8205/830/1/L8
Hennebelle, P., Commerc¸on, B., Lee, Y.-N., & Charnoz, S. 2020, A&A, 635, A67,
doi: 10.1051/0004-6361/201936714
Hennebelle, P., & Fromang, S. 2008, A&A, 477, 9, doi: 10.1051/0004-6361:
20078309
Hirano, S., Tsukamoto, Y., Basu, S., & Machida, M. N. 2020, ApJ, 898, 118, doi: 10.
3847/1538-4357/ab9f9d
Hsieh, C.-H., Lai, S.-P., Cheong, P.-I., et al. 2020, ApJ, 894, 23, doi: 10.3847/
1538-4357/ab7b69
Hull, C. L. H., Le Gouellec, V. J. M., Girart, J. M., Tobin, J. J., & Bourke, T. L. 2020,
ApJ, 892, 152, doi: 10.3847/1538-4357/ab5809
Hull, C. L. H., & Zhang, Q. 2019, Frontiers in Astronomy and Space Sciences, 6, 3,
doi: 10.3389/fspas.2019.00003
Hunter, C. 1977, ApJ, 218, 834, doi: 10.1086/155739
Joos, M., Hennebelle, P., & Ciardi, A. 2012, A&A, 543, A128, doi: 10.1051/
0004-6361/201118730
Joos, M., Hennebelle, P., Ciardi, A., & Fromang, S. 2013, A&A, 554, A17, doi: 10.
1051/0004-6361/201220649
Jørgensen, J. K., van Dishoeck, E. F., Visser, R., et al. 2009, A&A, 507, 861, doi: 10.
1051/0004-6361/200912325
J ørgensen, J. K., Visser, R., Sakai, N., et al. 2013, ApJ, 779, L22, doi: 10.1088/
2041-8205/779/2/L22
Kristensen, L. E., van Dishoeck, E. F., Bergin, E. A., et al. 2012, A&A, 542, A8, doi: 10.
1051/0004-6361/201118146
Krumholz, M. R., Crutcher, R. M., & Hull, C. L. H. 2013, ApJ, 767, L11, doi: 10.
1088/2041-8205/767/1/L11
Kuffmeier, M., Zhao, B., & Caselli, P. 2020, A&A, 639, A86, doi: 10.1051/
0004-6361/201937328
Kumar, S. S. 1963a, ApJ, 137, 1121, doi: 10.1086/147589
—. 1963b, ApJ, 137, 1126, doi: 10.1086/147590
Lam, K. H., Li, Z.-Y., Chen, C.-Y., Tomida, K., & Zhao, B. 2019, MNRAS, 489, 5326,
doi: 10.1093/mnras/stz2436
Larson, R. B. 1969, MNRAS, 145, 271, doi: 10.1093/mnras/145.3.271
Le Gouellec, V. J. M., Hull, C. L. H., Maury, A. J., et al. 2019, ApJ, 885, 106, doi: 10.
3847/1538-4357/ab43c2
Lee, C.-F., Hirano, N., Zhang, Q., et al. 2014, ApJ, 786, 114, doi: 10.1088/
0004-637X/786/2/114
Lee, C.-F., Mundy, L. G., Reipurth, B., Ostriker, E. C., & Stone, J. M. 2000, ApJ, 542,
925, doi: 10.1086/317056
Lee, Y.-N., Charnoz, S., & Hennebelle, P. 2021a, A&A, 648, A101, doi: 10.1051/
0004-6361/202038105
Lee, Y.-N., Marchand, P., Liu, Y.-H., & Hennebelle, P. 2021b, ApJ, 922, 36, doi: 10.
3847/1538-4357/ac235d
Li, Z.-Y., Krasnopolsky, R., & Shang, H. 2011, ApJ, 738, 180, doi: 10.1088/
0004-637X/738/2/180
—. 2013, ApJ, 774, 82, doi: 10.1088/0004-637X/774/1/82
Li, Z.-Y., Krasnopolsky, R., Shang, H., & Zhao, B. 2014, ApJ, 793, 130, doi: 10.1088/
0004-637X/793/2/130
Liu, J., Zhang, Q., Commerc¸on, B., et al. 2021, ApJ, 919, 79, doi: 10.3847/
1538-4357/ac0cec
Lodato, G., & Rice, W. K. M. 2004, MNRAS, 351, 630, doi: 10.1111/j.1365-2966.
2004.07811.x
—. 2005, MNRAS, 358, 1489, doi: 10.1111/j.1365-2966.2005.08875.x
L ommen, D., Jørgensen, J. K., van Dishoeck, E. F., & Crapsi, A. 2008, A&A, 481, 141,
doi: 10.1051/0004-6361:20077543
Machida, M. N., Inutsuka, S.-i., & Matsumoto, T. 2010, ApJ, 724, 1006, doi: 10.1088/
0004-637X/724/2/1006
Machida, M. N., & Matsumoto, T. 2012, MNRAS, 421, 588, doi: 10.1111/j.
1365-2966.2011.20336.x
Machida, M. N., Matsumoto, T., & Inutsuka, S.-i. 2016, MNRAS, 463, 4246, doi: 10.
1093/mnras/stw2256
Manara, C. F., Ansdell, M., Rosotti, G. P., et al. 2022, arXiv e-prints, arXiv:2203.09930,
doi: 10.48550/arXiv.2203.09930
Mangum, J. G., & Shirley, Y. L. 2015, Publications of the Astronomical Society of the
Pacific, 127, 266, doi: 10.1086/680323
Marchand, P., Masson, J., Chabrier, G., et al. 2016, A&A, 592, A18, doi: 10.1051/
0004-6361/201526780
Maret, S., Maury, A. J., Belloche, A., et al. 2020, A&A, 635, A15, doi: 10.1051/
0004-6361/201936798
Masson, J., Chabrier, G., Hennebelle, P., Vaytet, N., & Commerc¸on, B. 2016, A&A,
587, A32, doi: 10.1051/0004-6361/201526371
McElroy, D., Walsh, C., Markwick, A. J., et al. 2013, A&A, 550, A36, doi: 10.1051/
0004-6361/201220465
McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007a, in Astronomical
Society of the Pacific Conference Series, Vol. 376, Astronomical Data Analysis
Software and Systems XVI, ed. R. A. Shaw, F. Hill, & D. J. Bell, 127
McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007b, in Astronomical
Society of the Pacific Conference Series, Vol. 376, Astronomical Data Analysis
Software and Systems XVI, ed. R. A. Shaw, F. Hill, & D. J. Bell, 127
Mellon, R. R., & Li, Z.-Y. 2008a, ApJ, 681, 1356, doi: 10.1086/587542
—. 2008b, ApJ, 681, 1356, doi: 10.1086/587542
Mendoza, S., Tejeda, E., & Nagel, E. 2009, MNRAS, 393, 579, doi: 10.1111/j.1365-2966.2008.14210.x
Mestel, L. 1966, MNRAS, 133, 265, doi: 10.1093/mnras/133.2.265
Mestel, L., & Spitzer, L., J. 1956, MNRAS, 116, 503, doi: 10.1093/mnras/116.5.503
M otte, F., & Andre´, P. 2001, A&A, 365, 440, doi: 10.1051/0004-6361:20000072
Mouschovias, T. C., & Ciolek, G. E. 1999, in NATO Advanced Study Institute (ASI)
Series C, Vol. 540, The Origin of Stars and Planetary Systems, ed. C. J. Lada & N. D. Kylafis, 305
Murillo, N. M., Harsono, D., McClure, M., Lai, S. P., & Hogerheijde, M. R. 2018, A&A,
615, L14, doi: 10.1051/0004-6361/201833420
Murillo, N. M., Lai, S.-P., Bruderer, S., Harsono, D., & van Dishoeck, E. F. 2013, A&A,
560, A103, doi: 10.1051/0004-6361/201322537
Öberg, K. I., Guzma´n, V. V., Walsh, C., et al. 2021, ApJS, 257, 1, doi: 10.3847/
1538-4365/ac1432
Offner, S. S. R., & Chaban, J. 2017, ApJ, 847, 104, doi: 10.3847/1538-4357/aa8996
Ohashi, N., Hayashi, M., Ho, P. T. P., & Momose, M. 1997, ApJ, 475, 211, doi: 10.1086/303533
Ohashi, N., Jørgensen, J. K., Tobin, J. J., Takakuwa, S., & Sheehan, Patrick. accepted, ApJ
Ohashi, N., Saigo, K., Aso, Y., et al. 2014, ApJ, 796, 131, doi: 10.1088/0004-637X/796/2/131
Okoda, Y., Oya, Y., Sakai, N., et al. 2018, ApJ, 864, L25, doi: 10.3847/2041-8213/aad8ba
Okoda, Y., Oya, Y., Francis, L., et al. 2021, ApJ, 910, 11, doi: 10.3847/1538-4357/abddb1
Ossenkopf, V., & Henning, T. 1994, A&A, 291, 943
Oya, Y., Sakai, N., Sakai, T., et al. 2014, ApJ, 795, 152, doi: 10.1088/0004-637X/795/2/152
Pani´c, O., Hogerheijde, M. R., Wilner, D., & Qi, C. 2009, A&A, 501, 269, doi: 10.1051/0004-6361/200911883
Pattle, K., Fissel, L., Tahani, M., Liu, T., & Ntormousi, E. 2022, arXiv e-prints,
arXiv:2203.11179. https://arxiv.org/abs/2203.11179
Pineda, J. E., Segura-Cox, D., Caselli, P., et al. 2020, Nature Astronomy, doi: 10.1038/s41550-020-1150-z
Pineda, J. E., Zhao, B., Schmiedeke, A., et al. 2019, ApJ, 882, 103, doi: 10.3847/1538-4357/ab2cd1
R edaelli, E., Alves, F. O., Santos, F. P., & Caselli, P. 2019, A&A, 631, A154, doi: 10.1051/0004-6361/201936271
Robitaille, T. P., Whitney, B. A., Indebetouw, R., Wood, K., & Denzmore, P. 2006, ApJS, 167, 256, doi: 10.1086/508424
Rosolowsky, E. W., Pineda, J. E., Kauffmann, J., & Goodman, A. A. 2008, ApJ, 679, 1338, doi: 10.1086/587685
Sai, J., Ohashi, N., Saigo, K., et al. 2020, ApJ, 893, 51, doi: 10.3847/1538-4357/ab8065
Sakai, N., & Yamamoto, S. 2013, Chemical Reviews, 113, 8981, doi: 10.1021/cr4001308
Sakai, N., Sakai, T., Hirota, T., et al. 2014, Nature, 507, 78, doi: 10.1038/nature13000
Sakai, N., Oya, Y., Higuchi, A. E., et al. 2017, MNRAS, 467, L76, doi: 10.1093/mnrasl/slx002
Santamar´ıa-Miranda, A., de Gregorio-Monsalvo, I., Plunkett, A. L., et al. 2021, A&A, 646, A10, doi: 10.1051/0004-6361/202039419
Sargent, A. I., & Beckwith, S. 1987, ApJ, 323, 294, doi: 10.1086/165827
Segura-Cox, D. M., Looney, L. W., Tobin, J. J., et al. 2018, ApJ, 866, 161, doi: 10.3847/1538-4357/aaddf3
Segura-Cox, D. M., Schmiedeke, A., Pineda, J. E., et al. 2020, Nature, 586, 228, doi: 10.1038/s41586-020-2779-6
Seifried, D., Banerjee, R., Pudritz, R. E., & Klessen, R. S. 2013, MNRAS, 432, 3320,
doi: 10.1093/mnras/stt682
—. 2015, MNRAS, 446, 2776, doi: 10.1093/mnras/stu2282
Sheehan, P. D., & Eisner, J. A. 2018, ApJ, 857, 18, doi: 10.3847/1538-4357/aaae65
Sheehan, P. D., Tobin, J. J., Federman, S., Megeath, S. T., & Looney, L. W. 2020, ApJ, 902, 141, doi: 10.3847/1538-4357/abbad5
Sheehan, P. D., Tobin, J. J., Looney, L. W., & Megeath, S. T. 2022, ApJ, 929, 76,
doi: 10.3847/1538-4357/ac574d
Sheehan, P. D., Wu, Y.-L., Eisner, J. A., & Tobin, J. J. 2019, ApJ, 874, 136, doi: 10.3847/1538-4357/ab09f9
Shu, F. H. 1977, ApJ, 214, 488, doi: 10.1086/155274
Simon, M., Dutrey, A., & Guilloteau, S. 2000, ApJ, 545, 1034, doi: 10.1086/317838
S tahler, S. W., Shu, F. H., & Taam, R. E. 1980, ApJ, 241, 637, doi: 10.1086/158377
Starling, R. L. C., van der Horst, A. J., Rol, E., et al. 2008, ApJ, 672, 433, doi: 10.1086/521975
Tachihara, K., Rengel, M., Nakajima, Y., et al. 2007, ApJ, 659, 1382, doi: 10.1086/512093
Takahashi, S. Z., Tomida, K., Machida, M. N., & Inutsuka, S.-i. 2016, MNRAS, 463,
1390, doi: 10.1093/mnras/stw1994
Teague, R. 2019, Research Notes of the American Astronomical Society, 3, 74, doi: 10.
3847/2515-5172/ab2125
Teague, R., & Foreman-Mackey, D. 2018, Research Notes of the American Astronomical
Society, 2, 173, doi: 10.3847/2515-5172/aae265
Terebey, S., Shu, F. H., & Cassen, P. 1984, ApJ, 286, 529, doi: 10.1086/162628
Tobin, J. J., Hartmann, L., Bergin, E., et al. 2012a, ApJ, 748, 16, doi: 10.1088/
0004-637X/748/1/16
Tobin, J. J., Hartmann, L., Chiang, H.-F., et al. 2012b, Nature, 492, 83, doi: 10.1038/
nature11610
Tobin, J. J., Looney, L. W., Wilner, D. J., et al. 2015, ApJ, 805, 125, doi: 10.1088/
0004-637X/805/2/125
Tobin, J. J., Megeath, S. T., van’t Hoff, M., et al. 2019, ApJ, 886, 6, doi: 10.3847/
1538-4357/ab498f
Tobin, J. J., Sheehan, P. D., Megeath, S. T., et al. 2020a, ApJ, 890, 130, doi: 10.3847/
1538-4357/ab6f64
Tobin, J. J., Sheehan, P. D., Reynolds, N., et al. 2020b, ApJ, 905, 162, doi: 10.3847/
1538-4357/abc5bf
Tomida, K., Okuzumi, S., & Machida, M. N. 2015, ApJ, 801, 117, doi: 10.1088/
0004-637X/801/2/117
Trapman, L., Ansdell, M., Hogerheijde, M. R., et al. 2020, A&A, 638, A38, doi: 10.
1051/0004-6361/201834537
Troland, T. H., & Crutcher, R. M. 2008, ApJ, 680, 457, doi: 10.1086/587546
Tsukamoto, Y., Iwasaki, K., Okuzumi, S., Machida, M. N., & Inutsuka, S. 2015, MNRAS,
452, 278, doi: 10.1093/mnras/stv1290
Tsukamoto, Y., Okuzumi, S., Iwasaki, K., Machida, M. N., & Inutsuka, S. 2018, ApJ,
868, 22, doi: 10.3847/1538-4357/aae4dc
T sukamoto, Y., Maury, A., Commerc¸on, B., et al. 2022, arXiv e-prints,
arXiv:2209.13765, doi: 10.48550/arXiv.2209.13765
Tychoniec, Ł., Manara, C. F., Rosotti, G. P., et al. 2020, A&A, 640, A19, doi: 10.1051/
0004-6361/202037851
Ulrich, R. K. 1976, ApJ, 210, 377, doi: 10.1086/154840
van Gelder, M. L., Tabone, B., van Dishoeck, E. F., & Godard, B. 2021, A&A, 653,
A159, doi: 10.1051/0004-6361/202141591
Vazzano, M. M., Fern´andez-L´opez, M., Plunkett, A., et al. 2021, A&A, 648, A41,
doi: 10.1051/0004-6361/202039228
Wang, W., V¨ais¨al¨a, M. S., Shang, H., et al. 2022, ApJ, 928, 85, doi: 10.3847/
1538-4357/ac4d2e
Ward-Thompson, D., Andr´e, P., Crutcher, R., et al. 2007, in Protostars and Planets V, ed.
B. Reipurth, D. Jewitt, & K. Keil, 33, doi: 10.48550/arXiv.astro-ph/0603474
Ward-Thompson, D., Buckley, H. D., Greaves, J. S., Holland, W. S., & Andr´e, P. 1996,
MNRAS, 281, L53, doi: 10.1093/mnras/281.3.L53
Weintraub, D. A., Masson, C. R., & Zuckerman, B. 1987, ApJ, 320, 336, doi: 10.1086/
165547
—. 1989, ApJ, 344, 915, doi: 10.1086/167859
Williams, J. P., & Cieza, L. A. 2011, ARA&A, 49, 67, doi: 10.1146/
annurev-astro-081710-102548
Wurster, J. 2016, PASA, 33, e041, doi: 10.1017/pasa.2016.34
—. 2021, MNRAS, 501, 5873, doi: 10.1093/mnras/staa3943
Wurster, J., Bate, M. R., & Bonnell, I. A. 2021, MNRAS, 507, 2354, doi: 10.1093/
mnras/stab2296
Wurster, J., Bate, M. R., & Price, D. J. 2018a, MNRAS, 476, 2063, doi: 10.1093/
mnras/sty392
—. 2018b, MNRAS, 475, 1859, doi: 10.1093/mnras/stx3339
—. 2019, MNRAS, 489, 1719, doi: 10.1093/mnras/stz2215
Wurster, J., & Lewis, B. T. 2020, MNRAS, 495, 3795, doi: 10.1093/mnras/staa1339
Wurster, J., & Li, Z.-Y. 2018, Frontiers in Astronomy and Space Sciences, 5, 39,
doi: 10.3389/fspas.2018.00039
Wurster, J., Price, D. J., & Bate, M. R. 2016, MNRAS, 457, 1037, doi: 10.1093/
mnras/stw013
Y en, H.-W., Gu, P.-G., Hirano, N., et al. 2019, ApJ, 880, 69, doi: 10.3847/1538-4357/
ab29f8
Yen, H.-W., Koch, P. M., Takakuwa, S., et al. 2015a, ApJ, 799, 193, doi: 10.1088/
0004-637X/799/2/193
—. 2017a, ApJ, 834, 178, doi: 10.3847/1538-4357/834/2/178
Yen, H.-W., Takakuwa, S., Koch, P. M., et al. 2015b, ApJ, 812, 129, doi: 10.1088/
0004-637X/812/2/129
Yen, H.-W., Takakuwa, S., & Ohashi, N. 2011, ApJ, 742, 57, doi: 10.1088/
0004-637X/742/1/57
Yen, H.-W., Zhao, B., Koch, P. M., & Gupta, A. 2021, ApJ, 916, 97, doi: 10.3847/
1538-4357/ac0723
Yen, H.-W., Zhao, B., Koch, P. M., et al. 2018, A&A, 615, A58, doi: 10.1051/
0004-6361/201732195
Yen, H.-W., Takakuwa, S., Ohashi, N., et al. 2014, ApJ, 793, 1, doi: 10.1088/
0004-637X/793/1/1
Yen, H.-W., Takakuwa, S., Chu, Y.-H., et al. 2017b, A&A, 608, A134, doi: 10.1051/
0004-6361/201730894
Yen, H.-W., Koch, P. M., Lee, C.-F., et al. 2023, ApJ, 942, 32, doi: 10.3847/
1538-4357/aca47f
Zhao, B., Caselli, P., & Li, Z.-Y. 2018, MNRAS, 478, 2723, doi: 10.1093/mnras/
sty1165
Zhao, B., Caselli, P., Li, Z.-Y., et al. 2016, MNRAS, 460, 2050, doi: 10.1093/mnras/
stw1124
Zhao, B., Tomida, K., Hennebelle, P., et al. 2020, Space Sci. Rev., 216, 43, doi: 10.
1007/s11214-020-00664-z
Zhou, S., Evans, Neal J., I., Koempe, C., & Walmsley, C. M. 1993, ApJ, 404, 232,
doi: 10.1086/172271
Zucker, C., Speagle, J. S., Schlafly, E. F., et al. 2020, A&A, 633, A51, doi: 10.1051/
0004-6361/201936145
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *