帳號:guest(3.133.127.195)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝鴻禧
作者(外文):Hsieh, Hung-Hsi
論文名稱(中文):鐵鈷鎳結晶性合金應用於電催化水裂解之研究
論文名稱(外文):Crystalline FeCoNi-Based Alloy Bifunctional Electrocatalyst for Overall Water Splitting
指導教授(中文):廖文峯
指導教授(外文):Liaw, Wen-Feng
口試委員(中文):許益瑞
魯才德
口試委員(外文):Hsu, I-Jui
Lu, Tsai-Te
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:106023563
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:63
中文關鍵詞:水裂解電催化材料氫能水熱法
外文關鍵詞:water splittingelectrocatalyst materialhydrogen energyhydrothermal synthesis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:151
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
對於風能和太陽能可再生能源的間歇與非集中的性質,電催化水分解被認為具有前景之解決辦法,它可以將再生能源轉換為化學能-氫氣。考慮到地球上元素的豐富度和成本效益,開發經濟性、穩健且高效率的HER催化劑和OER催化劑,用於大規模產生氫氣而達到永續社會是至關重要的。此篇研究中,以FeCoNi三金屬合金作為電催化研究對象。聯氨的使用與否,分別得到FeCoNi alloy或FeCoNiOx(OH)y alloy oxide兩種產物。透過水熱法合成,藉由儀器鑑定粉體材料為奈米晶體。於NaOH (pH = 14) 和 NaHCO3 (pH = 8.3) 電解液分別比較HER與OER電催化活性。利用電阻值以及電化學活性表面積解釋了兩種材料電催化活性的差異。由於FeCoNi alloy在鹼性下擁有良好的HER與OER表現。我們再將電催化劑進一步應用於水裂解的全反應,達到10 mA/cm2 僅需要1.55 V電壓。另外,在NaHCO3 的電解液中 FeCoNi alloy持續作用139小時仍維持高電流密度表現,顯示催化劑於近中性下亦有優異穩定性。
In respect of the intermittent and diffuse nature of renewable energy sources, such as wind and solar energy, electrocatalytic water splitting is suggested as a promising approach to convert renewable energy into chemical energy, H2. In consideration of earth abundance and cost effectiveness, the development of economic, robust and efficient electroctalysts for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is crucial in large-scale H2 generation for sustainable society. In this research, we focused on studying the electrocatalytic ability of tri-metallic FeCoNi alloy. The presence of hydrazine determined whether the product are FeCoNi alloy or FeCoNiOx(OH)y alloy oxide. The product was synthesized via hydrothermal synthesis and characterized as a nanocrystal. We compared their HER and OER electrocatalytic activity in both NaOH (pH = 14) and NaHCO3 (pH = 8.3) electrolytes. The resistance and electrochemical surface area explained the differences in electrocatalytic activity between these two materials. According to the presentable performances of HER and OER in alkaline conditions, we applied the bifunctional electrocatalyst on the overall water splitting, the reaction reach 10 mA/cm2 at cell voltage of 1.55 V. Moreover, the current density remained a high value when the alloy continuously catalyzed for 139 hours, which estimated the high stability of the catalyst in near neutral condition.
摘要 I
Abstract II
目錄 III
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1. 能源 1
1-2. 電化學水裂解 2
1-3. 電化學產氫 5
1-3-1. 貴重金屬電催化產氫 5
1-3-2. 非貴重金屬電催化產氫 9
1-4. 電化學產氧 11
1-4-1. 貴重金屬電催化產氧 11
1-4-2. 非貴重金屬電催化產氧 13
1-5. 整體水裂解 14
1-6. 水裂解理論計算 17
1-7. 研究方向 19
1-8. 水熱合成法 20
第二章 實驗部分 21
2-1. 一般實驗 21
2-2. 儀器與方法 21
2-2-1. 高解析電子能譜儀 (High-Resolution X-ray Photoelectron Spectrometer, XPS) 21
2-2-2. 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 22
2-2-3. 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 22
2-2-4. 能量色散X射線分析 (Energy-Dispersive X-ray Spectroscopy, EDX) 22
2-2-5. X光粉未繞射儀 (Powder X-ray Diffraction, PXRD) 22
2-2-6. 感應耦合電漿質譜分析儀 (Inductively Coupled Plasma Mass Spectrometry, ICP-MS) 23
2-2-7. 表面積及奈米孔徑分析儀 (Surface Area and Porosimetric Analyzer, BET Analyzer) 23
2-2-8. 循環伏安儀 (Cyclic Voltammetry, CV) 23
2-2-9. 電化學阻抗分析儀 (Electrochemical Impedance Spectroscopy, EIS) 24
2-3. 溶劑與藥品 24
2-3-1. 溶劑 24
2-3-2. 藥品 25
2-4. 催化劑合成 25
2-4-1. FeCoNiOx(OH)y alloy oxide 25
2-4-2. FeCoNi alloy 26
2-5. 製備催化劑於Nickel foam電極板 27
2-5-1. Nickel foam (NF) 27
2-5-2. 催化劑塗覆於電極板 28
2-6. 電化學 29
2-6-1. 鹼性電解質 (1 M NaOH) 29
2-6-2. 中性/近中性電解質 (1 M NaHCO3) 29
2-6-3. 電化學電容 (Capacitance) 30
2-6-4. 電化學阻抗分析 (EIS) 31
2-7. 催化劑用量 32
第三章 結果與討論 33
3-1. 材料特性 33
3-1-1. XPS of FeCoNi alloy and FeCoNiOx(OH)y alloy oxide 33
3-1-2. SEM images of FeCoNi alloy and FeCoNiOx(OH)y alloy oxide 35
3-1-3. EDX analysis of FeCoNi alloy and FeCoNiOx(OH)y alloy oxide 36
3-1-4. ICP-Mass multi-element analysis vs EDX quantitative analysis of FeCoNi alloy and FeCoNiOx(OH)y alloy oxide 38
3-1-5. TEM images of FeCoNi alloy and FeCoNiOx(OH)y alloy oxide 39
3-1-6. Selected area diffraction (SAED) pattern of FeCoNi alloy and FeCoNiOx(OH)y alloy oxide 40
3-1-7. PXRD pattern and relationship with SAED pattern 41
3-1-8. BET比表面積 45
3-2. 催化劑應用於水裂解 47
3-2-1. Performance of Hydrogen Evolution Reaction 47
3-2-2. Performance of Oxygen Evolution Reaction 50
3-2-3. EIS電化學阻抗分析 53
3-2-6. 電容 (Capacitance) 55
3-2-4. Performance of Overall Water Splitting 57
3-2-5. 催化劑於 NaHCO3進行水裂解穩定性測試 59
第四章 結論 60
Reference 61
[1] C.P. Krap, J. Balmaseda, B. Zamora, E. Reguera. Int. J. Hydrogen Energy, 2010, 35, 10381-10386
[2] X. Zou and Y. Zhang. Chem. Soc. Rev., 2015, 44, 5148-5180
[3] J. Hou, Y. Wu, B. Zhang, S. Cao, Z. Li, and L. Sun. Adv. Funct. Mater., 2019, 29, 1808367
[4] X. Li, X. Hao, A. Abudula, G Guan. J. Mater. Chem. A, 2016, 4, 11973-12000
[5] S. Bai, C. Wang, M. Deng , M. Gong , Y. Bai, J. Jiang, Y. Xiong, Angew. Chem. Int. Ed., 2014, 53, 12120 –12124
[6] Y. N. Regmi, G. R. Waetzig, K. D. Duffee, S. M. Schmuecker, J. M. Thode, B. M. Leonard. J. Mater. Chem. A, 2015, 3, 10085-10091
[7] H. Yin, S. Zhao, K. Zhao, A. Muqsit, H. Tang, L. Chang, H. Zhao,Y. Gao and Z. Tang. Nat. Commun., 2015, 6, 6430
[8] M. H. Miles, M. A. Thomason. J. Electrochem. Soc., 1976, 123, 1459-1461
[9] X. Wang, R. Su, H. Aslan, J. Kibsgaard, S. Wendt, L. Meng, M. Dong, Y. Huang and F. Besenbacher. Nano Energy, 2015, 12, 9-18
[10] N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu, H. M. Chen. Chem. Soc. Rev., 2017, 46, 337.
[11] M. Carmo , D. L. Fritz , J. Mergel and D. Stolten. Int. J. Hydrogen Energy, 2013, 38, 4901-4934
[12] S. Cherevko , S. Geiger , O. Kasian , N. Kulyk , J.-P. Grote , A. Savan, B. R. Shrestha , S. Merzlikin , B. Breitbach , A. Ludwig and K. J. J. Mayrhofer. Catal. Today, 2016, 262, 170 -180
[13] C. Wang, Y. Sui, G. Xiao, X. Y.ang, Y. Wei, G. Zoua, B. Zou. J. Mater. Chem. A, 2015, 3, 19669-19673
[14] L. Trotochaud , J. K. Ranney , K. N. Williams and S. W. Boettcher. J. Am. Chem. Soc., 2012, 134, 17253-17261
[15] H. Zhou, F. Yu, Q. Zhu, J. Sun, F. Qin, L.Yu, J. Bao, Y. Yu, S. Chen and Z. Ren. Energy Environ. Sci., 2018, 11, 2858-2864
[16] S. Li, S. Sirisomboonchai, A. Yoshida, X. An, X. Hao, A. Abudul and G. Guan. J. Mater. Chem. A, 2018, 6, 19221-19230
[17] U. M. Patil , J. S. Sohn , S. B. Kulkarni , S. C. Lee , H. G. Park , K. V. Gurav , J. H. Kim and S. C. Jun , ACS Appl. Mater. Interfaces, 2014, 6, 2450-2458
[18] H. Li , C. Tsai , A. L. Koh , L. Cai , A. W. Contryman , A. H. Fragapane , J. Zhao, H. S. Han , H. C. Manoharan , F. Abild-Pedersen , J. K. Norskov and X. Zheng. Nat. Mater., 2016, 15, 48-53
[19] Z Xing, L Gan, J Wang, and X Yang. J. Mater. Chem. A, 2017, 5, 7744-7748
[20] B. M. Hunter, H. B. Gray, A. M. Müller. Chem. Rev., 2016, 116, 14120-14136
[21] Modern Inorganic Synthetic Chemistry by Xu, Ruren; Pang, Wenqin; Huo, [21] Qisheng. Elsevier, ISBN 978-0-444-53599-3
[22] C. C. L. McCrory, S. Jung. I. M. Ferrer, S. M. Chatman, J. C. Peters and T.F. Jaramillo. J. Am. Chem. Soc., 2015, 137, 4347-4357
[23] A. Patterson. Phys. Rev., 1939, 56, 978-982
[24] S. Brunauer, P. H. Emmett and E. Teller. J. Am. Chem. Soc., 1938, 60, 309
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *