帳號:guest(3.149.28.5)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江翰鍇
作者(外文):Jiang, Han-Kai
論文名稱(中文):拓展遺傳密碼之化學多樣性: 設計者吡咯離胺醯-tRNA合成酶
論文名稱(外文):Expanding the Chemical Diversity of Genetic Code: Designer Pyrrolysyl-tRNA Synthetases
指導教授(中文):王彥士
林俊成
指導教授(外文):Wang, Yane-Shih
Lin, Chun-Cheng
口試委員(中文):呂桐睿
徐尚德
林俊宏
梁博煌
王健家
口試委員(外文):Lowary, Todd L.
Hsu, Shang-Te Danny
Lin, Chun-Hung
Liang, Po-Huang
Wang, Chien-Chia
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:106023862
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:285
中文關鍵詞:基因密碼子擴展技術非典型胺基酸吡咯離胺醯-tRNA合成酶色胺酸類似物去泛素化酵素麥可加成反應蛋白質-蛋白質交互作用化學誘導二聚化
外文關鍵詞:genetic code expansionnon-canonical amino acidspyrrolysyl-tRNA synthetasetryptophan analogsdeubiquitinaseMichael additionprotein-protein interactionschemically induced dimerization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:75
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
有鑑於基因密碼子擴展技術的廣泛應用,非典型胺基酸能被準確嵌入蛋白質特定位點之中。源自古菌Methanosarcina mazei (Mm) 和 Candidatus Methanomethylophilus alvus (Ma) 的吡咯離胺醯-tRNA合成酶 (pyrrolysyl-tRNA synthetase, PylRS),由於其酵素活化位對突變容忍度高,經酵素工程後,常作為強而有力之化學生物學工具,可將多於200種非典型胺基酸嵌入蛋白質中。然而,此領域發展卻受限於PylRS天生的多向受質活性中心。 由於PylRS同源自苯丙氨醯-tRNA合成酶 (phenylalanyl-tRNA synthetase),故PylRS經酵素工程後,突變株特別容易對廣泛苯丙氨 (Phe) 類似物產生活性。然而,突變株相對野生株之活性,卻是大為降低,此問題隨之導致整體蛋白質表現量下降。此外,突變株的多向受質活性也可能導致其將天然胺基酸作為受質,而產生不預期之背景表現。因此,發展具高酵素活性及可控制酵素活性的PylRS突變株,將有利於此領域的發展。

本研究的第一目標,為設計具高酵素活性及多受質廣度的新型PylRS突變株。基於結構引導的理性設計,不同以往於酵素活化位附近進行突變,我們將野生型MmPylRS N端和C端結構域上的tRNA結合域進行酵素工程,進而得到高效率突變株。接著為測試新突變點能否應用於其他突變株上,進而提高活性,我們設計了對Phe 和色胺酸 (Trp) 類似物具活性的多受質高效新型突變株。最後我們證明,在MmPylRS 和tRNA交互作用的結合域進行突變,能有效提高酵素活性,而這些突變也能提高其他具多受質廣度突變株的胺醯化效率。

本論文的第二目標,為利用前述之多受質高效新型MmPylRS突變株,來研究與疾病相關的USP酵素功能。我們將Trp 類似物用來研究Trp475 對USP30的活性影響和受質專一性,從而改造出能專一辨認K6泛素鏈的USP30突變株。此外,我們開發了一種在非變性條件下,快速合成各種特定位點的泛素-類小泛素二聚體和類小泛素化蛋白質修飾的平台。在MmPylRS突變株的幫助下,類小泛素中特定位點的離胺酸被硒代烷基半胱氨酸取代,進行氧化脫去反應的氧化硒能產生具親電中心的脫氫丙氨酸。我們將製備好的類小泛素和羧基端被修飾、具有親核性硫醇基的泛素於水相中進行麥可加成反應,合成出泛素-類小泛素二聚體。最後,我們以去泛素化酵素 USP7 處理合成的二聚體,發現 USP7 能將其鍵結水解,也發現 USP7 的羧基末端結構域對不同泛素-類小泛素二聚體的認知結合扮演重要角色。

本論文的第三目標,為開發能精準控制PylRS活性的分子開關,進而降低由於PylRS多向受質活性所導致的背景表現問題。利用蛋白片段互補技術作為發想, MaPylRS被分裂成兩個不具活性的N端和C端片段,兩個片段分別和兩個目標蛋白融合,當兩個目標蛋白進行交互作用時,分裂的兩片段也互補重組,重新恢復MaPylRS酵素功能。我們證明MaPylRS分裂酵素能被用來當作生物傳感器,在非典型胺基酸的存在下,利用含有終止密碼的報告者基因,偵測細胞凋亡途徑成員Bcl-2家族間,或介導宿主細胞與 SARS-CoV-2感染間的蛋白質-蛋白質交互作用。 最後,我們證明MaPylRS分裂酵素能和小分子化學誘導-蛋白質二聚化系統相互兼容,使基因表現能在原核和真核系統中,同時被非典型胺基酸,和另一個小分子化合物精準控制。

Genetic code expansion has been broadly used to equip proteins with non-canonical amino acids (ncAAs). Owing to remarkable mutation tolerance in the active site, pyrrolysyl-tRNA synthetases derived from archaeal Methanosarcina mazei (MmPylRS) and Candidatus Methanomethylophilus alvus (MaPylRS) have emerged as powerful tools to incorporate more than 200 chemically diverse ncAAs into proteins at designated positions. However, limitations arise from the field is unified by a single problem – the polyspecific nature of this ancient enzyme.

Diverged from an ancestral phenylalanyl-tRNA synthetase (PheRS), engineered PylRSs typically display wide substrate scope in charging phenylalanine (Phe) analogs. However, low aminoacylation activity is often observed in evolved PylRSs and this leads to significant reduction in the yield of producing proteins containing ncAAs. The other issue is the promiscuous activity of the engineered PylRSs can lead to mischarging of the suppressor tRNA with natural amino acids causing significant background translation of the target gene. Hence, developing rationale-based polyspecific PylRSs with enhanced efficiency and controllable activity would help pave the way to generate robust PylRS variants.

Therefore, the first aim was to devise designer PylRSs with prominent activity and poly-substrate selectivity. We began by employing structure-guided engineering at the interface between tRNA binding domain and cognate tRNAPyl of MmPylRS, which is away from the active site, to generate a designer PylRS with robust efficiency. We further expanded the substrate selectivity of this PylRS variant by introducing rationally designed mutations in the active site. We demonstrated that, compared to the previously evolved variant, the newly designed pocket displayed a distinct polyspecificity in charging not only Phe but also tryptophan (Trp) derivatives with high suppression efficiency.

The second aim was to demonstrate the use of designer PylRSs for studying disease-related enzyme functions in the USP family. Trp analogs were used to study the activity and substrate selectivity of W475 in the USP30 active site. We evolved a USP30 variant that specifically recognizes a K6 ubiquitin (Ub) linkage. In parallel, we developed a universal platform for generating site-specific SUMO or Ub modified protein using a designer PylRS-based system. The C-terminal tagged Ub was used to selectively react with SUMO2 containing dehydroalanines, yielding eight SUMO2 variants ubiquitinated at distinct lysine (Lys) positions. Finally, we revealed the important role of the C-terminal domain of USP7 in regulating the activity and selectivity for the Ub-tagged SUMO2 dimers.

The final aim was to develop a designer PylRS that can be activated on demand to precisely control the activity of enzyme to prevent background translation. To do this, MaPylRS was split into fragments that were inactive, but which could be reactivated when they were brought into proximity. These fragments were initially tagged with proteins that interact with each other. The protein-protein interactions (PPIs) restored the activity of the split PylRS which can be detected, in the presence of a ncAA, using diverse reporter genes that contain an in-frame stop codon. Further, it was shown that the split PylRS can serve as versatile biosensors for detecting diverse PPIs, including therapeutically relevant interactions such as those in the Bcl-2 family and interactions that mediate infection of SARS-CoV-2. Finally, we demonstrated that the split PylRS works effectively with a small molecule-dependent dimerization system to activate chemically-induced stop codon suppression in bacteria and eukaryote.

TABLE OF CONTENTS

摘要 I
ABSTRACT III
ACKNOWLEDGEMENTS V
DEDICATION VII
CONTRIBUTORS AND FUNDING SOURCES VIII
TABLE OF CONTENTS X
LIST OF FIGURES XV
LIST OF TABLES XVIII
ABBREVIATIONS XIX

CHAPTER I INTRODUCTION 22
I.1 An Overview of Genetic Code Expansion 22
I.2 Genetic Code Expansion in Nature 28
I.3 Non-canonical Amino Acids Incorporation in vitro and in vivo 33
I.4 A Facile Tool in Genetic Code Expansion: Pyrrolysyl-tRNA Synthetase 38
I.5 Applications of Genetic Code Expansion 42
I.6 Specific Aims 45

CHAPTER II DESIGN PYRROLYSYL-TRNA SYNTHETASES TO ENHANCE SUPPRESSION EFFICIENCY AND EXPAND THE SUBSTRATE SCOPE† 48
II.1 Introduction 48
II.2 Experimental Details 52
II.2.1 General 52
II.2.2 Primer list 55
II.2.3 Protein purification 58
II.2.4 Western blot analysis 61
II.2.5 ESI-MS characterization 62
II.2.6 MALDI-TOF-MS/MS characterization 62
II.2.7 X-crystal structural analysis and modeling 63
II.2.8 In vivo amber suppression assay 63
II.2.9 Kinetic analysis 65
II.3 Results and Discussion 66
II.3.1 Substrate specificity of MmPylRS and MaPylRS 66
II.3.2 Rational design of an efficient MmPylRS 68
II.3.3 Substrate specificity of designer MmPylRS variants 75
II.3.4 Characterization of sfGFP containing ncAAs 84
II.3.5 Rational design of a polyspecific MmPylRS 90
II.3.6 Substrate specificity of polyspecific MmPylRS variants 91
II.3.7 Kinetic analysis of FOWRS2 with L- and D-Phe analogs 97
II.4 Conclusion 100

CHAPTER III DESIGN PYRROLYSYL-TRNA SYNTHETASES TO INVESTIGATE DISEASES-ASSOCIATED ENZYME FUNCTIONS† 103
III.1 Introduction 103
III.2 Experimental Details 108
III.2.1 General 108
III.2.2 Primer list 110
III.2.3 Protein purification 113
III.2.4 LC-ESI-MS/MS analysis 120
III.2.5 Photo-physical analysis 120
III.2.6 Di-ubiquitin cleavage assay 121
III.2.7 Ubiquitin-AMC cleavage assay 121
III.2.8 Western blotting 122
III.2.9 Protein chemistry 122
III.3 Results and Discussion 126
III.3.1 Photo-physical analysis of FOWRS2 encoded Trp analogs 126
III.3.2 Unraveling the role of W475 in USP30 active site by FOWRS2 129
III.3.3 Determining activity and substrate selectivity of USP30 variants 132
III.3.4 Preparing site-specific SUMO-modified sfGFP by N-ZRS 135
III.3.5 Preparing site-specific Ub-modified SUMO2 by N-ZRS 138
III.3.6 Unraveling substrate selectivity of USP7 by Ub-SUMO2 dimers 142
III.4 Conclusion 146

CHAPTER IV SPLIT PYRROLYSYL-TRNA SYNTHETASES FOR CHEMICALLY-INDUCED GENETIC CODE EXPANSION 148
IV.1 Introduction 148
IV.2 Experimental Details 151
IV.2.1 General 151
IV.2.2 sfGFP expression assay 151
IV.2.3 Chloramphenicol resistance assay 152
IV.2.4 SEAP expression assay 152
IV.2.5 Plasmid list 153
IV.3 Results and Discussion 158
IV.3.1 Design and validation of a split PylRS 158
IV.3.2 Design and validation of a split TyrRS 164
IV.3.3 Detecting therapeutically relevant PPIs using split PylRS 168
IV.3.4 Small-molecule-induced stop codon suppression using split aaRSs 171
IV.3.5 Controlling TAG and TAA stop codon suppression using split aaRSs 174
IV.3.6 Controlling gene expression in mammalian cells using small-molecule-induced stop codon suppression 176
IV.4 Conclusion 179

CHAPTER V DISCUSSION AND CONCLUDING REMARKS 182
REFERENCES 190
APPENDIX 224

1. Ambrogelly, A.; Palioura, S.; Söll, D., Natural expansion of the genetic code. Nat. Chem. Biol. 2007, 3 (1), 29-35.
2. Tharp, J. M.; Ehnbom, A.; Liu, W. R., tRNAPyl: structure, function, and applications. RNA Biol. 2018, 15 (4-5), 441-452.
3. Scolnick, E.; Tompkins, R.; Caskey, T.; Nirenberg, M., Release factors differing in specificity for terminator codons. Proc. Natl. Acad. Sci. U.S.A. 1968, 61 (2), 768-774.
4. Bhattacharya, A.; Köhrer, C.; Mandal, D.; RajBhandary, U. L., Nonsense suppression in archaea. Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (19), 6015-6020.
5. Povolotskaya, I. S.; Kondrashov, F. A.; Ledda, A.; Vlasov, P. K., Stop codons in bacteria are not selectively equivalent. Biol. Direct 2012, 7 (1), 1-13.
6. Sun, J.; Chen, M.; Xu, J.; Luo, J., Relationships among stop codon usage bias, its context, isochores, and gene expression level in various eukaryotes. J. Mol. Evol. 2005, 61 (4), 437-444.
7. Korkmaz, G.; Holm, M.; Wiens, T.; Sanyal, S., Comprehensive analysis of stop codon usage in bacteria and its correlation with release factor abundance. J. Biol. Chem. 2014, 289 (44), 30334-30342.
8. Garen, A.; Siddiqi, O., Suppression of mutations in the alkaline phosphatase structural cistron of E. coli. Proc. Natl. Acad. Sci. U.S.A. 1962, 48 (7), 1121-1127.
9. Liebman, S. W.; Sherman, F.; Stewart, J. W., Isolation and characterization of amber suppressors in yeast. Genetics 1976, 82 (2), 251-272.
10. Benzer, S.; Champe, S. P., A change from nonsense to sense in the genetic code. Proc. Natl. Acad. Sci. U.S.A. 1962, 48 (7), 1114-1121.
11. Beier, H.; Grimm, M., Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res. 2001, 29 (23), 4767-4782.
12. Mukai, T.; Hayashi, A.; Iraha, F.; Sato, A.; Ohtake, K.; Yokoyama, S.; Sakamoto, K., Codon reassignment in the Escherichia coli genetic code. Nucleic Acids Res. 2010, 38 (22), 8188-8195.
13. Huang, Y.; Russell, W. K.; Wan, W.; Pai, P.-J.; Russell, D. H.; Liu, W., A convenient method for genetic incorporation of multiple noncanonical amino acids into one protein in Escherichia coli. Mol. Biosyst. 2010, 6 (4), 683-686.
14. Neumann, H.; Wang, K.; Davis, L.; Garcia-Alai, M.; Chin, J. W., Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 2010, 464 (7287), 441-444.
15. Mukai, T.; Yamaguchi, A.; Ohtake, K.; Takahashi, M.; Hayashi, A.; Iraha, F.; Kira, S.; Yanagisawa, T.; Yokoyama, S.; Hoshi, H., Reassignment of a rare sense codon to a non-canonical amino acid in Escherichia coli. Nucleic Acids Res. 2015, 43 (16), 8111-8122.
16. Wang, L.; Brock, A.; Herberich, B.; Schultz, P. G., Expanding the genetic code of Escherichia coli. Science 2001, 292 (5516), 498-500.
17. Wan, W.; Tharp, J. M.; Liu, W. R., Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. Biochim. Biophys. Acta. Proteins Proteom. 2014, 1844 (6), 1059-1070.
18. Tharp, J. M.; Vargas-Rodriguez, O.; Schepartz, A.; Söll, D., Genetic encoding of three distinct noncanonical amino acids using reprogrammed initiator and nonsense codons. ACS Chem. Biol. 2021, 16 (4), 766-774.
19. Wang, Y.-S.; Fang, X.; Wallace, A. L.; Wu, B.; Liu, W. R., A rationally designed pyrrolysyl-tRNA synthetase mutant with a broad substrate spectrum. J. Am. Chem. Soc. 2012, 134 (6), 2950-2953.
20. Chin, J. W.; Santoro, S. W.; Martin, A. B.; King, D. S.; Wang, L.; Schultz, P. G., Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. J. Am. Chem. Soc. 2002, 124 (31), 9026-9027.
21. Chin, J. W.; Martin, A. B.; King, D. S.; Wang, L.; Schultz, P. G., Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 2002, 99 (17), 11020-11024.
22. Wang, Y.-S.; Russell, W. K.; Wang, Z.; Wan, W.; Dodd, L. E.; Pai, P.-J.; Russell, D. H.; Liu, W. R., The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives. Mol. Biosyst. 2011, 7 (3), 714-717.
23. Jiang, H.-K.; Wang, Y.-H.; Weng, J.-H.; Kurkute, P.; Li, C.-L.; Lee, M.-N.; Chen, P.-J.; Tseng, H.-W.; Tsai, M.-D.; Wang, Y.-S., Probing the active site of deubiquitinase USP30 with noncanonical tryptophan analogues. Biochemistry 2020, 59 (24), 2205-2209.
24. Englert, M.; Nakamura, A.; Wang, Y.-S.; Eiler, D.; Söll, D.; Guo, L.-T., Probing the active site tryptophan of Staphylococcus aureus thioredoxin with an analog. Nucleic Acids Res. 2015, 43 (22), 11061-11067.
25. Hancock, S. M.; Uprety, R.; Deiters, A.; Chin, J. W., Expanding the genetic code of yeast for incorporation of diverse unnatural amino acids via a pyrrolysyl-tRNA synthetase/tRNA pair. J. Am. Chem. Soc. 2010, 132 (42), 14819-14824.
26. Stieglitz, J. T.; Lahiri, P.; Stout, M. I.; Van Deventer, J. A., Exploration of Methanomethylophilus alvus pyrrolysyl-tRNA synthetase activity in yeast. ACS Synth. Biol. 2022, 11 (5), 1824-1834.
27. Johnson, D. B.; Xu, J.; Shen, Z.; Takimoto, J. K.; Schultz, M. D.; Schmitz, R. J.; Xiang, Z.; Ecker, J. R.; Briggs, S. P.; Wang, L., RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. Nat. Chem. Biol. 2011, 7 (11), 779-786.
28. Lajoie, M. J.; Rovner, A. J.; Goodman, D. B.; Aerni, H.-R.; Haimovich, A. D.; Kuznetsov, G.; Mercer, J. A.; Wang, H. H.; Carr, P. A.; Mosberg, J. A., Genomically recoded organisms expand biological functions. Science 2013, 342 (6156), 357-360.
29. Fredens, J.; Wang, K.; de la Torre, D.; Funke, L. F.; Robertson, W. E.; Christova, Y.; Chia, T.; Schmied, W. H.; Dunkelmann, D. L.; Beránek, V., Total synthesis of Escherichia coli with a recoded genome. Nature 2019, 569 (7757), 514-518.
30. Italia, J. S.; Addy, P. S.; Erickson, S. B.; Peeler, J. C.; Weerapana, E.; Chatterjee, A., Mutually orthogonal nonsense-suppression systems and conjugation chemistries for precise protein labeling at up to three distinct sites. J. Am. Chem. Soc. 2019, 141 (15), 6204-6212.
31. Tharp, J. M.; Ad, O.; Amikura, K.; Ward, F. R.; Garcia, E. M.; Cate, J. H.; Schepartz, A.; Söll, D., Initiation of protein synthesis with non‐canonical amino acids in vivo. Angew. Chem. Int. Ed. 2020, 59 (8), 3122-3126.
32. Wan, W.; Huang, Y.; Wang, Z.; Russell, W. K.; Pai, P. J.; Russell, D. H.; Liu, W. R., A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli. Angew. Chem. Int. Ed. 2010, 122 (18), 3279-3282.
33. Cone, J. E.; Del Rio, R. M.; Davis, J. N.; Stadtman, T. C., Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. Proc. Natl. Acad. Sci. U.S.A. 1976, 73 (8), 2659-2663.
34. Driscoll, D. M.; Copeland, P. R., Mechanism and regulation of selenoprotein synthesis. Annu. Rev. Nutr. 2003, 23, 17-40.
35. Söil, D., Enter a new amino acid. Nature 1988, 331 (6158), 662-663.
36. Mukai, T.; Englert, M.; Tripp, H. J.; Miller, C.; Ivanova, N. N.; Rubin, E. M.; Kyrpides, N. C.; Söll, D., Facile recoding of selenocysteine in nature. Angew. Chem. Int. Ed. 2016, 55 (17), 5337-5341.
37. Avery, J. C.; Hoffmann, P. R., Selenium, selenoproteins, and immunity. Nutrients 2018, 10 (9), 1203.
38. Wu, W.; Li, D.; Feng, X.; Zhao, F.; Li, C.; Zheng, S.; Lyu, J., A pan-cancer study of selenoprotein genes as promising targets for cancer therapy. BMC Med. Genet. 2021, 14 (1), 1-14.
39. Chambers, I.; Frampton, J.; Goldfarb, P.; Affara, N.; McBain, W.; Harrison, P. R., The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the ‘termination’codon, TGA. EMBO J. 1986, 5 (6), 1221-1227.
40. Zinoni, F.; Birkmann, A.; Stadtman, T. C.; Böck, A., Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1986, 83 (13), 4650-4654.
41. Zinoni, F.; Birkmann, A.; Leinfelder, W.; Böck, A., Cotranslational insertion of selenocysteine into formate dehydrogenase from Escherichia coli directed by a UGA codon. Proc. Natl. Acad. Sci. U.S.A. 1987, 84 (10), 3156-3160.
42. Palioura, S.; Sherrer, R. L.; Steitz, T. A.; Söll, D.; Simonović, M., The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation. Science 2009, 325 (5938), 321-325.
43. Burke, S. A.; Lo, S. L.; Krzycki, J. A., Clustered genes encoding the methyltransferases of methanogenesis from monomethylamine. J. Bacteriol. 1998, 180 (13), 3432-3440.
44. Paul, L.; Ferguson Jr, D. J.; Krzycki, J. A., The trimethylamine methyltransferase gene and multiple dimethylamine methyltransferase genes of Methanosarcina barkeri contain in-frame and read-through amber codons. J. Bacteriol. 2000, 182 (9), 2520-2529.
45. Srinivasan, G.; James, C. M.; Krzycki, J. A., Pyrrolysine encoded by UAG in archaea: charging of a UAG-decoding specialized tRNA. Science 2002, 296 (5572), 1459-1462.
46. Hao, B.; Gong, W.; Ferguson, T. K.; James, C. M.; Krzycki, J. A.; Chan, M. K., A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science 2002, 296 (5572), 1462-1466.
47. Blight, S. K.; Larue, R. C.; Mahapatra, A.; Longstaff, D. G.; Chang, E.; Zhao, G.; Kang, P. T.; Green-Church, K. B.; Chan, M. K.; Krzycki, J. A., Direct charging of tRNACUA with pyrrolysine in vitro and in vivo. Nature 2004, 431 (7006), 333-335.
48. Namy, O.; Rousset, J.-P.; Napthine, S.; Brierley, I., Reprogrammed genetic decoding in cellular gene expression. Mol. Cell 2004, 13 (2), 157-168.
49. Zhang, Y.; Baranov, P. V.; Atkins, J. F.; Gladyshev, V. N., Pyrrolysine and selenocysteine use dissimilar decoding strategies. J. Biol. Chem. 2005, 280 (21), 20740-20751.
50. Namy, O.; Zhou, Y.; Gundllapalli, S.; Polycarpo, C. R.; Denise, A.; Rousset, J.-P.; Söll, D.; Ambrogelly, A., Adding pyrrolysine to the Escherichia coli genetic code. FEBS Lett. 2007, 581 (27), 5282-5288.
51. Gaston, M. A.; Zhang, L.; Green-Church, K. B.; Krzycki, J. A., The complete biosynthesis of the genetically encoded amino acid pyrrolysine from lysine. Nature 2011, 471 (7340), 647-650.
52. Hertweck, C., Biosynthesis and charging of pyrrolysine, the 22nd genetically encoded amino acid. Angew. Chem. Int. Ed. 2011, 50 (41), 9540-9541.
53. Longstaff, D. G.; Larue, R. C.; Faust, J. E.; Mahapatra, A.; Zhang, L.; Green-Church, K. B.; Krzycki, J. A., A natural genetic code expansion cassette enables transmissible biosynthesis and genetic encoding of pyrrolysine. Proc. Natl. Acad. Sci. U.S.A. 2007, 104 (3), 1021-1026.
54. Cellitti, S. E.; Ou, W.; Chiu, H.-P.; Grünewald, J.; Jones, D. H.; Hao, X.; Fan, Q.; Quinn, L. L.; Ng, K.; Anfora, A. T., D-Ornithine coopts pyrrolysine biosynthesis to make and insert pyrroline-carboxy-lysine. Nat. Chem. Biol. 2011, 7 (8), 528-530.
55. Ho, J. M.; Miller, C. A.; Smith, K. A.; Mattia, J. R.; Bennett, M. R., Improved pyrrolysine biosynthesis through phage assisted non-continuous directed evolution of the complete pathway. Nat. Commun. 2021, 12 (1), 1-10.
56. Richardson, S. L.; Dods, K. K.; Abrigo, N. A.; Iqbal, E. S.; Hartman, M. C., In vitro genetic code reprogramming and expansion to study protein function and discover macrocyclic peptide ligands. Curr. Opin. Chem. Biol. 2018, 46, 172-179.
57. Liu, Y.; Davis, R. G.; Thomas, P. M.; Kelleher, N. L.; Jewett, M. C., In vitro-constructed ribosomes enable multi-site incorporation of noncanonical amino acids into proteins. Biochemistry 2021, 60 (3), 161-169.
58. Hong, S. H.; Ntai, I.; Haimovich, A. D.; Kelleher, N. L.; Isaacs, F. J.; Jewett, M. C., Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific nonstandard amino acid incorporation. ACS Synth. Biol. 2014, 3 (6), 398-409.
59. Quast, R. B.; Ballion, B.; Stech, M.; Sonnabend, A.; Varga, B. R.; Wüstenhagen, D. A.; Kele, P.; Schiller, S. M.; Kubick, S., Cell-free synthesis of functional human epidermal growth factor receptor: investigation of ligand-independent dimerization in Sf21 microsomal membranes using non-canonical amino acids. Sci. Rep. 2016, 6 (1), 1-13.
60. Stech, M.; Nikolaeva, O.; Thoring, L.; Stöcklein, W.; Wüstenhagen, D.; Hust, M.; Dübel, S.; Kubick, S., Cell-free synthesis of functional antibodies using a coupled in vitro transcription-translation system based on CHO cell lysates. Sci. Rep. 2017, 7 (1), 1-15.
61. Taki, M.; Tokuda, Y.; Ohtsuki, T.; Sisido, M., Design of carrier tRNAs and selection of four-base codons for efficient incorporation of various nonnatural amino acids into proteins in Spodoptera frugiperda 21 (Sf21) insect cell-free translation system. J. Biosci. Bioeng. 2006, 102 (6), 511-517.
62. Lu, Y., Cell-free synthetic biology: engineering in an open world. Synth. Syst. Biotechnol. 2017, 2 (1), 23-27.
63. Zemella, A.; Thoring, L.; Hoffmeister, C.; Kubick, S., Cell‐free protein synthesis: pros and cons of prokaryotic and eukaryotic systems. ChemBioChem 2015, 16 (17), 2420-2431.
64. Shimizu, Y.; Inoue, A.; Tomari, Y.; Suzuki, T.; Yokogawa, T.; Nishikawa, K.; Ueda, T., Cell-free translation reconstituted with purified components. Nat. Biotechnol. 2001, 19 (8), 751-755.
65. Hartman, M. C.; Josephson, K.; Szostak, J. W., Enzymatic aminoacylation of tRNA with unnatural amino acids. Proc. Natl. Acad. Sci. U.S.A. 2006, 103 (12), 4356-4361.
66. Goto, Y.; Katoh, T.; Suga, H., Flexizymes for genetic code reprogramming. Nat. Protoc. 2011, 6 (6), 779-790.
67. Robertson, S. A.; Ellman, J. A.; Schultz, P. G., A general and efficient route for chemical aminoacylation of transfer RNAs. J. Am. Chem. Soc. 1991, 113 (7), 2722-2729.
68. Murakami, H.; Ohta, A.; Ashigai, H.; Suga, H., A highly flexible tRNA acylation method for non-natural polypeptide synthesis. Nat. Methods 2006, 3 (5), 357-359.
69. Fujino, T.; Goto, Y.; Suga, H.; Murakami, H., Ribosomal synthesis of peptides with multiple β-amino acids. J. Am. Chem. Soc. 2016, 138 (6), 1962-1969.
70. Fujino, T.; Goto, Y.; Suga, H.; Murakami, H., Reevaluation of the D-amino acid compatibility with the elongation event in translation. J. Am. Chem. Soc. 2013, 135 (5), 1830-1837.
71. Johnson, J. A.; Lu, Y. Y.; Van Deventer, J. A.; Tirrell, D. A., Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications. Curr. Opin. Chem. Biol. 2010, 14 (6), 774-780.
72. Cowie, D. B.; Cohen, G. N., Biosynthesis by Escherichia coli of active altered proteins containing selenium instead of sulfur. Biochim. Biophys. Acta. 1957, 26 (2), 252-261.
73. Bacher, J. M.; Ellington, A. D., Selection and characterization of Escherichia coli variants capable of growth on an otherwise toxic tryptophan analogue. J. Bacteriol. 2001, 183 (18), 5414-5425.
74. Hoesl, M. G.; Oehm, S.; Durkin, P.; Darmon, E.; Peil, L.; Aerni, H. R.; Rappsilber, J.; Rinehart, J.; Leach, D.; Söll, D., Chemical evolution of a bacterial proteome. Angew. Chem. Int. Ed. 2015, 54 (34), 10030-10034.
75. Merkel, L.; Schauer, M.; Antranikian, G.; Budisa, N., Parallel incorporation of different fluorinated amino acids: on the way to “teflon” proteins. ChemBioChem 2010, 11 (11), 1505-1507.
76. Sun, X.; Dyson, H. J.; Wright, P. E., Fluorotryptophan incorporation modulates the structure and stability of transthyretin in a site-specific manner. Biochemistry 2017, 56 (41), 5570-5581.
77. Greiss, S.; Chin, J. W., Expanding the genetic code of an animal. J. Am. Chem. Soc. 2011, 133 (36), 14196-14199.
78. Bianco, A.; Townsley, F. M.; Greiss, S.; Lang, K.; Chin, J. W., Expanding the genetic code of Drosophila melanogaster. Nat. Chem. Biol. 2012, 8 (9), 748-750.
79. Li, F.; Zhang, H.; Sun, Y.; Pan, Y.; Zhou, J.; Wang, J., Expanding the genetic code for photoclick chemistry in E. coli, mammalian cells, and A. thaliana. Angew. Chem. Int. Ed. 2013, 52 (37), 9700-9704.
80. Liu, J.; Hemphill, J.; Samanta, S.; Tsang, M.; Deiters, A., Genetic code expansion in zebrafish embryos and its application to optical control of cell signaling. J. Am. Chem. Soc. 2017, 139 (27), 9100-9103.
81. Meineke, B.; Heimgärtner, J.; Lafranchi, L.; Elsässer, S. J., Methanomethylophilus alvus Mx1201 provides basis for mutual orthogonal pyrrolysyl tRNA/aminoacyl-tRNA synthetase pairs in mammalian cells. ACS Chem. Biol. 2018, 13 (11), 3087-3096.
82. Kobayashi, T.; Nureki, O.; Ishitani, R.; Yaremchuk, A.; Tukalo, M.; Cusack, S.; Sakamoto, K.; Yokoyama, S., Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion. Nat. Struct. Mol. Biol. 2003, 10 (6), 425-432.
83. Amiram, M.; Haimovich, A. D.; Fan, C.; Wang, Y.-S.; Aerni, H.-R.; Ntai, I.; Moonan, D. W.; Ma, N. J.; Rovner, A. J.; Hong, S. H., Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nat. Biotechnol. 2015, 33 (12), 1272-1279.
84. Borrel, G.; Gaci, N.; Peyret, P.; O'Toole, P. W.; Gribaldo, S.; Brugère, J.-F., Unique characteristics of the pyrrolysine system in the 7th order of methanogens: implications for the evolution of a genetic code expansion cassette. Archaea 2014, 2014.
85. Willis, J. C.; Chin, J. W., Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs. Nat. Chem. 2018, 10 (8), 831-837.
86. Dunkelmann, D. L.; Willis, J. C.; Beattie, A. T.; Chin, J. W., Engineered triply orthogonal pyrrolysyl–tRNA synthetase/tRNA pairs enable the genetic encoding of three distinct non-canonical amino acids. Nat. Chem. 2020, 12 (6), 535-544.
87. Herring, S.; Ambrogelly, A.; Gundllapalli, S.; O'Donoghue, P.; Polycarpo, C. R.; Söll, D., The amino‐terminal domain of pyrrolysyl‐tRNA synthetase is dispensable in vitro but required for in vivo activity. FEBS Lett. 2007, 581 (17), 3197-3203.
88. Nozawa, K.; O’Donoghue, P.; Gundllapalli, S.; Araiso, Y.; Ishitani, R.; Umehara, T.; Söll, D.; Nureki, O., Pyrrolysyl-tRNA synthetase–tRNAPyl structure reveals the molecular basis of orthogonality. Nature 2009, 457 (7233), 1163-1167.
89. Yanagisawa, T.; Ishii, R.; Fukunaga, R.; Kobayashi, T.; Sakamoto, K.; Yokoyama, S., Crystallographic studies on multiple conformational states of active-site loops in pyrrolysyl-tRNA synthetase. J. Mol. Biol. 2008, 378 (3), 634-652.
90. Kavran, J. M.; Gundllapalli, S.; O'Donoghue, P.; Englert, M.; Söll, D.; Steitz, T. A., Structure of pyrrolysyl-tRNA synthetase, an archaeal enzyme for genetic code innovation. Proc. Natl. Acad. Sci. U.S.A. 2007, 104 (27), 11268-11273.
91. Guo, L.-T.; Wang, Y.-S.; Nakamura, A.; Eiler, D.; Kavran, J. M.; Wong, M.; Kiessling, L. L.; Steitz, T. A.; O’Donoghue, P.; Söll, D., Polyspecific pyrrolysyl-tRNA synthetases from directed evolution. Proc. Natl. Acad. Sci. U.S.A. 2014, 111 (47), 16724-16729.
92. Suzuki, T.; Miller, C.; Guo, L.-T.; Ho, J. M.; Bryson, D. I.; Wang, Y.-S.; Liu, D. R.; Söll, D., Crystal structures reveal an elusive functional domain of pyrrolysyl-tRNA synthetase. Nat. Chem. Biol. 2017, 13 (12), 1261-1266.
93. Seki, E.; Yanagisawa, T.; Kuratani, M.; Sakamoto, K.; Yokoyama, S., Fully productive cell-free genetic code expansion by structure-based engineering of Methanomethylophilus alvus pyrrolysyl-tRNA synthetase. ACS Synth. Biol. 2020, 9 (4), 718-732.
94. Beránek, V. c.; Willis, J. C.; Chin, J. W., An evolved Methanomethylophilus alvus pyrrolysyl-tRNA synthetase/tRNA pair is highly active and orthogonal in mammalian cells. Biochemistry 2018, 58 (5), 387-390.
95. Wang, Y.-S.; Fang, X.; Chen, H.-Y.; Wu, B.; Wang, Z. U.; Hilty, C.; Liu, W. R., Genetic incorporation of twelve meta-substituted phenylalanine derivatives using a single pyrrolysyl-tRNA synthetase mutant. ACS Chem. Biol. 2013, 8 (2), 405-415.
96. Tharp, J. M.; Wang, Y.-S.; Lee, Y.-J.; Yang, Y.; Liu, W. R., Genetic incorporation of seven ortho-substituted phenylalanine derivatives. ACS Chem. Biol. 2014, 9 (4), 884-890.
97. Tuley, A.; Wang, Y.-S.; Fang, X.; Kurra, Y.; Rezenom, Y. H.; Liu, W. R., The genetic incorporation of thirteen novel non-canonical amino acids. ChemComm 2014, 50 (20), 2673-2675.
98. Sharma, V.; Wang, Y.-S.; Liu, W. R., Probing the catalytic charge-relay system in alanine racemase with genetically encoded histidine mimetics. ACS Chem. Biol. 2016, 11 (12), 3305-3309.
99. Polycarpo, C. R.; Herring, S.; Bérubé, A.; Wood, J. L.; Söll, D.; Ambrogelly, A., Pyrrolysine analogues as substrates for pyrrolysyl‐tRNA synthetase. FEBS Lett. 2006, 580 (28-29), 6695-6700.
100. Wang, Y.-S.; Wu, B.; Wang, Z.; Huang, Y.; Wan, W.; Russell, W. K.; Pai, P.-J.; Moe, Y. N.; Russell, D. H.; Liu, W. R., A genetically encoded photocaged Nε-methyl-L-lysine. Mol. Biosyst. 2010, 6 (9), 1557-1560.
101. Kurra, Y.; Odoi, K. A.; Lee, Y.-J.; Yang, Y.; Lu, T.; Wheeler, S. E.; Torres-Kolbus, J.; Deiters, A.; Liu, W. R., Two rapid catalyst-free click reactions for in vivo protein labeling of genetically encoded strained alkene/alkyne functionalities. Bioconjugate Chem. 2014, 25 (9), 1730-1738.
102. Zhang, M.; Lin, S.; Song, X.; Liu, J.; Fu, Y.; Ge, X.; Fu, X.; Chang, Z.; Chen, P. R., A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance. Nat. Chem. Biol. 2011, 7 (10), 671-677.
103. Deribe, Y. L.; Pawson, T.; Dikic, I., Post-translational modifications in signal integration. Nat. Struct. Mol. Biol. 2010, 17 (6), 666-672.
104. Ramazi, S.; Zahiri, J., Post-translational modifications in proteins: resources, tools and prediction methods. Database 2021, 2021, baab012.
105. Barber, K. W.; Rinehart, J., The ABCs of PTMs. Nat. Chem. Biol. 2018, 14 (3), 188-192.
106. Nguyen, D. P.; Garcia Alai, M. M.; Kapadnis, P. B.; Neumann, H.; Chin, J. W., Genetically encoding Nɛ-methyl-L-lysine in recombinant histones. J. Am. Chem. Soc. 2009, 131 (40), 14194-14195.
107. Yanagisawa, T.; Takahashi, M.; Mukai, T.; Sato, S.; Wakamori, M.; Shirouzu, M.; Sakamoto, K.; Umehara, T.; Yokoyama, S., Multiple site‐specific installations of Nε‐monomethyl‐L‐lysine into histone proteins by cell‐based and cell‐free protein synthesis. ChemBioChem 2014, 15 (12), 1830-1838.
108. Mukai, T.; Kobayashi, T.; Hino, N.; Yanagisawa, T.; Sakamoto, K.; Yokoyama, S., Adding L-lysine derivatives to the genetic code of mammalian cells with engineered pyrrolysyl-tRNA synthetases. Biochem. Biophys. Res. Commun. 2008, 371 (4), 818-822.
109. Neumann, H.; Peak-Chew, S. Y.; Chin, J. W., Genetically encoding Nε-acetyllysine in recombinant proteins. Nat. Chem. Biol. 2008, 4 (4), 232-234.
110. Wang, Z. U.; Wang, Y.-S.; Pai, P.-J.; Russell, W. K.; Russell, D. H.; Liu, W. R., A facile method to synthesize histones with posttranslational modification mimics. Biochemistry 2012, 51 (26), 5232-5234.
111. Guo, J.; Wang, J.; Lee, J. S.; Schultz, P. G., Site‐specific incorporation of methyl‐and acetyl‐lysine analogues into recombinant proteins. Angew. Chem. Int. Ed. 2008, 47 (34), 6399-6401.
112. Park, H.-S.; Hohn, M. J.; Umehara, T.; Guo, L.-T.; Osborne, E. M.; Benner, J.; Noren, C. J.; Rinehart, J.; Söll, D., Expanding the genetic code of Escherichia coli with phosphoserine. Science 2011, 333 (6046), 1151-1154.
113. Rogerson, D. T.; Sachdeva, A.; Wang, K.; Haq, T.; Kazlauskaite, A.; Hancock, S. M.; Huguenin-Dezot, N.; Muqit, M. M.; Fry, A. M.; Bayliss, R., Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog. Nat. Chem. Biol. 2015, 11 (7), 496-503.
114. Beránek, V.; Reinkemeier, C. D.; Zhang, M. S.; Liang, A. D.; Kym, G.; Chin, J. W., Genetically encoded protein phosphorylation in mammalian cells. Cell Chem. Biol. 2018, 25 (9), 1067-1074.
115. Zhang, M. S.; Brunner, S. F.; Huguenin-Dezot, N.; Liang, A. D.; Schmied, W. H.; Rogerson, D. T.; Chin, J. W., Biosynthesis and genetic encoding of phosphothreonine through parallel selection and deep sequencing. Nat. Methods 2017, 14 (7), 729-736.
116. Hoppmann, C.; Wong, A.; Yang, B.; Li, S.; Hunter, T.; Shokat, K. M.; Wang, L., Site-specific incorporation of phosphotyrosine using an expanded genetic code. Nat. Chem. Biol. 2017, 13 (8), 842-844.
117. Luo, X.; Fu, G.; Wang, R. E.; Zhu, X.; Zambaldo, C.; Liu, R.; Liu, T.; Lyu, X.; Du, J.; Xuan, W., Genetically encoding phosphotyrosine and its nonhydrolyzable analog in bacteria. Nat. Chem. Biol. 2017, 13 (8), 845-849.
118. Thyer, R.; d'Oelsnitz, S.; Blevins, M. S.; Klein, D. R.; Brodbelt, J. S.; Ellington, A. D., Directed evolution of an improved aminoacyl‐tRNA synthetase for incorporation of L‐3, 4‐dihydroxyphenylalanine (L‐DOPA). Angew. Chem. Int. Ed. 2021, 133 (27), 14937-14942.
119. Liu, C. C.; Schultz, P. G., Recombinant expression of selectively sulfated proteins in Escherichia coli. Nat. Biotechnol. 2006, 24 (11), 1436-1440.
120. Dunkelmann, D. L.; Oehm, S. B.; Beattie, A. T.; Chin, J. W., A 68-codon genetic code to incorporate four distinct non-canonical amino acids enabled by automated orthogonal mRNA design. Nat. Chem. 2021, 13 (11), 1110-1117.
121. Guo, L.-T.; Amikura, K.; Jiang, H.-K.; Mukai, T.; Fu, X.; Wang, Y.-S.; O’Donoghue, P.; Söll, D.; Tharp, J. M., Ancestral archaea expanded the genetic code with pyrrolysine. J. Biol. Chem. 2022, 102521.
122. Ambrogelly, A.; Gundllapalli, S.; Herring, S.; Polycarpo, C.; Frauer, C.; Söll, D., Pyrrolysine is not hardwired for cotranslational insertion at UAG codons. Proc. Natl. Acad. Sci. U.S.A. 2007, 104 (9), 3141-3146.
123. Jiang, H.-K.; Lee, M.-N.; Tsou, J.-C.; Chang, K.-W.; Tseng, H.-W.; Chen, K.-P.; Li, Y.-K.; Wang, Y.-S., Linker and N-terminal domain engineering of pyrrolysyl-tRNA synthetase for substrate range shifting and activity enhancement. Front. Bioeng. Biotechnol. 2020, 8, 235.
124. Yanagisawa, T.; Kuratani, M.; Seki, E.; Hino, N.; Sakamoto, K.; Yokoyama, S., Structural basis for genetic-code expansion with bulky lysine derivatives by an engineered pyrrolysyl-tRNA synthetase. Cell Chem. Biol. 2019, 26 (7), 936-949.
125. Li, Y.-M.; Yang, M.-Y.; Huang, Y.-C.; Li, Y.-T.; Chen, P. R.; Liu, L., Ligation of expressed protein α-hydrazides via genetic incorporation of an α-hydroxy acid. ACS Chem. Biol. 2012, 7 (6), 1015-1022.
126. Wang, Y.-S. Expanding genetic code for protein lysine and phenylalanine modifications. 2012, Ph.D. thesis, Texas A&M University, College Station, TX.
127. Yanagisawa, T.; Ishii, R.; Fukunaga, R.; Nureki, O.; Yokoyama, S., Crystallization and preliminary X-ray crystallographic analysis of the catalytic domain of pyrrolysyl-tRNA synthetase from the methanogenic archaeon Methanosarcina mazei. Acta Crystallogr. F 2006, 62 (10), 1031-1033.
128. Otwinowski, Z.; Minor, W., Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997, 276, 307-326.
129. Adams, P. D.; Afonine, P. V.; Bunkoczi, G.; Chen, V. B.; Davis, I. W.; Echols, N.; Headd, J. J.; Hung, L.-W.; Kapral, G. J.; Grosse-Kunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.; Read, R. J.; Richardson, D. C.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P. H., PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 2010, 66 (2), 213-221.
130. Langer, G.; Cohen, S. X.; Lamzin, V. S.; Perrakis, A., Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protocols 2008, 3 (7), 1171-1179.
131. Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K., Features and development of Coot. Acta Crystallogr. D 2010, 66 (4), 486-501.
132. Laskowski, R. A.; MacArthur, M. W.; Moss, D. S.; Thornton, J. M., PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 1993, 26, 283-291.
133. Ledoux, S.; Uhlenbeck, O. C., [3′-32P]-labeling tRNA with nucleotidyltransferase for assaying aminoacylation and peptide bond formation. Methods 2008, 44 (2), 74-80.
134. Chen, X.; Zaro, J. L.; Shen, W.-C., Fusion protein linkers: property, design and functionality. Adv. Drug Deliv. Rev. 2013, 65 (10), 1357-1369.
135. Vargas-Rodriguez, O.; Badran, A. H.; Hoffman, K. S.; Chen, M.; Crnković, A.; Ding, Y.; Krieger, J. R.; Westhof, E.; Söll, D.; Melnikov, S., Bacterial translation machinery for deliberate mistranslation of the genetic code. Proc. Natl. Acad. Sci. U.S.A. 2021, 118 (35), e2110797118.
136. Wolfson, A. D.; Pleiss, J. A.; Uhlenbeck, O. C., A new assay for tRNA aminoacylation kinetics. RNA 1998, 4 (8), 1019-1023.
137. Almhjell, P. J.; Boville, C. E.; Arnold, F. H., Engineering enzymes for noncanonical amino acid synthesis. Chem. Soc. Rev. 2018, 47 (24), 8980-8997.
138. Zhao, J.; Burke, A. J.; Green, A. P., Enzymes with noncanonical amino acids. Curr. Opin. Chem. Biol. 2020, 55, 136-144.
139. Nakamura, N.; Hirose, S., Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. Mol. Biol. Cell 2008, 19 (5), 1903-1911.
140. Bingol, B.; Tea, J. S.; Phu, L.; Reichelt, M.; Bakalarski, C. E.; Song, Q.; Foreman, O.; Kirkpatrick, D. S.; Sheng, M., The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 2014, 510 (7505), 370-375.
141. Cunningham, C. N.; Baughman, J. M.; Phu, L.; Tea, J. S.; Yu, C.; Coons, M.; Kirkpatrick, D. S.; Bingol, B.; Corn, J. E., USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol. 2015, 17 (2), 160-169.
142. Liang, J. R.; Martinez, A.; Lane, J. D.; Mayor, U.; Clague, M. J.; Urbé, S., USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death. EMBO Rep. 2015, 16 (5), 618-627.
143. Gersch, M.; Gladkova, C.; Schubert, A. F.; Michel, M. A.; Maslen, S.; Komander, D., Mechanism and regulation of the Lys6-selective deubiquitinase USP30. Nat. Struct. Mol. 2017, 24 (11), 920-930.
144. Sato, Y.; Okatsu, K.; Saeki, Y.; Yamano, K.; Matsuda, N.; Kaiho, A.; Yamagata, A.; Goto-Ito, S.; Ishikawa, M.; Hashimoto, Y., Structural basis for specific cleavage of Lys6-linked polyubiquitin chains by USP30. Nat. Struct. Mol. 2017, 24 (11), 911-919.
145. Fottner, M.; Brunner, A.-D.; Bittl, V.; Horn-Ghetko, D.; Jussupow, A.; Kaila, V. R.; Bremm, A.; Lang, K., Site-specific ubiquitylation and SUMOylation using genetic-code expansion and sortase. Nat. Chem. Biol. 2019, 15 (3), 276-284.
146. Virdee, S.; Ye, Y.; Nguyen, D. P.; Komander, D.; Chin, J. W., Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. Nat. Chem. Biol. 2010, 6 (10), 750-757.
147. Virdee, S.; Kapadnis, P. B.; Elliott, T.; Lang, K.; Madrzak, J.; Nguyen, D. P.; Riechmann, L.; Chin, J. W., Traceless and site-specific ubiquitination of recombinant proteins. J. Am. Chem. Soc. 2011, 133 (28), 10708-10711.
148. Eger, S.; Scheffner, M.; Marx, A.; Rubini, M., Synthesis of defined ubiquitin dimers. J. Am. Chem. Soc. 2010, 132 (46), 16337-16339.
149. Weikart, N. D.; Sommer, S.; Mootz, H. D., Click synthesis of ubiquitin dimer analogs to interrogate linkage-specific UBA domain binding. ChemComm 2012, 48 (2), 296-298.
150. Zhao, X.; Lutz, J.; Höllmüller, E.; Scheffner, M.; Marx, A.; Stengel, F., Identification of proteins interacting with ubiquitin chains. Angew. Chem. Int. Ed. 2017, 56 (49), 15764-15768.
151. Meledin, R.; Mali, S. M.; Singh, S. K.; Brik, A., Protein ubiquitination via dehydroalanine: development and insights into the diastereoselective 1, 4-addition step. Org. Biomol. Chem. 2016, 14 (21), 4817-4823.
152. Budisa, N.; Rubini, M.; Bae, J. H.; Weyher, E.; Wenger, W.; Golbik, R.; Huber, R.; Moroder, L., Global replacement of tryptophan with aminotryptophans generates non‐invasive protein‐based optical pH sensors. Angew. Chem. Int. Ed. 2002, 41 (21), 4066-4069.
153. Kraft, C. A.; Garrido, J. L.; Leiva-Vega, L.; Romero, G., Quantitative analysis of protein-lipid interactions using tryptophan fluorescence. Sci. Signal. 2009, 2 (99), pl4-pl4.
154. Komarov, A. G.; Linn, K. M.; Devereaux, J. J.; Valiyaveetil, F. I., Modular strategy for the semisynthesis of a K+ channel: investigating interactions of the pore helix. ACS Chem. Biol. 2009, 4 (12), 1029-1038.
155. Xie, Y.; Maxson, T.; Tor, Y., Fluorescent ribonucleoside as a FRET acceptor for tryptophan in native proteins. J. Am. Chem. Soc. 2010, 132 (34), 11896-11897.
156. Hilaire, M. R.; Ahmed, I. A.; Lin, C.-W.; Jo, H.; DeGrado, W. F.; Gai, F., Blue fluorescent amino acid for biological spectroscopy and microscopy. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (23), 6005-6009.
157. Tobola, F.; Lelimousin, M.; Varrot, A.; Gillon, E.; Darnhofer, B.; Blixt, O.; Birner-Gruenberger, R.; Imberty, A.; Wiltschi, B., Effect of noncanonical amino acids on protein–carbohydrate interactions: structure, dynamics, and carbohydrate affinity of a lectin engineered with fluorinated tryptophan analogs. ACS Chem. Biol. 2018, 13 (8), 2211-2219.
158. Minks, C.; Huber, R.; Moroder, L.; Budisa, N., Atomic mutations at the single tryptophan residue of human recombinant annexin V: effects on structure, stability, and activity. Biochemistry 1999, 38 (33), 10649-10659.
159. Muralidharan, V.; Cho, J.; Trester-Zedlitz, M.; Kowalik, L.; Chait, B. T.; Raleigh, D. P.; Muir, T. W., Domain-specific incorporation of noninvasive optical probes into recombinant proteins. J. Am. Chem. Soc. 2004, 126 (43), 14004-14012.
160. Shen, J.-Y.; Chao, W.-C.; Liu, C.; Pan, H.-A.; Yang, H.-C.; Chen, C.-L.; Lan, Y.-K.; Lin, L.-J.; Wang, J.-S.; Lu, J.-F., Probing water micro-solvation in proteins by water catalysed proton-transfer tautomerism. Nat. Commun. 2013, 4 (1), 1-7.
161. Pédelacq, J.-D.; Cabantous, S.; Tran, T.; Terwilliger, T. C.; Waldo, G. S., Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 2006, 24 (1), 79-88.
162. Heim, R.; Prasher, D. C.; Tsien, R. Y., Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. U. S. A. 1994, 91 (26), 12501-12504.
163. Kajihara, D.; Hohsaka, T.; Sisido, M., Synthesis and sequence optimization of GFP mutants containing aromatic non-natural amino acids at the Tyr66 position. Protein Eng. Des. Sel. 2005, 18 (6), 273-278.
164. Ma, H.; Liu, N.; Shi, S.; Wang, S.; Chen, Y., Genetic incorporation of D-amino acids into green fluorescent protein based on polysubstrate specificity. RSC Adv. 2015, 5 (49), 39580-39586.
165. Wang, Y.-S.; Wu, K.-P.; Jiang, H.-K.; Kurkute, P.; Chen, R.-H., Branched ubiquitination: detection methods, biological functions and chemical synthesis. Molecules 2020, 25 (21), 5200.
166. Saha, G.; Sarkar, S.; Mohanta, P. S.; Kumar, K.; Chakrabarti, S.; Basu, M.; Ghosh, M. K., USP7 targets XIAP for cancer progression: Establishment of a p53-independent therapeutic avenue for glioma. Oncogene 2022, 41 (47), 5061-5075.
167. Lecona, E.; Rodriguez-Acebes, S.; Specks, J.; Lopez-Contreras, A. J.; Ruppen, I.; Murga, M.; Munoz, J.; Mendez, J.; Fernandez-Capetillo, O., USP7 is a SUMO deubiquitinase essential for DNA replication. Nat. Struct. Mol. Biol. 2016, 23 (4), 270-277.
168. Biswas, K.; Philip, S.; Yadav, A.; Martin, B. K.; Burkett, S.; Singh, V.; Babbar, A.; North, S. L.; Chang, S.; Sharan, S. K., BRE/BRCC45 regulates CDC25A stability by recruiting USP7 in response to DNA damage. Nat. Commun. 2018, 9 (1), 1-15.
169. Wang, Z.; Kang, W.; You, Y.; Pang, J.; Ren, H.; Suo, Z.; Liu, H.; Zheng, Y., USP7: novel drug target in cancer therapy. Front. Pharmacol. 2019, 10, 427.
170. Adams, A. L.; Cowper, B.; Morgan, R. E.; Premdjee, B.; Caddick, S.; Macmillan, D., Cysteine promoted C‐terminal hydrazinolysis of native peptides and proteins. Angew. Chem. Int. Ed. 2013, 125 (49), 13300-13304.
171. Faesen, A. C.; Dirac, A. M.; Shanmugham, A.; Ovaa, H.; Perrakis, A.; Sixma, T. K., Mechanism of USP7/HAUSP activation by its C-terminal ubiquitin-like domain and allosteric regulation by GMP-synthetase. Mol. Cell 2011, 44 (1), 147-159.
172. Rougé, L.; Bainbridge, T. W.; Kwok, M.; Tong, R.; Di Lello, P.; Wertz, I. E.; Maurer, T.; Ernst, J. A.; Murray, J., Molecular understanding of USP7 substrate recognition and C-terminal activation. Structure 2016, 24 (8), 1335-1345.
173. Faesen, A. C.; Luna-Vargas, M. P.; Geurink, P. P.; Clerici, M.; Merkx, R.; van Dijk, W. J.; Hameed, D. S.; El Oualid, F.; Ovaa, H.; Sixma, T. K., The differential modulation of USP activity by internal regulatory domains, interactors and eight ubiquitin chain types. Chem. Biol. 2011, 18 (12), 1550-1561.
174. Brophy, J. A.; Voigt, C. A., Principles of genetic circuit design. Nat. Methods 2014, 11 (5), 508-520.
175. Engstrom, M. D.; Pfleger, B. F., Transcription control engineering and applications in synthetic biology. Synth. Syst. Biotechnol. 2017, 2 (3), 176-191.
176. Kent, R.; Dixon, N., Contemporary tools for regulating gene expression in bacteria. Trends Biotechnol. 2020, 38 (3), 316-333.
177. Pu, J. Y.; Zinkus-Boltz, J.; Dickinson, B. C., Evolution of a split RNA polymerase as a versatile biosensor platform. Nat. Chem. Biol. 2017, 13 (4), 432-438.
178. Green, A. A.; Silver, P. A.; Collins, J. J.; Yin, P., Toehold switches: de-novo-designed regulators of gene expression. Cell 2014, 159 (4), 925-939.
179. Chen, C.; Yu, G.; Huang, Y.; Cheng, W.; Li, Y.; Sun, Y.; Ye, H.; Liu, T., Genetic-code-expanded cell-based therapy for treating diabetes in mice. Nat. Chem. Biol. 2022, 18 (1), 47-55.
180. Ceroni, F.; Furini, S.; Stefan, A.; Hochkoeppler, A.; Giordano, E., A synthetic post-transcriptional controller to explore the modular design of gene circuits. ACS Synth. Biol. 2012, 1 (5), 163-171.
181. Nodling, A. R.; Spear, L. A.; Williams, T. L.; Luk, L. Y. P.; Tsai, Y. H., Using genetically incorporated unnatural amino acids to control protein functions in mammalian cells. Single Cell Biol. 2019, 63 (2), 237-266.
182. Kato, Y., Translational control using an expanded genetic code. Int. J. Mol. Sci. 2019, 20 (4), 887.
183. Krahn, N.; Tharp, J. M.; Crnković, A.; Söll, D., Engineering aminoacyl-tRNA synthetases for use in synthetic biology. Enzymes 2020, 48, 351-395.
184. Kadunc, L.; Svetlicic, M.; Forstneric, V.; Hafner Bratkovic, I.; Jerala, R., Increased gene translation stringency in mammalian cells by nonsense suppression at multiple permissive sites with a single noncanonical amino acid. FEBS Lett. 2020, 594 (15), 2452-2461.
185. Wang, F.; Robbins, S.; Guo, J. T.; Shen, W. J.; Schultz, P. G., Genetic incorporation of unnatural amino acids into proteins in Mycobacterium tuberculosis. Plos One 2010, 5 (2), e9354.
186. Rovner, A. J.; Haimovich, A. D.; Katz, S. R.; Li, Z.; Grome, M. W.; Gassaway, B. M.; Amiram, M.; Patel, J. R.; Gallagher, R. R.; Rinehart, J.; Isaacs, F. J., Recoded organisms engineered to depend on synthetic amino acids. Nature 2015, 518 (7537), 89-93.
187. Mandell, D. J.; Lajoie, M. J.; Mee, M. T.; Takeuchi, R.; Kuznetsov, G.; Norville, J. E.; Gregg, C. J.; Stoddard, B. L.; Church, G. M., Biocontainment of genetically modified organisms by synthetic protein design. Nature 2015, 518 (7537), 55-60.
188. Yuan, Z.; Wang, N.; Kang, G.; Niu, W.; Li, Q.; Guo, J., Controlling multicycle replication of live-attenuated HIV-1 using an unnatural genetic switch. ACS Synth. Biol. 2017, 6 (4), 721-731.
189. Mills, E. M.; Barlow, V. L.; Jones, A. T.; Tsai, Y. H., Development of mammalian cell logic gates controlled by unnatural amino acids. Cell Rep. Methods 2021, 1 (6), 100073.
190. Minaba, M.; Kato, Y., High-yield, zero-leakage expression system with a translational switch using site-specific unnatural amino acid incorporation. Appl. Environ. Microbiol. 2014, 80 (5), 1718-1725.
191. Kwok, H. S.; Vargas-Rodriguez, O.; Melnikov, S. V.; Söll, D., Engineered aminoacyl-tRNA synthetases with improved selectivity toward noncanonical amino acids. ACS Chem. Biol. 2019, 14 (4), 603-612.
192. Kunjapur, A. M.; Stork, D. A.; Kuru, E.; Vargas-Rodriguez, O.; Landon, M.; Söll, D.; Church, G. M., Engineering posttranslational proofreading to discriminate nonstandard amino acids. Proc. Natl. Acad. Sci. U.S.A. 2018, 115 (3), 619-624.
193. Wang, L.; Schultz, P. G., A general approach for the generation of orthogonal tRNAs. Chem. Biol. 2001, 8 (9), 883-890.
194. Lim, S. A.; Wells, J. A., Split enzymes: design principles and strategy. Meth. Enzymol. 2020, 644, 275-296.
195. Rihtar, E.; Lebar, T.; Lainscek, D.; Kores, K.; Lesnik, S.; Bren, U.; Jerala, R., Chemically inducible split protein regulators for mammalian cells. Nat. Chem. Biol. 2023, 19, 64-71.
196. Jones, K. A.; Kentala, K.; Beck, M. W.; An, W.; Lippert, A. R.; Lewis, J. C.; Dickinson, B. C., Development of a split esterase for protein-protein interaction-dependent small-molecule activation. ACS Cent. Sci. 2019, 5 (11), 1768-1776.
197. Wehr, M. C.; Laage, R.; Bolz, U.; Fischer, T. M.; Grunewald, S.; Scheek, S.; Bach, A.; Nave, K. A.; Rossner, M. J., Monitoring regulated protein-protein interactions using split TEV. Nat. Methods 2006, 3 (12), 985-93.
198. Berrios, K. N.; Evitt, N. H.; DeWeerd, R. A.; Ren, D. Q.; Luo, M. Q.; Barka, A.; Wang, T.; Bartman, C. R.; Lan, Y. M.; Green, A. M.; Shi, J. W.; Kohli, R. M., Controllable genome editing with split-engineered base editors. Nat. Chem. Biol. 2021, 17 (12), 1262-1270.
199. Levy, J. M.; Yeh, W. H.; Pendse, N.; Davis, J. R.; Hennessey, E.; Butcher, R.; Koblan, L. W.; Comander, J.; Liu, Q.; Liu, D. R., Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 2020, 4 (1), 97-110.
200. Wright, A. V.; Sternberg, S. H.; Taylor, D. W.; Staahl, B. T.; Bardales, J. A.; Kornfeld, J. E.; Doudna, J. A., Rational design of a split-Cas9 enzyme complex. Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (10), 2984-2989.
201. Mahdavi, A.; Segall-Shapiro, T. H.; Kou, S.; Jindal, G. A.; Hoff, K. G.; Liu, S.; Chitsaz, M.; Ismagilov, R. F.; Silberg, J. J.; Tirrell, D. A., A genetically encoded and gate for cell-targeted metabolic labeling of proteins. J. Am. Chem. Soc. 2013, 135 (8), 2979-2982.
202. Thomas, E. E.; Pandey, N.; Knudsen, S.; Ball, Z. T.; Silberg, J. J., Programming post-translational control over the metabolic labeling of cellular proteins with a noncanonical amino acid. ACS Synth. Biol. 2017, 6 (8), 1572-1583.
203. Dumas, A.; Lercher, L.; Spicer, C. D.; Davis, B. G., Designing logical codon reassignment - expanding the chemistry in biology. Chem. Sci. 2015, 6 (1), 50-69.
204. Liu, J.; Cheng, R.; Van Eps, N.; Wang, N.; Morizumi, T.; Ou, W. L.; Klauser, P. C.; Rozovsky, S.; Ernst, O. P.; Wang, L., Genetically encoded quinone methides enabling rapid, site-specific, and photocontrolled protein modification with amine reagents. J. Am. Chem. Soc. 2020, 142 (40), 17057-17068.
205. Yamaguchi, A.; Iraha, F.; Ohtake, K.; Sakamoto, K., Pyrrolysyl-tRNA synthetase with a unique architecture enhances the availability of lysine derivatives in synthetic genetic codes. Molecules 2018, 23 (10), 2460.
206. Fischer, J. T.; Söll, D.; Tharp, J. M., Directed evolution of Methanomethylophilus alvus pyrrolysyl-tRNA synthetase generates a hyperactive and highly selective variant. Front. Mol. Biosci. 2022, 9, 850613.
207. Gottfried-Lee, I.; Perona, J. J.; Karplus, P. A.; Mehl, R. A.; Cooley, R. B., Structures of Methanomethylophilus alvus pyrrolysine tRNA-synthetases support the need for de novo selections when altering the substrate specificity. ACS Chem. Biol. 2022, 17 (12), 3470-3477.
208. Thompson, K. E.; Bashor, C. J.; Lim, W. A.; Keating, A. E., SYNZIP protein interaction toolbox: in vitro and in vivo specifications of heterospecific coiled-coil interaction domains. ACS Synth. Biol. 2012, 1 (4), 118-129.
209. Umehara, T.; Kim, J.; Lee, S.; Guo, L. T.; Söll, D.; Park, H. S., N-acetyl lysyl-tRNA synthetases evolved by a CcdB-based selection possess N-acetyl lysine specificity in vitro and in vivo. FEBS Lett. 2012, 586 (6), 729-733.
210. Kobayashi, T.; Nureki, O.; Ishitani, R.; Yaremchuk, A.; Tukalo, M.; Cusack, S.; Sakamoto, K.; Yokoyama, S., Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion. Nat. Struct. Mol. Biol. 2003, 10 (6), 425-432.
211. Kale, J.; Osterlund, E. J.; Andrews, D. W., BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 2018, 25 (1), 65-80.
212. Czabotar, P. E.; Lessene, G.; Strasser, A.; Adams, J. M., Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 2014, 15 (1), 49-63.
213. Bolomsky, A.; Vogler, M.; Köse, M. C.; Heckman, C. A.; Ehx, G.; Ludwig, H.; Caers, J., MCL-1 inhibitors, fast-lane development of a new class of anti-cancer agents. J Hematol. Oncol. 2020, 13 (1), 1-19.
214. Cory, S.; Roberts, A. W.; Colman, P. M.; Adams, J. M., Targeting BCL-2-like proteins to kill cancer cells. Trends Cancer 2016, 2 (8), 443-460.
215. Belouzard, S.; Millet, J. K.; Licitra, B. N.; Whittaker, G. R., Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 2012, 4 (6), 1011-33.
216. Li, F., Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 2016, 3 (1), 237-261.
217. Zhang, Q. Q.; Xiang, R.; Huo, S. S.; Zhou, Y. J.; Jiang, S. B.; Wang, Q.; Yu, F., Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct. Target Ther. 2021, 6 (1), 1-19.
218. Xia, S.; Yan, L.; Xu, W.; Agrawal, A. S.; Algaissi, A.; Tseng, C. K.; Wang, Q.; Du, L.; Tan, W.; Wilson, I. A.; Jiang, S.; Yang, B.; Lu, L., A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Sci. Adv. 2019, 5 (4), eaav4580.
219. de Vries, R. D.; Schmitz, K. S.; Bovier, F. T.; Predella, C.; Khao, J.; Noack, D.; Haagmans, B. L.; Herfst, S.; Stearns, K. N.; Drew-Bear, J.; Biswas, S.; Rockx, B.; McGill, G.; Dorrello, N. V.; Gellman, S. H.; Alabi, C. A.; de Swart, R. L.; Moscona, A.; Porotto, M., Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets. Science 2021, 371 (6536), 1379-1382.
220. Xing, L.; Xu, X.; Xu, W.; Liu, Z.; Shen, X.; Zhou, J.; Xu, L.; Pu, J.; Yang, C.; Huang, Y.; Lu, L.; Jiang, S.; Liu, S., A five-helix-based SARS-CoV-2 fusion inhibitor targeting heptad repeat 2 domain against SARS-CoV-2 and its variants of concern. Viruses 2022, 14 (3), 597.
221. Sun, Y.; Zhang, H.; Shi, J.; Zhang, Z.; Gong, R., Identification of a novel inhibitor against middle east respiratory syndrome coronavirus. Viruses 2017, 9 (9), 255.
222. Banaszynski, L. A.; Liu, C. W.; Wandless, T. J., Characterization of the FKBP·rapamycin·FRB ternary complex. J. Am. Chem. Soc. 2005, 127 (13), 4715-4721.
223. Choi, J.; Chen, J.; Schreiber, S. L.; Clardy, J., Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 1996, 273 (5272), 239-242.
224. Liang, F. S.; Ho, W. Q.; Crabtree, G. R., Engineering the ABA plant stress pathway for regulation of induced proximity. Sci. Signal. 2011, 4 (164), rs2-rs2.
225. Wang, B.; Kitney, R. I.; Joly, N.; Buck, M., Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat. Commun. 2011, 2 (1), 1-9.
226. Bordoy, A. E.; O'Connor, N. J.; Chatterjee, A., Construction of two-input logic gates using transcriptional interference. ACS Synth. Biol. 2019, 8 (10), 2428-2441.
227. Szymczak, A. L.; Vignali, D. A., Development of 2A peptide-based strategies in the design of multicistronic vectors. Expert Opin. Biol. Ther. 2005, 5 (5), 627-638.
228. Yang, T. T.; Sinai, P.; Kitts, P. A.; Kain, S. R., Quantification of gene expression with a secreted alkaline phosphatase reporter system. Biotechniques 1997, 23 (6), 1110-1114.
229. Si, L.; Xu, H.; Zhou, X.; Zhang, Z.; Tian, Z.; Wang, Y.; Wu, Y.; Zhang, B.; Niu, Z.; Zhang, C.; Fu, G.; Xiao, S.; Xia, Q.; Zhang, L.; Zhou, D., Generation of influenza A viruses as live but replication-incompetent virus vaccines. Science 2016, 354 (6316), 1170-1173.
230. Suzuki, T.; Asami, M.; Patel, S. G.; Luk, L. Y. P.; Tsai, Y. H.; Perry, A. C. F., Switchable genome editing via genetic code expansion. Sci. Rep. 2018, 8 (1), 1-12.
231. Davis, L.; Radman, I.; Goutou, A.; Tynan, A.; Baxter, K.; Xi, Z.; O'Shea, J. M.; Chin, J. W.; Greiss, S., Precise optical control of gene expression in C. elegans using improved genetic code expansion and Cre recombinase. Elife 2021, 10, e67075.
232. Tharp, J. M.; Hampton, J.; Reed, C. A.; Ehnbom, A.; Chen, P.-H. C.; Morse, J. S.; Kurra, Y.; Pérez, L. M.; Xu, S.; Liu, W. R., An amber obligate active site-directed ligand evolution technique for phage display. Nat. Commun. 2020, 11 (1), 1-14.
233. Neumann-Staubitz, P.; Neumann, H., The use of unnatural amino acids to study and engineer protein function. Curr. Opin. Struct. Biol. 2016, 38, 119-128.
234. Reddy Chichili, V. P.; Kumar, V.; Sivaraman, J., Linkers in the structural biology of protein–protein interactions. Protein Sci. 2013, 22 (2), 153-167.
235. Chen, X.; Zaro, J. L.; Shen, W.-C., Fusion protein linkers: property, design and functionality. Adv. Drug Deliv. Rev. 2013, 65 (10), 1357-1369.
236. Eldridge, B.; Cooley, R. N.; Odegrip, R.; McGregor, D. P.; FitzGerald, K. J.; Ullman, C. G., An in vitro selection strategy for conferring protease resistance to ligand binding peptides. Protein Eng. Des. Sel. 2009, 22 (11), 691-698.
237. Whitlow, M.; Bell, B. A.; Feng, S.-L.; Filpula, D.; Hardman, K. D.; Hubert, S. L.; Rollence, M. L.; Wood, J. F.; Schott, M. E.; Milenic, D. E., An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng. Des. Sel. 1993, 6 (8), 989-995.
238. Robinson, C. R.; Sauer, R. T., Optimizing the stability of single-chain proteins by linker length and composition mutagenesis. Proc. Natl. Acad. Sci. U.S.A. 1998, 95 (11), 5929-5934.
239. Huston, J. S.; Levinson, D.; Mudgett-Hunter, M.; Tai, M.-S.; Novotný, J.; Margolies, M. N.; Ridge, R. J.; Bruccoleri, R. E.; Haber, E.; Crea, R., Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1988, 85 (16), 5879-5883.
240. Shao, J.; Kuiper, B. P.; Thunnissen, A.-M. W.; Cool, R. H.; Zhou, L.; Huang, C.; Dijkstra, B. W.; Broos, J., The role of tryptophan in π interactions in proteins: an experimental approach. J. Am. Chem. Soc. 2022, 144 (30), 13815-13822.
241. Dougherty, D. A., Cation-π interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 1996, 271 (5246), 163-168.
242. Lucas, X.; Bauzá, A.; Frontera, A.; Quinonero, D., A thorough anion–π interaction study in biomolecules: on the importance of cooperativity effects. Chem. Sci. 2016, 7 (2), 1038-1050.
243. Burley, S.; Petsko, G. A., Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 1985, 229 (4708), 23-28.
244. Andersen, O.; Greathouse, D.; Providence, L.; Becker, M.; Koeppe, R., Importance of tryptophan dipoles for protein function: 5-fluorination of tryptophans in gramicidin A channels. J. Am. Chem. Soc. 1998, 120 (21), 5142-5146.
245. Barik, S., The uniqueness of tryptophan in biology: properties, metabolism, interactions and localization in proteins. Int. J. Mol. Sci. 2020, 21 (22), 8776.
246. Khemaissa, S.; Sagan, S.; Walrant, A., Tryptophan, an amino-acid endowed with unique properties and its many roles in membrane proteins. Crystals 2021, 11 (9), 1032.
247. Chaturvedi, D.; Mahalakshmi, R., Position—Specific contribution of interface tryptophans on membrane protein energetics. Biochim. Biophys. Acta - Biomembr. 2018, 1860 (2), 451-457.
248. Kleinberger-Doron, N.; Kanner, B. I., Identification of tryptophan residues critical for the function and targeting of the gamma-aminobutyric acid transporter (subtype A). J. Biol. Chem. 1994, 269 (4), 3063-3067.
249. Markovic-Housley, Z.; Stolz, B.; Lanz, R.; Erni, B., Effects of tryptophan to phenylalanine substitutions on the structure, stability, and enzyme activity of the IIABMan subunit of the mannose transporter of Escherichia coli. Protein Sci. 1999, 8 (7), 1530-1535.
250. Cheng, Z.; Kuru, E.; Sachdeva, A.; Vendrell, M., Fluorescent amino acids as versatile building blocks for chemical biology. Nat. Rev. Chem. 2020, 4(6), 275-290.
251. Kajihara, D.; Abe, R.; Iijima, I.; Komiyama, C.; Sisido, M.; Hohsaka, T., FRET analysis of protein conformational change through position-specific incorporation of fluorescent amino acids. Nat. Methods 2006, 3 (11), 923-929.
252. Kuhn, S. M.; Rubini, M.; Müller, M. A.; Skerra, A., Biosynthesis of a fluorescent protein with extreme pseudo-Stokes shift by introducing a genetically encoded non-natural amino acid outside the fluorophore. J. Am. Chem. Soc. 2011, 133 (11), 3708-3711.
253. Kalstrup, T.; Blunck, R., Dynamics of internal pore opening in KV channels probed by a fluorescent unnatural amino acid. Proc. Natl. Acad. Sci. U.S.A. 2013, 110 (20), 8272-8277.
254. Speight, L. C.; Muthusamy, A. K.; Goldberg, J. M.; Warner, J. B.; Wissner, R. F.; Willi, T. S.; Woodman, B. F.; Mehl, R. A.; Petersson, E. J., Efficient synthesis and in vivo incorporation of acridon-2-ylalanine, a fluorescent amino acid for lifetime and Förster resonance energy transfer/luminescence resonance energy transfer studies. J. Am. Chem. Soc. 2013, 135 (50), 18806-18814.
255. Lampkowski, J. S.; Uthappa, D. M.; Young, D. D., Site-specific incorporation of a fluorescent terphenyl unnatural amino acid. Bioorg. Med. Chem. Lett. 2015, 25 (22), 5277-5280.
256. Guo, H.; Yang, Y.; Xue, F.; Zhang, H.; Huang, T.; Liu, W.; Liu, H.; Zhang, F.; Yang, M.; Liu, C., Effect of flexible linker length on the activity of fusion protein 4-coumaroyl-CoA ligase:: stilbene synthase. Mol. Biosyst. 2017, 13 (3), 598-606.
257. Shan, D.; Press, O. W.; Tsu, T. T.; Hayden, M. S.; Ledbetter, J. A., Characterization of scFv-Ig constructs generated from the anti-CD20 mAb 1F5 using linker peptides of varying lengths. J. Immunol. 1999, 162 (11), 6589-6595.
258. Lu, P.; Feng, M.-G., Bifunctional enhancement of a β-glucanase-xylanase fusion enzyme by optimization of peptide linkers. Appl. Microbiol. Biotechnol. 2008, 79 (4), 579-587.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *