帳號:guest(18.117.91.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃美淳
作者(外文):Huang, Mei-Chun
論文名稱(中文):利用超低頻拉曼光譜技術研究分子間交互作用力及末端正電荷胺基酸殘基影響脯胺酸鏈順反異構化反應及其結構
論文名稱(外文):Study of Cis-Trans Isomerization of Oligoprolines by Low-Wavenumber Raman Spectroscopy: Intermolecular Interactions and Effects of the Terminal Positively Charged Amino Acid Residues
指導教授(中文):陳益佳
指導教授(外文):Chen, I-Chia
口試委員(中文):洪嘉呈
林倫年
口試委員(外文):Horng, Jia-Cherng
Hayashi, Michitoshi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:106023559
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:182
中文關鍵詞:超低頻拉曼光譜聚脯胺酸順反異構化分子間作用力氫鍵末端取代基效應
外文關鍵詞:Low-wavenumber Raman spectroscopyoligoprolinescis-trans isomerizationintermolecular interactionshydrogen bondingterminal positively charged residues
相關次數:
  • 推薦推薦:0
  • 點閱點閱:41
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用超低頻拉曼光譜技術研究不同相態的聚脯胺酸 (Poly-L-proline) 和不同末端取代基的脯胺酸鏈如P12、RP11、P11R、KP11和P11K,搭配理論計算的結果,指認脯胺酸鏈分子間與分子內的振動模態。吾人測量PPI和PPII型聚脯胺酸的晶體拉曼光譜,指認PPI型的CO從平行於螺旋軸的方向轉成垂直於螺旋軸的彎曲振動模式,此模態應是脯胺酸鏈進行順反異構化反應之途徑軸。PPII的吡咯烷間剪式振動在74 cm-1及CO鍵間扭轉運動在104 cm-1。聚脯胺酸、P12、RP11、P11R、KP11及P11K的固態粉末拉曼光譜及溶在水中的液態拉曼光譜和溶在正丙醇中的液態拉曼光譜中,由水溶液低頻拉曼光譜指認分子與水的氫鍵作用力在40 – 85 cm-1,RP11和KP11的譜峰強度最強、P11R和P11K次之以及P12最弱,愈極性的分子與水的交互作用力愈好因此強度愈強。藉由拉曼光譜可以區分PPI和PPII構形,當脯胺酸鏈溶在水中為PPII構形,拉曼的特徵峰為310 cm-1,指認為NC面外彎曲振動模式,而分子溶在正丙醇中為PPI構形,拉曼的特徵峰為365、660以及960 cm-1,分別指認為CO面內彎曲振動、末端COO-的CO面外彎曲振動和環形變。吾人以365 cm-1的譜峰強度作為估算PPI構形百分比之依據,當R和K接在N末端時在正丙醇中此譜帶強度強於接在C末端,表示RP11和KP11的PPI/PPII數量比例比P11R和P11K的高。因為當N端接上帶正電荷的R和K時,此時末端電荷與螺旋偶極作用力可穩定PPI構形,因此脯胺酸鏈趨近於PPI。當C端接上R和K時,此時R和K的正電荷會補償COO-的負電荷,因此會趨近於PPII。我們利用超低頻拉曼光譜技術分析了脯胺酸鏈彼此間以及與溶劑間的分子間交互作用力,證實高濃度的正丙醇水溶液的PPI/PPII數量比排序為RP11和KP11最高,P12次之,P11R和P11K則最低。
Using low-wavenumber Raman spectroscopy technique we study the vibrational structures of poly-L-proline and proline oligomers P12 with different terminal positively charged amino acid residues in solution and in solid phase. Combining with the theoretical calculations using density functional theory-D3 on the crystal structures, we assign the 130 cm-1 band in PPI conformer of poly-L-proline to be the carbonyl group ring-opening motion which possibly serves as the reaction coordinate of conversion between the PPI and PPII forms. The bands at 74, 104, and 129 cm-1 in PPII are assigned to scissoring motion of pyrrolidine rings, twist of carbonyl group, and twist of pyrrolidine rings, respectively. The proline oligomers form hydrogen bonding with water to display the hydrogen-bond phonon modes at 40–85 cm-1 both in solid and in aqueous solution. The positively charged N-terminus proline oligomers RP11 and KP11 have the most intense H-bond band than the positively charged C-terminus, P11R and P11K; P12 is the weakest indicating that with the charged amino acid substitution, proline oligomers become more hydrophilic. The N-terminus prolines have better interaction with water. In the Raman spectra, the PPII exhibits a distinct band at 310 cm-1 assigned to the NC out-of-plane bending and the PPI conformer with bands at 365, 660, and 960 cm-1 assigned to CO in-plane bending, CO bending of terminal COO-, and ring deformation, respectively. These bands with reasonable intensity can be used to differentiate these two structures. In detecting the isomerization reaction, the band intensity at 365 cm-1 is used to estimate the amount of PPI existing in various percentages of n-propanol/water solution. In pure n-propanol, the 365 cm-1 band intensity of RP11 and KP11 is greater than that of P11R and P11K because the charge-dipole interaction in the positively charged N-terminus proline oligomers increases the stability of PPI; thus, the PPI/PPII population ratio is the greater. The PPI/PPII ratio remained at certain values when the amount of water was increased to 20%. This is because in the positively charged N-terminus proline oligomers, the energy of PPI (propanol) lies just slightly above the PPII (water). A small fraction of proline oligomers remains in PPI conformation at equilibrium. However, in P11R and P11K most PPI has been converted to PPII when 20% water is added to the n-propanol solution.
目錄
摘要-------------------------------------------------------I
Abstract---------------------------------------------------II
謝誌-------------------------------------------------------IV
目錄-------------------------------------------------------VI
圖目錄-----------------------------------------------------IX
表目錄-----------------------------------------------------XX
第一章 序論------------------------------------------------1
1.1 簡介----------------------------------------------------1
1.2 實驗動機與目的-------------------------------------------2
第二章 聚脯胺酸的性質---------------------------------------3
2.1 聚脯胺酸的結構-------------------------------------------3
2.2 脯胺酸鏈的功用-------------------------------------------4
2.3 聚脯胺酸的晶體-------------------------------------------4
2.4 水對於PPII結構的穩定-------------------------------------5
2.5 順-反異構化----------------------------------------------6
2.5.1 溶劑誘導效應-------------------------------------------7
2.5.2 溫度誘導效應-------------------------------------------7
2.5.3 立體電子與立體障礙效應----------------------------------8
2.5.4 末端取代基效應-----------------------------------------9
2.5.5 芳香環-脯胺酸效應--------------------------------------10
2.6 順反異構化中之中間產物------------------------------------10
第三章 超低頻拉曼光譜學-------------------------------------21
3.1 超低頻拉曼光譜學-----------------------------------------21
3.1.1 還原拉曼光譜-------------------------------------------22
3.2 水------------------------------------------------------24
3.2.1水之超低頻拉曼光譜--------------------------------------24
第四章 實驗儀器與樣品製備-----------------------------------29
4.1 超低頻拉曼光譜儀系統-------------------------------------29
4.1.1 雷射光源----------------------------------------------29
4.1.2 光路設計與元件說明-------------------------------------29
4.1.3 樣品槽------------------------------------------------30
4.1.4 分光與偵測系統-----------------------------------------31
4.1.5 光譜位置校正-------------------------------------------32
4.2 樣品製備與實驗方法---------------------------------------32
4.2.1 實驗樣品----------------------------------------------32
4.2.2 固態粉末樣品拉曼光譜實驗--------------------------------33
4.2.3 液相拉曼光譜實驗---------------------------------------33
4.2.4 固態聚脯胺酸晶體實驗方法-------------------------------34
4.2.5 升溫液相拉曼光譜實驗方法-------------------------------34
4.2.5 X光粉末繞射光譜---------------------------------------35
4.2.6 圓二色性紅外光譜--------------------------------------35
4.2.7 理論計算---------------------------------------------36
第五章 結果-----------------------------------------------39
5.1 理論計算------------------------------------------------39
5.2 溶劑拉曼光譜--------------------------------------------41
5.2.1 水拉曼光譜--------------------------------------------41
5.2.2 正丙醇拉曼光譜----------------------------------------42
5.3 胺基酸單體拉曼光譜--------------------------------------42
5.3.1 脯胺酸單體拉曼光譜------------------------------------43
5.3.2 精胺酸單體拉曼光譜------------------------------------43
5.3.3 色胺酸單體拉曼光譜------------------------------------44
5.4 聚脯胺酸光譜--------------------------------------------45
5.4.1 聚脯胺酸X光粉末繞射光譜-------------------------------45
5.4.2 聚脯胺酸太赫茲光譜的理論計算---------------------------46
5.4.3 聚脯胺酸拉曼光譜圖------------------------------------47
5.5 脯胺酸鏈拉曼光譜----------------------------------------50
5.5.1 P12的拉曼光譜----------------------------------------50
5.5.2 RP11和P11R的拉曼光譜---------------------------------53
5.5.3 KP11和P11K的拉曼光譜---------------------------------55
5.5.4 WPXW (X=7, 8, 9, 10, 13,16) 的拉曼光譜---------------58
5.6 脯胺酸鏈圓二色性紅外光譜--------------------------------59
第六章 討論----------------------------------------------157
6.1 聚脯胺酸晶體的低頻拉曼光譜與太赫茲紅外光譜比較------------157
6.2 脯胺酸鏈的低頻固態光譜比較------------------------------158
6.3 末端取代基效應對於脯胺酸鏈結構的影響---------------------159
6.3.1 脯胺酸鏈的低頻液態光譜比較----------------------------159
6.3.2 脯胺酸鏈的高頻液態光譜比較----------------------------160
6.3.3 利用密度泛函理論計算PPI和PPII型脯胺酸鏈的能量----------162
6.3.4 電荷-偶極穩定作用力 (charge-dipole interaction)------162
第七章 結論----------------------------------------------174
參考文獻--------------------------------------------------176

1. Adzhubei, A. A.; Sternberg, M. J. E.; Makarov, A. A., Polyproline-II Helix in Proteins: Structure and Function. Journal of Molecular Biology 2013, 425 (12), 2100-2132.
2. Bochicchio, B.; Tamburro, A. M., Polyproline II structure in proteins: identification by chiroptical spectroscopies, stability, and functions. Chirality 2002, 14 (10), 782-92.
3. Shi, L.; Holliday, A. E.; Shi, H.; Zhu, F.; Ewing, M. A.; Russell, D. H.; Clemmer, D. E., Characterizing Intermediates Along the Transition from Polyproline I to Polyproline II Using Ion Mobility Spectrometry-Mass Spectrometry. Journal of the American Chemical Society 2014, 136 (36), 12702-12711.
4. Bella, J.; Brodsky, B.; Berman, H. M., Hydration structure of a collagen peptide. Structure 1995, 3 (9), 893-906.
5. Wedemeyer, W. J.; Welker, E.; Scheraga, H. A., Proline Cis−Trans Isomerization and Protein Folding. Biochemistry 2002, 41 (50), 14637-14644.
6. Andreotti, A. H., Native State Proline Isomerization:  An Intrinsic Molecular Switch. Biochemistry 2003, 42 (32), 9515-9524.
7. Lin, L.-N.; Brandts, J. F., Kinetic mechanism for conformational transitions between poly-L-prolines I and II: a study utilizing the cis-trans specificity of a proline-specific protease. Biochemistry 1980, 19 (13), 3055-3059.
8. Kuemin, M.; Schweizer, S.; Ochsenfeld, C.; Wennemers, H., Effects of Terminal Functional Groups on the Stability of the Polyproline II Structure: A Combined Experimental and Theoretical Study. Journal of the American Chemical Society 2009, 131 (42), 15474-15482.
9. Zondlo, N. J., Aromatic–Proline Interactions: Electronically Tunable CH/π Interactions. Accounts of Chemical Research 2013, 46 (4), 1039-1049.
10. Lin, Y.-J.; Chu, L.-K.; Horng, J.-C., Effects of the Terminal Aromatic Residues on Polyproline Conformation: Thermodynamic and Kinetic Studies. The Journal of Physical Chemistry B 2015, 119 (52), 15796-15806.
11. Brown, A. M.; Zondlo, N. J., A Propensity Scale for Type II Polyproline Helices (PPII): Aromatic Amino Acids in Proline-Rich Sequences Strongly Disfavor PPII Due to Proline–Aromatic Interactions. Biochemistry 2012, 51 (25), 5041-5051.
12. Thomas, K. M.; Naduthambi, D.; Zondlo, N. J., Electronic Control of Amide cis−trans Isomerism via the Aromatic−Prolyl Interaction. Journal of the American Chemical Society 2006, 128 (7), 2216-2217.
13. Ruggiero, M. T.; Sibik, J.; Orlando, R.; Zeitler, J. A.; Korter, T. M., Measuring the Elasticity of Poly-l-Proline Helices with Terahertz Spectroscopy. Angewandte Chemie International Edition 2016, 55 (24), 6877-6881.
14. Shigeto, S.; Chang, C.-F.; Hiramatsu, H., Directly Probing Intermolecular Structural Change of a Core Fragment of β2-Microglobulin Amyloid Fibrils with Low-Frequency Raman Spectroscopy. The Journal of Physical Chemistry B 2017, 121 (3), 490-496.
15. Chang, C.-F.; Wang, S.-C.; Shigeto, S., In Situ Ultralow-Frequency Raman Tracking of the Polymorphic Transformation of Crystalline 1,1′-Binaphthyl. The Journal of Physical Chemistry C 2014, 118 (5), 2702-2709.
16. Li, S. C.; Goto, N. K.; Williams, K. A.; Deber, C. M., Alpha-helical, but not beta-sheet, propensity of proline is determined by peptide environment. Proceedings of the National Academy of Sciences 1996, 93 (13), 6676.
17. Makowska, J.; Rodziewicz-Motowidło, S.; Bagińska, K.; Vila, J. A.; Liwo, A.; Chmurzyński, L.; Scheraga, H. A., Polyproline II conformation is one of many local conformational states and is not an overall conformation of unfolded peptides and proteins. Proceedings of the National Academy of Sciences of the United States of America 2006, 103 (6), 1744.
18. Shi, Z.; Olson, C. A.; Rose, G. D.; Baldwin, R. L.; Kallenbach, N. R., Polyproline II structure in a sequence of seven alanine residues. Proceedings of the National Academy of Sciences 2002, 99 (14), 9190.
19. Stapley, B. J.; Creamer, T. P., A survey of left-handed polyproline II helices. Protein Science 1999, 8 (3), 587-595.
20. Kakinoki, S.; Hirano, Y.; Oka, M., On the Stability of Polyproline-I and II Structures of Proline Oligopeptides. Polymer Bulletin 2005, 53 (2), 109-115.
21. Stryer, L.; Haugland, R. P., Energy transfer: a spectroscopic ruler. Proceedings of the National Academy of Sciences 1967, 58 (2), 719.
22. Doose, S.; Neuweiler, H.; Barsch, H.; Sauer, M., Probing polyproline structure and dynamics by photoinduced electron transfer provides evidence for deviations from a regular polyproline type II helix. Proceedings of the National Academy of Sciences 2007, 104 (44), 17400.
23. Schuler, B.; Lipman, E. A.; Steinbach, P. J.; Kumke, M.; Eaton, W. A., Polyproline and the “spectroscopic ruler” revisited with single-molecule fluorescence. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (8), 2754.
24. Cowan, P. M.; McGavin, S., Structure of Poly-L-Proline. Nature 1955, 176, 501.
25. Sasisekharan, V., Structure of poly-l-proline. II. Acta Crystallographica 1959, 12 (11), 897-903.
26. Traub, W.; Shmueli, U., Structure of Poly-L-Proline I. Nature 1963, 198, 1165.
27. Wilhelm, P.; Lewandowski, B.; Trapp, N.; Wennemers, H., A Crystal Structure of an Oligoproline PPII-Helix, at Last. Journal of the American Chemical Society 2014, 136 (45), 15829-15832.
28. Shi, L.; Holliday, A. E.; Bohrer, B. C.; Kim, D.; Servage, K. A.; Russell, D. H.; Clemmer, D. E., “Wet” Versus “Dry” Folding of Polyproline. Journal of The American Society for Mass Spectrometry 2016, 27 (6), 1037-1047.
29. Moradi, M.; Babin, V.; Roland, C.; Darden, T. A.; Sagui, C., Conformations and free energy landscapes of polyproline peptides. Proceedings of the National Academy of Sciences 2009, 106 (49), 20746.
30. Moradi, M.; Lee, J.-G.; Babin, V.; Roland, C.; Sagui, C., Free energy and structure of polyproline peptides: An ab initio and classical molecular dynamics investigation. International Journal of Quantum Chemistry 2010, 110 (15), 2865-2879.
31. Vitagliano, L.; Berisio, R.; Mastrangelo, A.; Mazzarella, L.; Zagari, A., Preferred proline puckerings in cis and trans peptide groups: Implications for collagen stability. Protein Science 2001, 10 (12), 2627-2632.
32. El-Baba, T. J.; Fuller, D. R.; Hales, D. A.; Russell, D. H.; Clemmer, D. E., Solvent Mediation of Peptide Conformations: Polyproline Structures in Water, Methanol, Ethanol, and 1-Propanol as Determined by Ion Mobility Spectrometry-Mass Spectrometry. Journal of The American Society for Mass Spectrometry 2019, 30 (1), 77-84.
33. Kuemin, M.; Engel, J.; Wennemers, H., Temperature-induced transition between polyproline I and II helices: quantitative fitting of hysteresis effects. Journal of Peptide Science 2010, 16 (10), 596-600.
34. Huang, K.-Y.; Horng, J.-C., Impacts of the Terminal Charged Residues on Polyproline Conformation. The Journal of Physical Chemistry B 2019, 123 (1), 138-147.
35. Bretscher, L. E.; Jenkins, C. L.; Taylor, K. M.; DeRider, M. L.; Raines, R. T., Conformational Stability of Collagen Relies on a Stereoelectronic Effect. Journal of the American Chemical Society 2001, 123 (4), 777-778.
36. Chiang, Y.-C.; Lin, Y.-J.; Horng, J.-C., Stereoelectronic effects on the transition barrier of polyproline conformational interconversion. Protein Science 2009, 18 (9), 1967-1977.
37. Choudhary, A.; Gandla, D.; Krow, G. R.; Raines, R. T., Nature of Amide Carbonyl−Carbonyl Interactions in Proteins. Journal of the American Chemical Society 2009, 131 (21), 7244-7246.
38. Hinderaker, M. P.; Raines, R. T., An electronic effect on protein structure. Protein Science 2003, 12 (6), 1188-1194.
39. Horng, J.-C.; Raines, R. T., Stereoelectronic effects on polyproline conformation. Protein Science 2006, 15 (1), 74-83.
40. Pandey, A. K.; Naduthambi, D.; Thomas, K. M.; Zondlo, N. J., Proline Editing: A General and Practical Approach to the Synthesis of Functionally and Structurally Diverse Peptides. Analysis of Steric versus Stereoelectronic Effects of 4-Substituted Prolines on Conformation within Peptides. Journal of the American Chemical Society 2013, 135 (11), 4333-4363.
41. Shoulders, M. D.; Raines, R. T., Collagen Structure and Stability. Annual Review of Biochemistry 2009, 78 (1), 929-958.
42. Shoulders, M. D.; Satyshur, K. A.; Forest, K. T.; Raines, R. T., Stereoelectronic and steric effects in side chains preorganize a protein main chain. Proceedings of the National Academy of Sciences 2010, 107 (2), 559.
43. Wenzell, N. A.; Ganguly, H. K.; Pandey, A. K.; Bhatt, M. R.; Yap, G. P. A.; Zondlo, N. J., Electronic and Steric Control of n→π* Interactions: Stabilization of the α-Helix Conformation without a Hydrogen Bond. ChemBioChem 2019, 20, 963.
44. Zheng, T.-Y.; Lin, Y.-J.; Horng, J.-C., Thermodynamic Consequences of Incorporating 4-Substituted Proline Derivatives into a Small Helical Protein. Biochemistry 2010, 49 (19), 4255-4263.
45. Kümin, M.; Sonntag, L.-S.; Wennemers, H., Azidoproline Containing Helices:  Stabilization of the Polyproline II Structure by a Functionalizable Group. Journal of the American Chemical Society 2007, 129 (3), 466-467.
46. Kroll, C.; Mansi, R.; Braun, F.; Dobitz, S.; Maecke, H. R.; Wennemers, H., Hybrid Bombesin Analogues: Combining an Agonist and an Antagonist in Defined Distances for Optimized Tumor Targeting. Journal of the American Chemical Society 2013, 135 (45), 16793-16796.
47. Siebler, C.; Trapp, N.; Wennemers, H., Crystal structure of (4S)-aminoproline: conformational insight into a pH-responsive proline derivative. Journal of Peptide Science 2015, 21 (3), 208-211.
48. Kuemin, M.; Nagel, Y. A.; Schweizer, S.; Monnard, F. W.; Ochsenfeld, C.; Wennemers, H., Tuning the cis/trans Conformer Ratio of Xaa–Pro Amide Bonds by Intramolecular Hydrogen Bonds: The Effect on PPII Helix Stability. Angewandte Chemie International Edition 2010, 49 (36), 6324-6327.
49. Egli, J.; Siebler, C.; Maryasin, B.; Erdmann, R. S.; Bergande, C.; Ochsenfeld, C.; Wennemers, H., pH-Responsive Aminoproline-Containing Collagen Triple Helices. Chemistry – A European Journal 2017, 23 (33), 7938-7944.
50. Aronoff, M. R.; Egli, J.; Menichelli, M.; Wennemers, H., γ-Azaproline Confers pH Responsiveness and Functionalizability on Collagen Triple Helices. Angewandte Chemie International Edition 2019, 58 (10), 3143-3146.
51. Hart, S. A.; Bahadoor, A. B. F.; Matthews, E. E.; Qiu, X. J.; Schepartz, A., Helix Macrodipole Control of β3-Peptide 14-Helix Stability in Water. Journal of the American Chemical Society 2003, 125 (14), 4022-4023.
52. Gee, P. J.; van Gunsteren, W. F., Terminal-group effects on the folding behavior of selected beta-peptides. Proteins: Structure, Function, and Bioinformatics 2006, 63 (1), 136-143.
53. Lin, Y.-J.; Horng, J.-C., Impacts of terminal (4R)-fluoroproline and (4S)-fluoroproline residues on polyproline conformation. Amino Acids 2014, 46 (10), 2317-2324.
54. Pandey, A. K.; Thomas, K. M.; Forbes, C. R.; Zondlo, N. J., Tunable Control of Polyproline Helix (PPII) Structure via Aromatic Electronic Effects: An Electronic Switch of Polyproline Helix. Biochemistry 2014, 53 (32), 5307-5314.
55. Best, R. B.; Merchant, K. A.; Gopich, I. V.; Schuler, B.; Bax, A.; Eaton, W. A., Effect of flexibility and cis residues in single-molecule FRET studies of polyproline. Proceedings of the National Academy of Sciences 2007, 104 (48), 18964.
56. Shi, L.; Holliday, A. E.; Glover, M. S.; Ewing, M. A.; Russell, D. H.; Clemmer, D. E., Ion Mobility-Mass Spectrometry Reveals the Energetics of Intermediates that Guide Polyproline Folding. Journal of The American Society for Mass Spectrometry 2016, 27 (1), 22-30.
57. Bella, J., Collagen structure: new tricks from a very old dog. Biochemical Journal 2016, 473 (8), 1001.
58. Goodsell, D. Collagen. https://doi.org/10.2210/rcsb_pdb/mom_2000_4
59. Brodsky, B.; Ramshaw, J. A. M., The collagen triple-helix structure. Matrix Biology 1997, 15 (8), 545-554.
60. Bella, J.; Berman, H. M., Crystallographic Evidence for Cα–H•••O=C Hydrogen Bonds in a Collagen Triple Helix. Journal of Molecular Biology 1996, 264 (4), 734-742.
61. Kittel, C., Introduction Solid state physics. 8th ed.; John Wiley & Sons, Inc.: 2004.
62. Simon, S. H., The Oxford Solid State Basics 1th ed.; Oxford University Press: 2013.
63. Tuschel, D., Why Are the Raman Spectra of Crystalline and Amorphous Solids Different? Spectroscopy 2017, 32 (3), 36-33.
64. Gao, H.; Yan, F.; Zhang, H.; Li, J.; Wang, J.; Yan, J., First and second order Raman scattering spectroscopy of nonpolar a-plane GaN. Journal of Applied Physics 2007, 101 (10), 103533.
65. Davydov, V. Y.; Kitaev, Y. E.; Goncharuk, I. N.; Smirnov, A. N.; Graul, J.; Semchinova, O.; Uffmann, D.; Smirnov, M. B.; Mirgorodsky, A. P.; Evarestov, R. A., Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Physical Review B 1998, 58 (19), 12899-12907.
66. Larkin, P. J.; Dabros, M.; Sarsfield, B.; Chan, E.; Carriere, J. T.; Smith, B. C., Polymorph Characterization of Active Pharmaceutical Ingredients (APIs) Using Low-Frequency Raman Spectroscopy. Appl. Spectrosc. 2014, 68 (7), 758-776.
67. Larkin, P. J.; Wasylyk, J.; Raglione, M., Application of Low- and Mid-Frequency Raman Spectroscopy to Characterize the Amorphous-Crystalline Transformation of Indomethacin. Appl. Spectrosc. 2015, 69 (11), 1217-1228.
68. Iwata, K.; Okajima, H.; Saha, S.; Hamaguchi, H.-o., Local Structure Formation in Alkyl-imidazolium-Based Ionic Liquids as Revealed by Linear and Nonlinear Raman Spectroscopy. Accounts of Chemical Research 2007, 40 (11), 1174-1181.
69. Nielsen, O. F., Chapter 2. Low-frequency spetroscopic studies of interactions in liquids. Annual Reports Section "C" (Physical Chemistry) 1993, 90 (0), 3-44.
70. Shuker, R.; Gammon, R. W., Raman-Scattering Selection-Rule Breaking and the Density of States in Amorphous Materials. Physical Review Letters 1970, 25 (4), 222-225.
71. Chaplin, M. F., A proposal for the structuring of water. Biophysical Chemistry 2000, 83 (3), 211-221.
72. Walrafen, G. E.; Chu, Y. C.; Piermarini, G. J., Low-Frequency Raman Scattering from Water at High Pressures and High Temperatures. The Journal of Physical Chemistry 1996, 100 (24), 10363-10372.
73. Carey, D. M.; Korenowski, G. M., Measurement of the Raman spectrum of liquid water. The Journal of Chemical Physics 1998, 108 (7), 2669-2675.
74. Okajima, H.; Ando, M.; Hamaguchi, H.-o., Formation of “Nano-Ice” and Density Maximum Anomaly of Water. Bulletin of the Chemical Society of Japan 2018, 91 (6), 991-997.
75. M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, ; M. A. Robb, J. R. C., G. Scalmani, V. Barone, B. Mennucci, ; G. A. Petersson, H. N., M. Caricato, X. Li, H. P. Hratchian, ; A. F. Izmaylov, J. B., G. Zheng, J. L. Sonnenberg, M. Hada, ; M. Ehara, K. T., R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, ; Y. Honda, O. K., H. Nakai, T. Vreven, J. A. Montgomery, Jr., ; J. E. Peralta, F. O., M. Bearpark, J. J. Heyd, E. Brothers, ; K. N. Kudin, V. N. S., T. Keith, R. Kobayashi, J. Normand, ; K. Raghavachari, A. R., J. C. Burant, S. S. Iyengar, J. Tomasi, ; M. Cossi, N. R., J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, ; V. Bakken, C. A., J. Jaramillo, R. Gomperts, R. E. Stratmann, ; O. Yazyev, A. J. A., R. Cammi, C. Pomelli, J. W. Ochterski, ; R. L. Martin, K. M., V. G. Zakrzewski, G. A. Voth, ; P. Salvador, J. J. D., S. Dapprich, A. D. Daniels, ; O. Farkas, J. B. F., J. V. Ortiz, J. Cioslowski, ; and D. J. Fox, G., Inc., Wallingford CT, 2013.
76. Krishnakumar, V.; Keresztury, G.; Sundius, T.; Ramasamy, R., Simulation of IR and Raman spectra based on scaled DFT force fields: a case study of 2-(methylthio)benzonitrile, with emphasis on band assignment. Journal of Molecular Structure 2004, 702 (1), 9-21.
77. Dovesi, R.; Erba, A.; Orlando, R.; Zicovich-Wilson, C. M.; Civalleri, B.; Maschio, L.; Rérat, M.; Casassa, S.; Baima, J.; Salustro, S.; Kirtman, B., Quantum-mechanical condensed matter simulations with CRYSTAL. Wiley Interdisciplinary Reviews: Computational Molecular Science 2018, 8 (4), e1360.
78. S. Grimme, J. A., S. Ehrlich, and H. Krieg. , J. Chem. Phys. 2010, 132, 154104.
79. 胡維平 GAUSSIAN 09 / GaussView 計算化學進階訓練課程.
80. Kanno, H.; Tomikawa, K.; Mishima, O., Raman spectra of low- and high-density amorphous ices. Chemical Physics Letters 1998, 293 (5), 412-416.
81. Suzuki, Y.; Takasaki, Y.; Tominaga, Y.; Mishima, O., Low-frequency Raman spectra of amorphous ices. Chemical Physics Letters 2000, 319 (1), 81-84.
82. Egashira, K.; Nishi, N., Low-Frequency Raman Spectroscopy of Ethanol−Water Binary Solution:  Evidence for Self-Association of Solute and Solvent Molecules. The Journal of Physical Chemistry B 1998, 102 (21), 4054-4057.
83. Jensen, H.; Pedersen, J. H.; J⊘rgensen, J. E.; Pedersen, J. S.; Joensen, K. D.; Iversen, S. B.; S⊘gaard, E. G., Determination of size distributions in nanosized powders by TEM, XRD, and SAXS. Journal of Experimental Nanoscience 2006, 1 (3), 355-373.
84. Wang, Y.; Purrello, R.; Georgiou, S.; Spiro, T. G., UVRR spectroscopy of the peptide bond. 2. Carbonyl H-bond effects on the ground- and excited-state structures of N-methylacetamide. Journal of the American Chemical Society 1991, 113 (17), 6368-6377.
85. Triggs, N. E.; Valentini, J. J., An investigation of hydrogen bonding in amides using Raman spectroscopy. The Journal of Physical Chemistry 1992, 96 (17), 6922-6931.
86. Dukor, R. K.; Keiderling, T. A., Reassessment of the random coil conformation: Vibrational CD study of proline oligopeptides and related polypeptides. Biopolymers 1991, 31 (14), 1747-1761.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 八個超內巨分子晶體結構之決定並探討分子間弱作用對晶體堆積之影響
2. 利用步進式時域解析霍氏轉換紅外光譜法研究鹵化物之光分解反應
3. 以交叉分子束方法研究雙重態氮原子及三重態碳原子與矽甲烷之反應動力學
4. 環硫丙烷在波長範圍206-230 nm之雷射誘發螢光光譜及熱解反應
5. 利用飛秒瞬態吸收光譜技術研究鍵結於金奈米粒子表面上的2-苯硫醇基,5-苯基,3-丁基呋喃之光學特性及三核鎳系、鈷系與鉻系金屬串錯合物之電子激發態動態學
6. 巴豆醛分子解離及異構化途徑之理論研究
7. 苯基-異喹啉與苯基-咪唑銥金屬錯合物之光物理性質研究
8. 4-甲基砒碇與苯胺在氬氣間質下之雷射光解光譜
9. 以矽烷基為間隔之芳香基高分子之能量轉移途徑
10. 以同步輻射光源結合雷射技術研究1D能態硫原子的自游離態、光解有機硫化物產物硫原子的分支比以及氙分子的高激發雷德堡能態
11. 利用螢光上轉換光譜技術研究光收成共聚物之能量轉移過程
12. 拉曼光譜系統架設與應用:在三-(2-苯基吡啶)銥金屬錯合物之振動模式研究與直線形三核金屬串錯合物之振動模式研究
13. 異配位甲基萘喹啉-三氟甲基吡啶吡唑與氟取代苯基吡啶-吡啶基三氮二烯五圜金屬銥錯合物之凝態光譜動力學研究
14. 奈米微粒間的靜電斥力對偵測靈敏度之影響:利用十五冠五醚修飾之金奈米微粒偵測水溶液中的鉀離子
15. 含芳香環側鏈取代之聚苯胺共聚合物之螢光與電子傳遞途徑研究
 
* *