帳號:guest(18.118.154.250)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葉俊鴻
作者(外文):Yeh, Chun-Hong
論文名稱(中文):以iMAP(分子內變旋位置保護)生成1,6-脫水醣之方法進行空腸彎曲菌NCTC11168莢膜多醣體之全合成
論文名稱(外文):Total synthesis of Campylobacter jejuni NCTC11168 CPS assisted with iMAP (intramolecular anomeric protection) 1,6-anhydro strategy
指導教授(中文):王正中
王聖凱
指導教授(外文):Wang, Cheng-Chung
Wang, Sheng-Kai
口試委員(中文):羅順原
呂桐睿
謝俊結
口試委員(外文):Luo, Shun-Yuan
Lowary, Todd L.
Shie, Jiun-Jie
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:106023864
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:415
中文關鍵詞:全合成莢膜多醣體空腸彎曲桿菌
外文關鍵詞:CarbohydrateTotal Synthesiscapsular polysaccharideCampylobacter jejuni
相關次數:
  • 推薦推薦:0
  • 點閱點閱:21
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
空腸彎曲桿菌作為一種常見的腸胃疾病感染源,會導致腹瀉或格林巴利綜合症造成幼童或是成人死亡而受到高度重視。隨著對抗生素療法的抗藥性增加,此病菌已被W.H.O.列為高度優先開發替代治療的對象。空腸彎曲桿菌的致病性與細菌外表面的莢膜多醣體(CPS)習習相關,其特殊固定的結構可作為良好的抗原來開發對應的疫苗。在此,我們進行了首次的空腸彎曲桿菌 NCTC11168莢膜多醣體之全合成研究。
本研究中,主要應用了分子內變旋中心保護法(iMAP)所產生1,6-脫水醣簡化所需建構組件的合成,透過其特殊的[3,2,1]雙環結構改善區域選擇性保護,因此6步驟獲得所需庚醣、2步獲得所需半乳糖建構組件。後續經由[2+1+1]的醣鏈結策略,先建構出所需要的四醣骨架再進一步修飾成目標產物,所有的建構組件皆來自市售的未保護醣體,最終花費28步(含建構組件合成)獲得目標產物142,此產物在31磷譜有著13.46 ppm的化學位移,與天然物13.6 ppm相近,此外產物142帶有連結片段能與載體蛋白組合進行後續的疫苗開發檢測,目前正投入後續研究中。
Campylobacter jejuni, a general gastrointestinal pathogen, causes severe diarrhea or Guillain-Balre´ Syndrome (GBS) and threatens human lives. In recent years, W.H.O. has announced that C. jejuni ranks in high-priority of alternative therapy development due to the gradually increasing antibiotic resistance. The pathogenicity of C. jejuni is highly related to capsular polysaccharide (CPS) with regular structure. Therefore, these feature structures can offer a promising antigen for vaccine development. Here, we report the first total synthesis of C. jejuni NCTC11168 CPS repeating unit.
The synthesis utilized the strategy of intramolecular anomeric protection (iMAP), which generates a 1,6-anhydro-furanoside sugar residue in a one-pot manner from free sugar, to concise the building block synthesis. In addition, the [3,2,1] bicyclo-ring on 1,6-anhydro-sugar differentiated the steric hindrance and facilitated further regioselectivity protection. Accordingly, the synthesis of heptose building block from free galactose in 6 steps, and the galactosamine building block from free galactosamine in 2 steps. Following [2+1+1] glycosylation, the functional groups modification, and the global deprotection, in the end, merely 28 steps were used to synthesize product 142, which included the building block preparation from free sugar. The obtained product 142 shows a 13.46 ppm resonance on the 31P NMR spectrum, similar to the native CPS chemical shift of 13.6 ppm. Regarding product 142 containing linker moiety on the glucose part can conjugate to carrier protein for further vaccination development and is undergoing.
中文摘要…………………………………………………………………………………………………………………………I
Abstract………………………………………………………………………………………………………………………II
致謝 …………………………………………………………………………………………………………………………………Ⅲ
Abbreviation……………………………………………………………………………………………………………IV
Table of Contents………………………………………………………………………………………………VI
List of Figures……………………………………………………………………………………………………IX
List of Schemes……………………………………………………………………………………………………XI
List of Tables………………………………………………………………………………………………………XIII

Chapter 1 Introduction…………………………………………………………………………………1
1.1 Introduction of Carbohydrate………………………………………………………1
1.2 Carbohydrate-based therapeutics………………………………………………3
1.2.1 Carbohydrate-conjugated vaccine…………………………………………4
1.3 Campylobacter jejuni introduction…………………………………………7
1.4 C. jejuni NCTC 11168 CPS structure analysis and synthetic challenge ……………………………………………………………………………………………………………………………………………10
1.4.1 The rare sugar “heptopyranose” building block review……………………………………………………………………………………………………………………………11
1.4.2 The interconversion of pyranose to furanose………………………………………………………………………………………………………………………14
1.4.3 The introducing method of O-methyl phosphoramidate……………………………………………………………………………………………………22
1.4.4 The chemical glycosylation and stereoselective control…………………………………………………………………………………………………………………………26
1.4.4.1 Anomeric effect………………………………………………………………………………27
1.4.4.2 Neighboring group participation……………………………………28
1.4.4.3 Solvent effect…………………………………………………………………………………29
1.4.4.4 The temperature affects glycosylation……………………30
1.4.4.5 The donor leaving group…………………………………………………………31
1.4.4.6 The donor and acceptor reactivity………………………………34
1.4.5 The regioselectivity protection of carbohydrate…37
1.4.5.1 Selectively single hydroxyl protection cases…38
1.4.5.2 Selectively double hydroxyl protection cases…39
1.4.5.3 One-pot protection on common sugar……………………………40
1.5 Motivation………………………………………………………………………………………………………41
Chapter 2. Result and discussion………………………………………………………43
2.1 Retrosynthetic analysis of the targeted C. jejuni NCTC11168 CPS repeating unit………………………………………………………………………………………………………43
2.2 The intramolecular anomeric protection strategy……46
2.3 Regioselective protection on 1,6-anhydro-galactofuranoside………………………………………………………………………………………………48
2.3.1. Selective benzylation on 1,6-anhydro-galactofuranoside………………………………………………………………………………………………49
2.3.2. Selective acetylation on 1,6-anhydro-galactofuranoside………………………………………………………………………………………………51
2.3.3. Selective silylation on 1,6-anhydro-galactofuranoside………………………………………………………………………………………………53
2.3.4. Selectivity benzylation on 1,6-anhydro-2,3,5-tri-O-TMS-galactofuranoside………………………………………………………………………………………………54
2.4. Synthesis of heptose building block 148………………………56
2.5. Synthesis of glucose building block 149 and 152…58
2.6. Synthesis of ribose building block 146…………………………61
2.7. Constructing C. jejuni NCTC11168 CPS repeating unit skeleton………………………………………………………………………………………………………………………63
2.7.1. Constructing by the route of [2+2] glycosylation…………………………………………………………………………………………………………63
2.7.2. Structing by the route of [2+1+1] glycosylation…………………………………………………………………………………………………………66
2.8 The substitutive modification studying on disaccharide model………………………………………………………………………………………………………………………………72
2.8.1 The disaccharide modeling study with 3,5-O-disilyl galactosamine 206……………………………………………………………………………………………………………………………………73
2.8.1.1 The MeOPN installation on disaccharide 214……………………………………………………………………………………………………………………………………76
2.8.2 The disaccharide modeling study with 5-O-benzyl-3-O-silyl galactosamine 221………………………………………………………………………………………………79
2.9 Synthesis the desired product, tetrasaccharide 142……………………………………………………………………………………………………………………………………81
Chapter 3. Conclusion……………………………………………………………………………………86
Chapter 4: References……………………………………………………………………………………87
Chapter 5 Experimental Section……………………………………………………………96
Chapter 6 X-ray result…………………………………………………………………………………186
Chapter 7 NMR spectrum…………………………………………………………………………………190
[1] Holgersson, J.; Gustafsson, A.; Breimer, M. E. Immunol. Cell Biol. 2005, 83, 694-708.
[2] Karlsson, K.-A. The Molecular Immunology of Complex Carbohydrates —2, Wu, A. M., Ed.; Springer US: Boston, 2001, 431-443
[3] Guo, Y.; Feinberg, H.; Conroy, E.; Mitchell, D. A.; Alvarez, R.; Blixt, O.; Taylor, M. E.; Weis, W. I.; Drickamer, K. Nat. Struct. Mol. Biol. 2004, 11, 591-598.
[4] Ganesh, V. K.; Smith, S. A.; Kotwal, G. J.; Murthy, K. H. M. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 8924-8929.
[5] Varki, A.; Cummings, R. D.; Esko, J. D.; Freeze, H. H.; Stanley, P.; Bertozzi, C. R.; Hart, G. W.; Etzler, M. E., Essentials of glycobiology. second ed.; Cold Spring Harbor: New York, 2009.
[6] Rabinovich, G. A.; Toscano, M. A. Nat. Rev. Immunol. 2009, 9, 338-352.
[7] Inatani, M.; Irie, F.; Plump, A. S.; Tessier-Lavigne, M.; Yamaguchi, Y. Science 2003, 302, 1044-1046.
[8] Cipollo, J. F.; Awad, A. M.; Costello, C. E.; Hirschberg, C. B. J. Biol. Chem. 2005, 280, 26063-26072.
[9] Lin, X. Development 2004, 131, 6009-6021.
[10] Huang, H.-Y.; Liao, H.-Y.; Chen, X.; Wang, S.-W.; Cheng, C.-W.; Shahed-Al-Mahmud, M.; Liu, Y.-M.; Mohapatra, A.; Chen, T.-H.; Lo, J. M.; Wu, Y.-M.; Ma, H.-H.; Chang, Y.-H.; Tsai, H.-Y.; Chou, Y.-C.; Hsueh, Y.-P.; Tsai, C.-Y.; Huang, P.-Y.; Chang, S.-Y.; Chao, T.-L.; Kao, H.-C.; Tsai, Y.-M.; Chen, Y.-H.; Wu, C.-Y.; Jan, J.-T.; Cheng, T.-J. R.; Lin, K.-I.; Ma, C.; Wong, C.-H. Sci. Transl. Med. 2022, 14, eabm0899.
[11] Petrovsky, N.; Cooper, P. D. Expert. Rev. Vaccines 2011, 10, 523-537.
[12] Li, P.; Wang, F. Drug Discov. Ther. 2015, 9, 88-93.
[13] Lang, S.; Huang, X. Front. Chem. 2020, 8, 284-309.
[14] Zhang, Y.; Wang, F. Drug Discov. Ther. 2015, 9, 79-87.
[15] Bauer, K. A.; Hawkins, D. W.; Peters, P. C.; Petitou, M.; Herbert, J.-M.; van Boeckel, C. A. A.; Meuleman, D. G. Cardiovasc. Drug Rev. 2002, 20, 37-52.
[16] Yang, P.; Liang, M.; Zhang, Y.; Shen, B. Adv. Ther. 2008, 25, 787.
[17] Cox, T. M.; Aerts, J. M. F. G.; Andria, G.; Beck, M.; Belmatoug, N.; Bembi, B.; Chertkoff, R.; Vom Dahl, S.; Elstein, D.; Erikson, A.; Giralt, M.; Heitner, R.; Hollak, C.; Hrebicek, M.; Lewis, S.; Mehta, A.; Pastores, G. M.; Rolfs, A.; Sa Miranda, M. C.; Zimran, A. J. Inherit. Metab. Dis. 2003, 26, 513-526.
[18] Seeberger, P. H. Chem. Rev. 2021, 121, 3598-3626.
[19] Golos, M.; Eliakim‐Raz, N.; Stern, A.; Leibovici, L.; Paul, M. Cochrane Database Syst. Rev. 2016, 8, 1-10.
[20] Holmberg, L. A.; Sandmaier, B. M. Expert Opin. Biol. Ther. 2001, 1, 881-891.
[21] Ibrahim, N. K.; Murray, J. L. Clin. Breast Cancer 2003, 3, S139-S143.
[22] Wang, P.; Huo, C.-x.; Lang, S.; Caution, K.; Nick, S. T.; Dubey, P.; Deora, R.; Huang, X. Angew. Chem. Int. Ed. 2020, 59, 6451-6458.
[23] Behera, A.; Rai, D.; Kulkarni, S. S. J. Am. Chem. Soc. 2020, 142, 456-467.
[24] Goncalves, A.; Peeling, R. W.; Chu, M. C.; Gubler, D. J.; de Silva, A. M.; Harris, E.; Murtagh, M.; Chua, A.; Rodriguez, W.; Kelly, C.; Wilder-Smith, A. J. Infect. Dis. 2018, 217, 1060-1068.
[25] Stefanetti, G.; Borriello, F.; Richichi, B.; Zanoni, I.; Lay, L. Front. Cell. Infect. Microbiol. 2022, 11.
[26] Parker, N.; Schneegurt, M.; Tu, A.-H. T.; Lister, P.; Forster, B. M., Microbiology. OpenStax.: OpenStax College., 2016.
[27] Swain, S. L.; McKinstry, K. K.; Strutt, T. M. Nat. Rev. Immunol. 2012, 12, 136-148.
[28] Altekruse, S. F.; Stern, N. J.; Fields, P. I.; Swerdlow, D. L. Emerg. Infect. Dis. 1999, 5, 28-35.
[29] 楊季融; 邱秀櫻; 蔡金來; 周振英; 蘇勳璧;吳和生 疫情報導 2006, 22, 76-92.
[30] Coker, A. O.; Isokpehi, R. D.; Thomas, B. N.; Amisu, K. O.; Obi, C. L. Emerg. Infect. Dis. 2002, 8, 237-244.
[31] Troeger, C.; Forouzanfar, M.; Rao, P. C.; Khalil, I.; Brown, A.; Reiner, R. C.; Fullman, N.; Thompson, R. L.; Abajobir, A.; Ahmed, M.; Alemayohu, M. A.; Alvis-Guzman, N.; Amare, A. T.; Antonio, C. A.; Asayesh, H.; Avokpaho, E.; Awasthi, A.; Bacha, U.; Barac, A.; Betsue, B. D.; Beyene, A. S.; Boneya, D. J.; Malta, D. C.; Dandona, L.; Dandona, R.; Dubey, M.; Eshrati, B.; Fitchett, J. R. A.; Gebrehiwot, T. T.; Hailu, G. B.; Horino, M.; Hotez, P. J.; Jibat, T.; Jonas, J. B.; Kasaeian, A.; Kissoon, N.; Kotloff, K.; Koyanagi, A.; Kumar, G. A.; Rai, R. K.; Lal, A.; El Razek, H. M. A.; Mengistie, M. A.; Moe, C.; Patton, G.; Platts-Mills, J. A.; Qorbani, M.; Ram, U.; Roba, H. S.; Sanabria, J.; Sartorius, B.; Sawhney, M.; Shigematsu, M.; Sreeramareddy, C.; Swaminathan, S.; Tedla, B. A.; Jagiellonian, R. T.-M.; Ukwaja, K.; Werdecker, A.; Widdowson, M.-A.; Yonemoto, N.; El Sayed Zaki, M.; Lim, S. S.; Naghavi, M.; Vos, T.; Hay, S. I.; Murray, C. J. L.; Mokdad, A. H. The Lancet Infect. Dis. 2017, 17, 909-948.
[32] World Health Organization, Campylobacter. 2020, https://www.who.int/news-room/fact-sheets/detail/campylobacter.
[33] Acheson, D.; Allos, B. M. Clin. Infect. Dis. 2001, 32, 1201-1206.
[34] Wim Ang, C.; Jacobs, B. C.; Laman, J. D. Trends Immunol. 2004, 25, 61-66.
[35] Jacobs, B. C.; Endtz, H. P.; van der Meché, F. G. A.; Hazenberg, M. P.; Achtereekte, H. A. M.; van Doorn, P. A. Ann. Neurol. 1995, 37, 260-264.
[36] World Health Organization, Diarrhoeal disease. 2017, https://www.who.int/news-room/fact-sheets/detail/diarrhoeal-disease.
[37] Haddad, N.; Marce, C.; Magras, C.; Cappelier, J.-M. J. Food Prot. 2010, 73, 786-802.
[38] Yuki, N.; Susuki, K.; Koga, M.; Nishimoto, Y.; Odaka, M.; Hirata, K.; Taguchi, K.; Miyatake, T.; Furukawa, K.; Kobata, T.; Yamada, M. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 11404-11409.
[39] Guerry, P.; Szymanski, C. M. Trends Microbiol. 2008, 16, 428-435.
[40] Karlyshev, A. V.; Ketley, J. M.; Wren, B. W. FEMS Microbiol. Rev. 2005, 29, 377-390.
[41] Wong, A.; Lange, D.; Houle, S.; Arbatsky, N. P.; Valvano, M. A.; Knirel, Y. A.; Dozois, C. M.; Creuzenet, C. Mol. Microbiol. 2015, 96, 1136-1158.
[42] Poly, F.; Serichantalergs, O.; Kuroiwa, J.; Pootong, P.; Mason, C.; Guerry, P.; Parker, C. T. PLOS ONE 2015, 10, e0144349.
[43] Karlyshev, A. V.; Linton, D.; Gregson, N. A.; Lastovica, A. J.; Wren, B. W. Mol. Microbiol. 2000, 35, 529-541.
[44] Aspinall, G. O.; McDonald, A. G.; Pang, H. Carbohydr. Res. 1992, 231, 13-30.
[45] Guerry, P.; Szymanski, C. M.; Prendergast, M. M.; Hickey, T. E.; Ewing, C. P.; Pattarini, D. L.; Moran, A. P. Infect. Immun. 2002, 70, 787-793.
[46] Monteiro, M. A.; Baqar, S.; Hall, E. R.; Chen, Y.-H.; Porter, C. K.; Bentzel, D. E.; Applebee, L.; Guerry, P. Infect. Immun. 2009, 77, 1128-1136.
[47] Poly, F.; Noll, A. J.; Riddle, M. S.; Porter, C. K. Hum. Vaccines Immunother. 2019, 15, 1389-1400.
[48] Thota, V. N.; Ferguson, M. J.; Sweeney, R. P.; Lowary, T. L. Angew. Chem. Int. Ed. 2018, 57, 15592-15596.
[49] Parkhill, J.; Wren, B. W.; Mungall, K.; Ketley, J. M.; Churcher, C.; Basham, D.; Chillingworth, T.; Davies, R. M.; Feltwell, T.; Holroyd, S.; Jagels, K.; Karlyshev, A. V.; Moule, S.; Pallen, M. J.; Penn, C. W.; Quail, M. A.; Rajandream, M. A.; Rutherford, K. M.; van Vliet, A. H. M.; Whitehead, S.; Barrell, B. G. Nature 2000, 403, 665-668.
[50] Naito, M.; Frirdich, E.; Fields, J. A.; Pryjma, M.; Li, J.; Cameron, A.; Gilbert, M.; Thompson, S. A.; Gaynor, E. C. J. Bacteriol. 2010, 192, 2182-2192.
[51] Michael, F. St.; Szymanski, C. M.; Li, J.; Chan, K. H. ; Khieu, N. H.; Larocque, S. ; Wakarchuk, W.W.; Brisson, J.-R.; Monteiro, M. A. Eur. J. Biochem. 2002, 269, 5119-5136.
[52] Willis, L. M.; Whitfield, C. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 20753-20758.
[53] Lodowska, J.; Wolny, D.; Węglarz, L. Can. J. Microbiol. 2013, 59, 645-655.
[54] Sigma-Aldrich, D-(+)-Galactosamine hydrochloride. 2023, https://www.sigmaaldrich.com/TW/en/product/sigma/g0500.
[55] Peng, W.; Jayasuriya, A. B.; Imamura, A.; Lowary, T. L. Org. Lett. 2011, 13, 5290-5293.
[56] Ashmus, R. A.; Jayasuriya, A. B.; Lim, Y.-J.; O’Doherty, G. A.; Lowary, T. L. J. Org. Chem. 2016, 81, 3058-3063.
[57] Green, J. W.; Pacsu, E. J. Am. Chem. Soc. 1937, 59, 1205-1210.
[58] Santra, S.; Jonas, E.; Bourgault, J.-P.; El-Baba, T.; Andreana, P. R. J. Carbohydr. Chem. 2011, 30, 27-40.
[59] Boschetti, A.; Nicotra, F.; Panza, L.; Russo, G. J. Org. Chem. 1988, 53, 4181.
[60] Taniguchi, T.; Ohnishi, H.; Ogasawara, K. Chem. Commun. 1996, 1477.
[61] Chan, L.; Taylor, M. S. Org. Lett. 2011, 13, 3090.
[62] Lee, D.; Williamson, C. L.; Chan, L.; Taylor, M. S. J. Am. Chem. Soc. 2012, 134, 8260.
[63] Nicolaou, K. C.; Cole, K. P.; Frederick, M. O.; Aversa, R. J.; Denton, R. M. Angew. Chem., Int. Ed. 2007, 46, 8875.
[64] Luche, J. L. J. Am. Chem. Soc. 1978, 100, 2226-2227.
[65] Ma, B.; Schaefer, H. F.; Allinger, N. L. J. Am. Chem. Soc. 1998, 120, 3411-3422.
[66] Bhaskar, P. M. Synlett 1999, 1999, 129-131.
[67] Poulin, M. B.; Shi, Y.; Protsko, C.; Dalrymple, S. A.; Sanders, D. A. R.; Pinto, B. M.; Lowary, T. L. ChemBioChem 2014, 15, 47-56.
[68] Soltero-Higgin, M.; Carlson, E. E.; Gruber, T. D.; Kiessling, L. L. Nat. Struct. Mol. Biol. 2004, 11, 539-543.
[69] Poulin, M. B.; Nothaft, H.; Hug, I.; Feldman, M. F.; Szymanski, C. M.; Lowary, T. L. J. Biol. Chem. 2010, 285, 493-501.
[70] Wertz, P. W.; Garver, J. C.; Anderson, L. J. Am. Chem. Soc. 1981, 103, 3916-3922.
[71] Angyal, S.; Beveridge, R. Aust. J. Chem. 1978, 31, 1151-1155.
[72] Lafont, D.; Boullanger, P.; Cadas, O.; Descotes, G. Synthesis 1989, 1989, 191-194.
[73] Lubineau, A.; Fischer, J.-C. Synth. Commun. 1991, 21, 815-818.
[74] Sarkar, S. K.; Choudhury, A. K.; Mukhopadhyay, B.; Roy, N. J. Carbohydr. Chem. 1999, 18, 1121-1130.
[75] Ballou, C. E.; Fischer, H. O. L. J. Am. Chem. Soc. 1954, 76, 3188-3193.
[76] Choudhury, A. K.; Roy, N. Carbohydr. Res. 1998, 308, 207-211.
[77] Baldoni, L.; Marino, C. Beilstein J. Org. Chem. 2014, 10, 1651-1656.
[78] Krylov, V. B.; Argunov, D. A.; Vinnitskiy, D. Z.; Verkhnyatskaya, S. A.; Gerbst, A. G.; Ustyuzhanina, N. E.; Dmitrenok, A. S.; Huebner, J.; Holst, O.; Siebert, H.-C.; Nifantiev, N. E. Chem. Eur. J. 2014, 20, 16516-16522.
[79] Snitynsky, R. B.; Lowary, T. L. Org. Lett. 2014, 16, 212-215.
[80] Baldoni, L.; Marino, C. J. Org. Chem. 2009, 74, 1994-2003.
[81] Tanahashi, E.; Kiso, M.; Hasegawa, A. J. Carbohydr. Chem. 1983, 2, 129-137.
[82] Szymanski, C. M.; Michael, F. S.; Jarrell, H. C.; Li, J.; Gilbert, M.; Larocque, S.; Vinogradov, E.; Brisson, J. R. J. Biol. Chem. 2003, 278, 24509-24520.
[83] Knowles, J. R. Annu. Rev. Biochem 1980, 49, 877-919.
[84] McGuigan, C.; Pathirana, R. N.; Balzarini, J.; De Clercq, E. J. Med. Chem. 1993, 36, 1048-1052.
[85] McGuigan, C.; Cahard, D.; Sheeka, H. M.; De Clercq, E.; Balzarini, J. J. Med. Chem. 1996, 39, 1748-1753.
[86] McGuigan, C.; Sutton, P.; Cahard, D.; Turner, K.; O'Leary, G.; Wang, Y.; Gumbleton, M.; De Clercq, E.; Balzarini, J. Antiviral Chem. Chemother. 1998, 9, 473-479.
[87] Saboulard, D.; Naesens, L.; Cahard, D.; Salgado, A.; Pathirana, R.; Velazquez, S.; McGuigan, C.; De Clercq, E.; Balzarini, J. Mol. Pharmacol. 1999, 56, 693-704.
[88] Sofia, M. J.; Bao, D.; Chang, W.; Du, J.; Nagarathnam, D.; Rachakonda, S.; Reddy, P. G.; Ross, B. S.; Wang, P.; Zhang, H.-R.; Bansal, S.; Espiritu, C.; Keilman, M.; Lam, A. M.; Steuer, H. M. M.; Niu, C.; Otto, M. J.; Furman, P. A. J. Med. Chem. 2010, 53, 7202-7218.
[89] Siegel, D.; Hui, H. C.; Doerffler, E.; Clarke, M. O.; Chun, K.; Zhang, L.; Neville, S.; Carra, E.; Lew, W.; Ross, B.; Wang, Q.; Wolfe, L.; Jordan, R.; Soloveva, V.; Knox, J.; Perry, J.; Perron, M.; Stray, K. M.; Barauskas, O.; Feng, J. Y.; Xu, Y.; Lee, G.; Rheingold, A. L.; Ray, A. S.; Bannister, R.; Strickley, R.; Swaminathan, S.; Lee, W. A.; Bavari, S.; Cihlar, T.; Lo, M. K.; Warren, T. K.; Mackman, R. L. J. Med. Chem. 2017, 60, 1648-1661.
[90] Gannedi, V.; Villuri, B. K.; Reddy, S. N.; Ku, C.-C.; Wong, C.-H.; Hung, S.-C. J. Org. Chem. 2021, 86, 4977-4985.
[91] Warren, T. K.; Jordan, R.; Lo, M. K.; Ray, A. S.; Mackman, R. L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H. C.; Larson, N.; Strickley, R.; Wells, J.; Stuthman, K. S.; Van Tongeren, S. A.; Garza, N. L.; Donnelly, G.; Shurtleff, A. C.; Retterer, C. J.; Gharaibeh, D.; Zamani, R.; Kenny, T.; Eaton, B. P.; Grimes, E.; Welch, L. S.; Gomba, L.; Wilhelmsen, C. L.; Nichols, D. K.; Nuss, J. E.; Nagle, E. R.; Kugelman, J. R.; Palacios, G.; Doerffler, E.; Neville, S.; Carra, E.; Clarke, M. O.; Zhang, L.; Lew, W.; Ross, B.; Wang, Q.; Chun, K.; Wolfe, L.; Babusis, D.; Park, Y.; Stray, K. M.; Trancheva, I.; Feng, J. Y.; Barauskas, O.; Xu, Y.; Wong, P.; Braun, M. R.; Flint, M.; McMullan, L. K.; Chen, S.-S.; Fearns, R.; Swaminathan, S.; Mayers, D. L.; Spiropoulou, C. F.; Lee, W. A.; Nichol, S. T.; Cihlar, T.; Bavari, S. Nature 2016, 531, 381-385.
[92] Ashmus, R. A.; Lowary, T. L. Org. Lett. 2014, 16, 2518-2521.
[93] Atherton, F. R.; Openshaw, H. T.; Todd, A. R. J. Chem. Soc. 1945, 660-663.
[94] Le Corre, S. S.; Berchel, M.; Couthon-Gourvès, H.; Haelters, J.-P.; Jaffrès, P.-A. Beilstein J. Org. Chem. 2014, 10, 1166-1196.
[95] Dhurandhare, V. M.; Mishra, G. P.; Lam, S.; Wang, C.-C. Org. Biomol. Chem. 2015, 13, 9457-9461.
[96] Jiao, Y.; Ma, Z.; Ewing, C. P.; Guerry, P.; Monteiro, M. A. Carbohydr. Res. 2015, 418, 9-12.
[97] Hung, J.-T.; Yeh, C.-H.; Yang, S.-A.; Lin, C.-Y.; Tai, H.-J.; Shelke, G. B.; Reddy, D. M.; Yu, A. L.; Luo, S.-Y. ACS Chem. Neurosci. 2016, 7, 1107-1111.
[98] Neumaier, J. M.; Madani, A.; Klein, T.; Ziegler, T. Beilstein J. Org. Chem. 2019, 15, 558-566.
[99] Demchenko, A. V. Handbook of Chemical Glycosylation, 2008,1-27
[100] Warrent, R. W.; Caughlan, C. N.; Hargis, J. H.; Yee, K. C.; Bentrude, W. G. J. Org. Chem. 1978, 43, 4266-4270.
[101] Wolfe, S.; Myung-Hwan, W.; Mitchell, D. J. Carbohydr. Res. 1979, 69, 1-26.
[102] Filloux, C. M. Angew. Chem. Int. Ed. 2015, 54, 8880-8894.
[103] Mo, Y. Nat. Chem. 2010, 2, 666-671.
[104] Smoot, J. T.; Pornsuriyasak, P.; Demchenko, A. V. Angew. Chem. Int. Ed. 2005, 44, 7123-7126.
[105] Yasomanee, J. P.; Demchenko, A. V. J. Am. Chem. Soc. 2012, 134, 20097-20102.
[106] Yasomanee, J. P.; Demchenko, A. V. Angew. Chem. Int. Ed. 2014, 53, 10453-10456.
[107] Marianski, M.; Mucha, E.; Greis, K.; Moon, S.; Pardo, A.; Kirschbaum, C.; Thomas, D. A.; Meijer, G.; von Helden, G.; Gilmore, K.; Seeberger, P. H.; Pagel, K. Angew. Chem. Int. Ed. 2020, 59, 6166-6171.
[108] Xu, K.; Man, Q.; Zhang, Y.; Guo, J.; Liu, Y.; Fu, Z.; Zhu, Y.; Li, Y.; Zheng, M.; Ding, N. Org. Chem. Front. 2020, 7, 1606-1615.
[109] Mong, K.-K. T.; Nokami, T.; Tran, N. T. T.; Nhi, P. B. Selective Glycosylations: Synthetic Methods and Catalysts, 2017, 59-77
[110] Tvaroŝka, I.; Bleha, T. Adv. Carbohydr. Chem. Biochem., Tipson, R. S.,Horton, D., Eds. Academic Press: 1989; vol. 47,45-123
[111] Cumpstey, I. Org. Biomol. Chem. 2012, 10, 2503-2508.
[112] Chatterjee, S.; Moon, S.; Hentschel, F.; Gilmore, K.; Seeberger, P. H. J. Am. Chem. Soc. 2018, 140, 11942-11953.
[113] Hadd, M. J.; Gervay-Hague, J. Carbohydr. Res. 1999, 320, 61-69.
[114] Du, W.; Kulkarni, S. S.; Gervay-Hague, J. Chem. Commun. 2007, 2336-2338.
[115] Koenigs, W.; Knorr, E. Ber. Dtsch. Chem. Ges. 1901, 34, 957-981.
[116] Christensen, H. M.; Oscarson, S.; Jensen, H. H. Carbohydr. Res. 2015, 408, 51-95.
[117] Kowalska, K.; Pedersen, C. M. Chem. Commun. 2017, 53, 2040-2043.
[118] Konradsson, P.; Udodong, U. E.; Fraser-Reid, B. Tetrahedron Lett. 1990, 31, 4313-4316.
[119] Veeneman, G. H.; van Leeuwen, S. H.; van Boom, J. H. Tetrahedron Lett. 1990, 31, 1331-1334.
[120] Huang, X.; Huang, L.; Wang, H.; Ye, X.-S. Angew. Chem. Int. Ed. 2004, 43, 5221-5224.
[121] Crich, D.; Sun, S. J. Org. Chem. 1997, 62, 1198-1199.
[122] Huang, M.; Garrett, G. E.; Birlirakis, N.; Bohé, L.; Pratt, D. A.; Crich, D. Nat. Chem. 2012, 4, 663-667.
[123] Crich, D.; Sun, S. J. Org. Chem. 1996, 61, 4506-4507.
[124] Crich, D.; Sun, S. J. Am. Chem. Soc. 1997, 119, 11217-11223.
[125] Chang, C.-W.; Wu, C.-H.; Lin, M.-H.; Liao, P.-H.; Chang, C.-C.; Chuang, H.-H.; Lin, S.-C.; Lam, S.; Verma, V. P.; Hsu, C.-P.; Wang, C.-C. Angew. Chem. Int. Ed. 2019, 58, 16775-16779.
[126] van der Vorm, S.; Overkleeft, H. S.; van der Marel, G. A.; Codée, J. D. C. J. Org. Chem. 2017, 82, 4793-4811.
[127] Moon, S.; Chatterjee, S.; Seeberger, P. H.; Gilmore, K. Chem. Sci. 2021, 12, 2931-2939.
[128] Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734-753.
[129] Chang, C.-W.; Lin, M.-H.; Chan, C.-K.; Su, K.-Y.; Wu, C.-H.; Lo, W.-C.; Lam, S.; Cheng, Y.-T.; Liao, P.-H.; Wong, C.-H.; Wang, C.-C. Angew. Chem. Int. Ed. 2021, 60, 12413-12423.
[130] Chang, C.-W.; Lin, M.-H.; Wang, C.-C. Chem. Eur. J. 2021, 27, 2556-2568.
[131] GlycoComputer: Explorer for chemical glycosylation. http://chemwww.chem.sinica.edu.tw/ChemicalGlycosylation/index.php.
[132] Reiß, M.; Brietzke, A.; Eickner, T.; Stein, F.; Villinger, A.; Vogel, C.; Kragl, U.; Jopp, S. RSC Advances 2020, 10, 14299-14304.
[133] Padrón, J. I.; Vázquez, J. T. Tetrahedron: Asymmetry 1998, 9, 613-627.
[134] Kaji, E.; Komori, T.; Yokoyama, M.; Kato, T.; Nishino, T.; Shirahata, T. Tetrahedron 2010, 66, 4089-4100.
[135] Traboni, S.; Bedini, E.; Vessella, G.; Iadonisi, A. Catalysts 2020, 10, 1142.
[136] Wang, C.-C.; Lee, J.-C.; Luo, S.-Y.; Kulkarni, S. S.; Huang, Y.-W.; Lee, C.-C.; Chang, K.-L.; Hung, S.-C. Nature 2007, 446, 896-899.
[137] Ohlin, M.; Johnsson, R.; Ellervik, U. Carbohydr. Res. 2011, 346, 1358-1370.
[138] Ko, Y.-C.; Tsai, C.-F.; Wang, C.-C.; Dhurandhare, V. M.; Hu, P.-L.; Su, T.-Y.; Lico, L. S.; Zulueta, M. M. L.; Hung, S.-C. J. Am. Chem. Soc. 2014, 136, 14425-14431.
[139] Kulkarni, S. S.; Lee, J.-C.; Hung, S.-C. Curr. Org. Chem. 2004, 8, 475-509.
[140] Černý, M.; Staněk, J. Adv. Carbohydr. Chem. Biochem., Stuart Tipson, R.,Horton, D., Eds. Academic Press: 1977; vol. 34,23-177
[141] Iversen, T.; Bundle, D. R. Can. J. Chem. 1982, 60, 299-303.
[142] Zhu, X.; Dere, R. T.; Jiang, J.; Zhang, L.; Wang, X. J. Org. Chem. 2011, 76, 10187-10197.
[143] Schmidt, R. R.; Michel, J.; Rücker, E. Liebigs Ann. Chem. 1989, 1989, 423-428.
[144] Valentijn, A. R. P. M.; Broxterman, H. J. G.; van der Marel, G. A.; Cohen, L. H.; van Boom, J. H. J. Carbohydr. Chem. 1995, 14, 737-749.
[145] Krylov, V. B.; Argunov, D. A.; Nifantiev, N. E. Mendeleev Commun. 2014, 24, 336-337.
[146] Alzeer, J.; Cai, C.;Vasella, A. Helv. Chim. Acta 1995, 78, 242-264.
[147] Hazelard, D.; Compain, P. Eur. J. Org. Chem. 2021, 2021, 3501-3515.
[148] Ness, R. K.; Fletcher, H. G., Jr. J. Am. Chem. Soc. 1953, 75, 3289-3290.
[149] Ness, R. K.; Diehl, H. W.; Fletcher, H. G., Jr. J. Am. Chem. Soc. 1954, 76, 763-767.
[150] Mitachi, K.; Aleiwi, B. A.; Schneider, C. M.; Siricilla, S.; Kurosu, M. J. Am. Chem. Soc. 2016, 138, 12975-12980.
[151] Kurosu, M.; Li, K. J. Org. Chem. 2008, 73, 9767-9770.
[152] Joseph, A. A.; Dhurandhare, V. M.; Chang, C.-W.; Verma, V. P.; Mishra, G. P.; Ku, C.-C.; Lin, C.-C.; Wang, C.-C. Chem. Commun. 2015, 51, 104-106.
[153] Yu, B.; Sun, J. Chem. Commun. 2010, 46, 4668-4679.
[154] Hagen, B.; van Dijk, J. H. M.; Zhang, Q.; Overkleeft, H. S.; van der Marel, G. A.; Codée, J. D. C. Org. Lett. 2017, 19, 2514-2517.
[155] Meinjohanns, E.; Meldal, M.; Schleyer, A.; Paulsen, H.; Bock, K. J. Chem. Soc. Perkin Trans. 1 1996, 985-993.
[156] Albo, R. L. F.; Valdez, C. A.; Leif, R. N.; Mulcahy, H. A.; Koester, C. Anal. Bioanal. Chem. 2014, 406, 5231-5234.
[157] Valdez, C. A.; Leif, R. N.; Hok, S.; Hart, B. R. Rev. Anal. Chem 2018, 37.
[158] Chen, J.-S.; Ke, Y.-F.; Lin, H.-Y.; Lin, W.; Yen, W.-C.; Wu, H.-R.; Luo, S.-Y. Synthesis 2021, 53, 2000-2006.
[159] Borbás, A.; Szabó, Z. B.; Szilágyi, L.; Bényei, A.; Lipták, A. Tetrahedron 2002, 58, 5723-5732.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *