|
[1] Cheng, Y. J. and Wang, M. C. (2012). Estimating propensity scores and causal survival functions using prevalent survival data. Biometrics, 68(3), page 707- 716. [2] Cheng, Y. J. and Wang, M. C. (2015). Causal estimation using semiparametric transformation models under prevalent sampling. Biometrics, 71(2), page 302- 312. [3] Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. Journal of the American statistical Association, 47(260), page 663-685. [4] Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American statistical association, 53(282), page 457-481. [5] Lunceford, J. K. and Davidian, M. (2004). Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statistics in medicine, 23(19), page 2937-60. [6] Pan, Q. and Schaubel, D. E. (2008). Proportional hazards models based on biased samples and estimated selection probabilities. Canadian Journal of Statistics, 36(1), page 111-127. [7] Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), page 41-55. [8] Zhang, M. and Schaubel, D. E. (2012). Double‐robust semiparametric estimator for differences in restricted mean lifetimes in observational studies. Biometrics, 68(4), page 999-1009. 20 |