|
[1] Bühlmann, P. and Hothorn, T. (2007). Boosting algorithms: Regularization, prediction and model fitting. Statistical Science, 22(4), page 477-505. [2] Chen, T. and Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, page 785-794. [3] Cheng, Y. J. and Wang, M. C. (2012). Estimating propensity scores and causal survival functions using prevalent survival data. Biometrics, 68(3), page 707- 716. [4] Cheng, Y. J. and Wang, M. C. (2015). Causal estimation using semiparametric transformation models under prevalent sampling. Biometrics, 71(2), page 302- 312. [5] Freund, Y. and Schapire, R. E. (1996, July). Experiments with a new boosting algorithm. icml, page 148-156. [6] Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, page 1189-1232. [7] Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. Journal of the American statistical Association, 47(260), page 663-685. [8] Hothorn, T. and Bühlmann, P. (2006). Model-based boosting in high dimensions. Statistical Science, 22(22), page 2828-2829. [9] Janson, L., Fithian, W. and Hastie, T. J. (2015). Effective degrees of freedom: a flawed metaphor. Biometrika, 102(2), page 479-485. [10] Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American statistical association, 53(282), page 457-481. [11] Li, H. and Luan, Y. (2005). Boosting proportional hazards models using smoothing splines, with applications to high-dimensional microarray data. Bioinformatics, 21(10), page 2403-2409. [12] Lunceford, J. K. and Davidian, M. (2004). Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statistics in medicine, 23(19), page 2937-60. [13] Pan, Q. and Schaubel, D. E. (2008). Proportional hazards models based on biased samples and estimated selection probabilities. Canadian Journal of Statistics, 36(1), page 111-127. [14] Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), page 41-55. [15] Tutz, G. and Binder, H. (2006). Generalized additive modeling with implicit variable selection by likelihood‐based boosting. Biometrics, 62(4), page 961- 971. [16] Zhang, M. and Schaubel, D. E. (2012). Double‐robust semiparametric estimator for differences in restricted mean lifetimes in observational studies. Biometrics, 68(4), page 999-1009. |