帳號:guest(18.117.166.181)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):宋桓宇
作者(外文):Sung, Huan-Yu
論文名稱(中文):氣相超快光游離誘發雙官能基陽離子內之電荷轉移動態學研究
論文名稱(外文):Gas-Phase Ultrafast Photoionization Induced Charge-Transfer Dynamic in Bifunctional Cations
指導教授(中文):鄭博元
指導教授(外文):Cheng, Po-Yuan
口試委員(中文):周佳駿
王念夏
口試委員(外文):Chou, Chia-Chun
Wang, Nian-Sia
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:106023569
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:80
中文關鍵詞:電荷轉移
外文關鍵詞:charge transfer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:181
  • 評分評分:*****
  • 下載下載:29
  • 收藏收藏:0
本論文中,我們利用飛秒泵浦-探測光游離-光裂解(Femtosecond Pump-Probe Photoionization-Photofragmentation)光譜術結合質譜偵測技術研究一系列三碳橋官能基系統: N,N-dimethyl-3-phenylpropan-1-amine (DMPPA)、N-Methyl-N-(3-phenylpropyl)amine (MPPA)及3-phenylpropan-1-amine (PPA)陽離子的電荷轉移反應動態學並和實驗室前人所做之兩碳鏈橋系列分子: 2-phenylethyl-N,N-dimethylamine (PENNA)、N-methylphenethylamine (MPEA)及2-phenylethylamine (PEA)結果做比較。本實驗利用1+1 REMPI技術使在S0 state分子先吸收一個泵浦雷射光子(λpump = 266.1 nm)到達S1 state再吸收第二個泵浦雷射光子游離化上述分子,由於我們是利用苯端當作發色團,因此初始產生之陽離子應該在苯端產生局部游離化,亦即正電荷較集中於苯端,相當於陽離子之第一激發態(D1),接著導入探測雷射(λprobe = 798.3 nm)將陽離子打到更高能的激發態後碎裂,藉由調控不同的泵浦-探測脈衝延遲時間擷取離子訊號,得到離子損耗瞬時光譜,並以連續反應動力學模型進行適解,進而獲取上述分子系統離子態之動態學資訊。DMPPA+、MPPA+和PPA+的損耗瞬時光譜分別得到兩至三個時間常數,三者均有次皮秒之常數τ1,我們利用無電荷轉移行為的分子PPAL (phenylpropyl alcohol)離子之瞬時訊號適解結果比較,認為DMPPA+、MPPA+及PPA+內的電子轉移過程約分別為0.2、0.22、0.16 ps,另外我們推測τ2及τ3應為電荷轉移之後構型緩解過程,但構型動態學非本次實驗目的,故不多做討論。最後,將兩組陽離子之電荷轉移時間常數作比較,我們發現碳鏈橋長度增加,並未對電荷轉移速率產生明顯系統性的變化,在雙甲基胺系列中三碳橋(DMPPA+)與兩碳橋(PENNA+)電荷轉移速率變化不大;而在單甲基胺系列中三碳橋(MPPA+)比兩碳橋(MPEA+)電荷轉移速率有些微變快現象,至於無甲基胺系列,三碳橋(PPA+)比兩碳橋(PEA+)之電荷轉移速率則是變慢。綜合以上,吾人了解到在雙官能基分子中,電荷轉移可藉由鍵或是空間中的傳遞,兩機制在不同系統皆有大小不一之貢獻。
In this thesis, we study the ultrafast charge-transfer (CT) dynamics in a series of three-carbon-bridged bichromophore molecular systems: N,N-dimethyl-3-phenylpropan-1-amine (DMPPA), N-Methyl-N-(3-phenylpropyl)amine (MPPA) and 3-phenylpropan-1-amine (PPA), after photoionization using the femtosecond pump-probe photoionization-photofragmentation (fs-PIPF) spectroscopy. We also compare our results with those of previous studies on similar two-carbon-bridged molecules: 2-phenylethyl-N,N-dimethylamine (PENNA), N-methylphenethylamine (MPEA) and 2-phenylethylamine (PEA). We utilize the femtosecond 1+1 resonance-enhanced multiphoton ionization via their S1 state, and the subsequent dynamics occurring in the cations is probed by delayed pulses that result in ion fragmentation. By monitoring ion singal while scanning the pump-probe delay time, we can acquire ion depletion transients. We found that there are two or three time constants in ion depletion transients of DMPPA+, MPPA+ and PPA+, and all have a sub-picosecond time constant τ1. In comparison with the fitting results of a non-CT system, phenylpropyl alcohol (PPAL), we identify the CT process in DMPPA+, MPPA+ and PPA+ to be about 0.2, 0.22, 0.16 ps, respectively. Besides, we assigned τ2 and τ3 to the conformational relaxation process after CT. However, conformational dynamics is not the purpose of our experiment, therefore, we do not focus on the details of such processes. Finally, we observe that there is no clear systematic dependence of the CT rate on the length of the carbon bridge. In dimethyl amine series, the CT rates are almost the same;however, in monomethyl amine series, the CT rate increases in MPPA+ but in nonmethyl amine series, the CT rate decreases in PPA+. In conclusion, we speculate that the charge transfer may proceed through bonds and/or space in these molecular systems, making the bridge-length effect not pronounced.
第 1 章 緒論......1
1.1 前言......1
1.2 文獻資料回顧......3
1.3 研究動機:與前人實驗之比較......7
第 2 章 實驗系統與技術......10
2.1泵浦-探測共振增強多光子游離技術......10
2.2 超快飛秒雷射系統......13
2.2.1 雷射產生源......13
2.2.2.能量再生放大器......19
2.3波長調變器......25
2.3.1 倍頻與混頻技術......25
2.4分子束系統......26
2.4.1分子束樣品進氣裝置......30
2.4.2分子束實驗裝置......31
2.5飛行時間質譜儀.......32
2.6實驗架設圖......36
2.7訊號擷取系統......37
2.8儀器響應函數(Instrument response function, IRF)......39
2.9 藥品的取得及使用……40

第 3 章 實驗結果與討論......41
3.1 DMPPA+泵浦-探測光游離-光裂解實驗條件......41
3.1.1 DMPPA、PENNA質譜圖比較......42
3.1.2 PPA、PEA質譜圖比較......44
3.1.3 DMPPA、MPPA及PPA之質譜與雷射脈衝能量依存性......47
3.1.4 DMPPA+、MPPA+、PPA+母離子及碎片離子訊號對雷射脈衝能量之依存性…...49
3.1.5時間解析質譜(Time Resolved Mass Spectra, TR-MS).......54
3.1.6 DMPPA陽離子光游離-光裂解離子損耗光譜.….56
3.1.7雷射能量依存性......57
3.2 DMPPA、MPPA、PPA離子損耗瞬時光譜比較......61
3.2.1 DMPPA、MPPA、PPA離子態能量比較......61
3.2.2 DMPPA、MPPA、PPA離子損耗瞬時光譜圖比較......62
3.3數據分析:以動力學模型適解瞬時損耗訊號......63
3.3.1適解DMPPA+、MPPA+、PPA+之損耗瞬時訊號......64
3.3.2 無電子轉移對照組一: PPAL離子損耗瞬時訊號......68
3.3.3 無電子轉移對照組二: PPN離子瞬時訊號......71
3.4綜合討論......72
第 4 章 結論......76
參考文獻......78
1. J. Barber and B. Andersson, Nature 370, 31 (1994).
2. G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, Nat. Chem. 3, 763 (2011).
3. A. Shah, B. Adhikari, S. Martic, A. Munir, S. Shahzad, K. Ahmad, and H.-B. Kraatz, Chem. Soc. Rev. 44, 1015 (2015).
4. E. W. Schlag, S. Y. Sheu, D. Y. Yang, H. L. Selzle, and S. H. Lin, Angew. Chem. Int. Ed. 46, 3196 (2007).
5. E. W. Schlag, S. Y. Sheu, D. Y. Yang, H. L. Selzle, and S. H. Lin, Proc. Natl. Acad. Sci. U.S.A. 97, 1068 (2000).
6. E. Meggers, M. E. Michel-Beyerle, and B. Giese, J. Am. Chem. Soc. 120, 12950 (1998).
7. K. Kawai and T. Majima, ‎Acc. Chem. Res. 46, 2616 (2013).
8. S. S. Isied, M. Y. Ogawa, and J. F. Wishart, Chem. Rev. 92, 381 (1992).
9. M. R. Wasielewski, Chem. Rev. 92, 435 (1992).
10. M. Gilbert and B. Albinsson, Chem. Soc. Rev 44, 845 (2015).
11. F. D. Lewis, R. L. Letsinger, and M. R. Wasielewski, Acc. Chem. Res. 34, 159 (2001).
12. D. M. Adams, L. Brus, C. E. D. Chidsey, S. Creager, C. Creutz, C. R. Kagan, P. V. Kamat, M. Lieberman, S. Lindsay, R. A. Marcus, R. M. Metzger, M. E. Michel-Beyerle, J. R. Miller, M. D. Newton, D. R. Rolison, O. Sankey, K. S. Schanze, J. Yardley, and X. Y. Zhu, J. Phys. Chem. B. 107, 6668 (2003).
13. W. B. Davis, W. A. Svec, M. A. Ratner, and M. R. Wasielewski, Nature 396, 60 (1998).
14. J. Jortner, M. Bixon, H. Heitele, and M. E. Michelbeyerle, Chem. Phys. Lett. 197, 131 (1992).
15. J. Jortner, M. Bixon, B. Wegewijs, J. W. Verhoeven, and R. P. H. Rettschnick, Chem. Phys. Lett. 205, 451 (1993).
16. R. Weinkauf, P. Schanen, D. Yang, S. Sonkara, and E. W. Schlag, J. Phys. Chem-Us. 99, 11255 (1995).
17. R. Weinkauf, P. Schanen, A. Metsala, E. W. Schlag, M. Burgle, and H. Kessler, J. Phys. Chem. 100, 18567 (1996).
18. P. F. Barbara, T. J. Meyer, and M. A. Ratner, J. Phys. Chem. 100, 13148 (1996).
19. J. Jiang, A. Alsam, S. Wang, S. M. Aly, Z. Pan, O. F. Mohammed, and K. S. Schanze, J. Phys. Chem. A. 121, 4891 (2017).
20. Y. Shibano, H. Imahori, P. Sreearunothai, A. R. Cook, and J. R. Miller, J. Phys. Chem. Lett. 1, 1492 (2010).
21. J. W. Ho, W. K. Chen, and P. Y. Cheng, J. Chem. Phys. 131, 134308 (2009).
22. C. C. Shen, T. T. Tsai, J. W. Ho, Y. W. Chen, and P. Y. Cheng, J. Chem. Phys. 141 (2014).
23. C. C. Shen, T. T. Tsai, J. Y. Wu, J. W. Ho, Y. W. Chen, and P. Y. Cheng, J. Chem. Phys. 147 (2017).
24. J. Yao, H. S. Im, M. Foltin, and E. R. Bernstein, J. Phys. Chem. A. 104, 6197 (2000).
25. R. Weinkauf, L. Lehr, and A. Metsala, J. Phys. Chem. A. 107, 2787 (2003).
26. W. Cheng, N. Kuthirummal, J. L. Gosselin, T. I. Solling, R. Weinkauf, and P. M. Weber, J. Phys. Chem. A. 109, 1920 (2005).
27. L. Lehr, T. Horneff, R. Weinkauf, and E. W. Schlag, J. Phys. Chem. A. 109, 8074 (2005).
28. E. W. Schlag, H. L. Selzle, P. Schanen, R. Weinkauf, and R. D. Levine, J. Phys. Chem. A. 110, 8497 (2006).
29. S. T. Sun, B. Mignolet, L. Fan, W. Li, R. D. Levine, and F. Remacle, J. Phys. Chem. A. 121, 1442 (2017).
30. G. L. Closs, L. T. Calcaterra, N. J. Green, K. W. Penfield, and J. R. Miller, J. Phys. Chem-Us. 90, 3673 (1986).
31. G. L. CLOSS and J. R. MILLER, Science 240, 440 (1988).
32. M. D. Johnson, J. R. Miller, N. S. Green, and G. L. Closs, J. Phys. Chem-Us. 93, 1173 (1989).
33. 周威銧, 胞嘧啶之氣相超快激發態動態學研究:激發態衰減時間與激發能量的依存性,in 化學系. 2008, 國立清華大學: 新竹市. p. 106.
34. 蔡宗廷, 超快光游離誘發酚-氨錯合物陽離子內之質子轉移動態學研究,in 化學系. 2015, 國立清華大學: 新竹市. p. 106.
35. 陳依微, 酚-氨陽離子錯合物中之超快質子轉移反應動態學研究,in 化學系. 2011, 國立清華大學: 新竹市. p. 91.
36. 何智偉, 氣相飛秒化學反應動態學研究1.二甲基亞碸之超快三體光解反應動態學2.偶氮苯陽離子在異構化途徑之同調振動,in 化學系. 2008, 國立清華大學: 新竹市. p. 226.
37. Eldredge, B.A.A.P., General Chemistry: Principles, Patterns, and Applications, v. 1.0 (2 Volume Set).
38. Smalley, R.E., L. Wharton, and D.H. Levy, Acc. Chem. Res. 10, 139 (1977).
39. Wiley, W.C. and I.H. McLaren, Rev. Sci. Instrum. 26, 1150 (1955).
40. 鄭博元教授, Conference in Memory of the Nobel Laureate Ahmed Zewail 演講之投影片(2018).
41. 楊博竣, 超快光游離誘發2-苯基乙基-N,N-二甲基胺陽離子內之電荷轉移動態學研究,in 化學系. 2018, 國立清華大學: 新竹市.
42. 鄭博元教授, ACS National Meeting _ Boston 演講之投影片(2018).
43. NIST網站 (https://webbook.nist.gov).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用飛秒雷射光譜技術研究丙酮與二甲基亞碸分子之三體光分解反應動態學
2. 大氣中小分子吸收光譜之研究 1. 利用共振腔振盪衰減法研究CO及CH3OO近紅外吸收光譜 2. 利用同步輻射光研究H2O及其同位素分子之真空紫外吸收光譜
3. 氣相飛秒化學反應動態學研究 1.二甲基亞碸之超快三體光解反應動態學 2.偶氮苯陽離子在異構化途徑之同調振動
4. 以時間解析螢光光譜研究苯乙烯比啶分子及其銥錯合物之光化學
5. 分子衍生物在溶液中單體與聚集體之光譜研究
6. 氣相飛秒瞬時吸收光譜之建立與應用
7. 1.反應S(3P)+OCS、S(3P)+O2、及O(3P)+SO2之高溫化學動力學研究。2.敏化InN/TiO2太陽能電池材料之研究
8. 利用簡併四波混頻光譜法在超音波射束中研究HS自由基之高預解離電子態A2Σ+
9. Coumarin 481在環糊精水溶液中的超快動態學研究
10. Hexa-Peri-Hexabenzocoronene (HBC)分子衍生物之單體、聚集體與奈米顆粒的研究
11. 胞嘧啶及其水合團簇之氣相超快激發態動態學研究
12. 以超快時間解析克爾光閘螢光光譜研究四氰基乙烯-甲基苯電子給體-受體錯合物之電子轉移動態學
13. 液體 / 空氣界面二倍頻現象的超快時間解析光譜研究
14. 胞嘧啶之氣相超快激發態動態學研究:激發態衰減時間與激發能量的依存性
15. 反式對香豆酸在侷限空間中動態學研究
 
* *