|
1. des Francs, G. C.; Bouhelier, A.; Finot, E.; Weeber, J. C.; Dereux, A.; Girard, C.; Dujardin, E., Fluorescence Relaxation in the near-Field of a Mesoscopic Metallic Particle: Distance Dependence and Role of Plasmon Modes. Opt. Express 2008, 16, 17654-17666. 2. Anger, P.; Bharadwaj, P.; Novotny, L., Enhancement and Quenching of Single-Molecule Fluorescence. Phys. Rev. Lett. 2006, 96, 113002. 3. Bharadwaj, P.; Novotny, L., Spectral Dependence of Single Molecule Fluorescence Enhancement. Opt. Express 2007, 15, 14266-14274. 4. Zhang, J.; Fu, Y.; Chowdhury, M. H.; Lakowicz, J. R., Metal-Enhanced Single-Molecule Fluorescence on Silver Particle Monomer and Dimer: Coupling Effect between Metal Particles. Nano Lett. 2007, 7, 2101-2107. 5. Chen, Y.; Muneehika, K.; Ginger, D. S., Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles. Nano Lett. 2007, 7, 690-696. 6. Reineck, P.; Gomex, D.; Ng, S. H.; Karg, M.; Bell, T.; Mulvaney, P.; Bach, U., Distance and Wavelength Dependent Quenching of Molecular Fluorescence by Au@Sio2 Core-Shell Nanoparticles. ACS Nano 2013, 7, 6636-6648. 7. Ayala-Orozco, C.; Liu, J. G.; Knight, M. W.; Wang, Y.; Day, J. K.; Nordlander, P.; Halas, N. J., Fluorescence Enhancement of Molecules inside a Gold Nanomatryoshka. Nano Lett. 2014, 14, 2926-2933. 8. Mishra, H.; Mali, B. L.; Karolin, J.; Dragan, A. I.; Geddes, C. D., Experimental and Theoretical Study of the Distance Dependence of Metal-Enhanced Fluorescence, Phosphorescence and Delayed Fluorescence in a Single System. Phys. Chem. Chem. Phys. 2013, 15, 19538-19544. 9. Kern, C.; Zürch, M.; Spielmann, C., Limitations of Extreme Nonlinear Ultrafast Nanophotonics. Nanophotonics 2015, 4, 303-323. 10. Novotny, L.; Hecht, B., Principles of Nano-Optics: Cambridge University Press, 2012. 11. Sonnichsen, C., Plasmons in Metal Nanostructures: Ludwig-Maximilians-University of Munich, 2001. 12. Bigot, J. Y.; Halte, V.; Merle, J. C.; Daunois, A., Electron Dynamics in Metallic Nanoparticles. Chem. Phys. 2000, 181-203. 13. Lakowicz, J. R.; Ray, K.; Chowdhury, M.; Szmacinski, H.; Fu, Y.; Zhang, J.; Nowaczyk, K., Plasmon-Controlled Fluorescence: A New Paradigm in Fluorescence Spectroscopy. The Analyst 2008, 133, 1308-1346. 14. Metiu, H., Surface Enhanced Spectroscopu. Prog. Surf. Sci. 1984, 17, 153-320. 15. Geddes, C. D.; Lakowicz, J. R., Metal-Enhanced Fluorescence. J. Flyoresc. 2007, 12, 121-129. 16. Aslan, K.; Malyn, S. N.; Geddes, C. D., Metal-Enhanced Fluorescence from Gold Surfaces: Angular Dependent Emission. J. Flyoresc. 2007, 17, 7-13. 17. Chowdhury, M. H.; Aslan, K.; Malyn, S. N.; Lakowicz, J. R.; Geddes, C. D., Metal-Enhanced Chemiluminescence: Radiating Plasmons Generated from Chemically Induced Electronic Excited States. Appl. Phys. Lett. 2006, 88, 173104. 18. Guzatov, D. V.; Vaschenko, S. V.; Stankevich, V. V.; Lunevich, A. Y.; Glukhov, Y. F.; Gaponenko, S. V., Plasmonic Enhancement of Molecular Fluorescence near Silver Nanoparticles: Theory, Modeling, and Experiment. J. Phys. Chem. C 2012, 116, 10723-10733. 19. Kang, K. A.; Wang, J. T.; Jasinski, J. B.; Achilefu, S., Fluorescence Manipulation by Gold Nanoparticles: From Complete Quenching to Extensive Enhancement. J Nanobiotechnology 2011, 9, 16. 20. Khatua, S.; Paulo, P. M.; Yuan, H.; Gupta, A.; Zijlstra, P.; Orrit, M., Resonant Plasmonic Enhancement of Single-Molecule Fluorescence by Individual Gold Nanorods. ACS Nano 2014, 8, 4440-4449. 21. Ray, K.; Badugu, R.; Lakowicz, J. R., Distance-Dependent Metal-Enhanced Fluorescence from Langmuir-Blodgett Monolayers of Alkyl-Nbd Derivatives on Silver Island Films. Langmuir 2006, 22, 8374-8378. 22. Ray, K.; Badugu, R.; Lakowicz, J. R., Polyelectrolyte Layer-by-Layer Assembly to Control the Distance between Fluorophores and Plasmonic Nanostructures. Chem. Mater. 2007, 19, 5902-5909. 23. Abadder, N. S.; Brennan, M. R.; Wilson, W. L.; Murphy, C. J., Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods. ACS Nano 2014, 8, 8392-8406. 24. Fu, B.; Flynn, J. D.; Isaacoff, B. P.; Rowland, D. J.; Biteen, J. S., Super-Resolving the Distance-Dependent Plasmon-Enhanced Fluorescence of Single Dye and Fluorescent Protein Molecules. J. Phys. Chem. C 2015, 119, 19350-19358. 25. Liang, J.; Li, K.; Gurzadyan, G. G.; Lu, X.; Liu, B., Silver Nanocube-Enhanced Far-Red/near-Infrared Fluorescence of Conjugated Polyelectrolyte for Cellular Imaging. Langmuir 2012, 28, 11302-11309. 26. Niu, C.; Song, Q.; He, G.; Na, N.; Ouyang, J., Near-Infrared-Fluorescent Probes for Bioapplications Based on Silica-Coated Gold Nanobipyramids with Distance-Dependent Plasmon-Enhanced Fluorescence. Anal. Chem. 2016, 88, 11062-11069. 27. Chowdhury, M. H.; Ray, K.; Gray, S. K.; Pond, J.; Lakowicz, J. R., Aluminum Nanoparticles as Substrates for Metal-Enhanced Fluorescence in the Ultraviolet for the Label-Free Detection of Biomolecules. Anal. Chem. 2009, 84, 1397-1403. 28. Sugawa, K.; Tahara, H.; Yamaguchi, D.; Akiyama, T.; Otsuki, J.; Kusaka, Y.; Fukuda, N.; Ushijima, H., Metal-Enhanced Fluorescence Platforms Based on Plasmonic Ordered Copper Arrays Wavelength Dependence of Quenching and Enhancement Effects. ACS Nano 2013, 7, 9997-10010. 29. Zhou, T. Y.; Lin, L. P.; Rong, M. C.; Jiang, Y. Q.; Chen, X., Silver-Gold Alloy Nanoclusters as a Fluorescence-Enhanced Probe for Aluminum Ion Sensing. Anal. Chem. 2013, 85, 9839-9844. 30. Liu, S.-Y.; Huang, L.; Li, J.-F.; Wang, C.; Li, Q.; Xu, H.-X.; Guo, H.-L.; Meng, Z.-M.; Shi, Z.; Li, Z.-Y., Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of Gold Nanorods. J. Phys. Chem. C 2013, 117, 10636-10642. 31. Khatua, S.; Paulo, P. M. R.; Yuan, H. F.; Gupta, A.; Zijlstra, P.; Orrit, M., Resonant Plasmonic Enhancement of Single-Molecule Fluorescence by Individual Gold Nanorods. Acs Nano 2014, 8, 4440-4449. 32. Zhang, Y.; Dragan, A.; Geddes, C. D., Wavelength Dependence of Metal-Enhanced Fluorescence. J. Phys. Chem. C 2009, 113, 12095-12100. 33. Xie, F.; Baker, M. S.; Goldys, E. M., Enhanced Fluorescence Detection on Homogeneous Gold Colloid Self-Assembled Monolayer Substrates. Chem. Mater. 2008, 20, 1788-1797. 34. Bhowmick, S.; Saini, S.; Shenoy, V. B.; Bagchi, B., Resonance Energy Transfer from a Fluorescent Dye to a Metal Nanoparticle. J. Chem. Phys. 2006, 125, 181102. 35. Yun, C. S.; Javier, A.; Jennings, T.; Fisher, M.; Hira, S.; Peterson, S.; Hopkins, B.; Reich, N. O.; Strouse, G. F., Nanometal Surface Energy Transfer in Optical Rulers, Breaking the Fret Barrier. J. Am. Chem. Soc. 2005, 127, 3115-3119. 36. Jennings, T. L.; Singh, M. P.; Strouse, G. F., Fluorescent Lifetime Quenching near D=1.5 Nm Gold Nanoparticles: Probing Nset Validity. J. Am. Chem. Soc. 2006, 128, 5462-5467. 37. Chhabra, R.; Sharma, J.; Wang, H.; Zou, S.; Lin, S.; Yan, H.; Lindsay, S.; Liu, Y., Distance-Dependent Interactions between Gold Nanoparticles and Fluorescent Molecules with DNA as Tunable Spacers. Nanotechnology 2009, 20, 485201. 38. Griffin, J.; Singh, A. K.; Senapati, D.; Rhodes, P.; Mitchell, K.; Robinson, B.; Yu, E.; Ray, P. C., Size- and Distance-Dependent Nanoparticle Surface-Energy Transfer (Nset) Method for Selective Sensing of Hepatitis C Virus Rna. Chemistry 2009, 15, 342-351. 39. Green, N. M., Avidin. 3. The Nature of the Biotin-Binding Site. Biochem. J. 1963, 89, 599-609. 40. Pugliese, A.; Coda, A.; Malcovati, M.; Bolognesi, M., Three-Dimensional Structure of the Tetragonal Crystal Form of Egg-White Avidin in Its Functional Complex with Biotin at 2•7 Resolution. J. Mol. Biol. 1993, 231, 698-710. 41. Rauf, S.; Zhou, D.; Abell, C.; Klenerman, D.; Kang, D. J., Building Three-Dimensional Nanostructures with Active Enzymes by Surface Templated Layer-by-Layer Assembly. Chem.Comm. 2006, 1721-1723. 42. Guo, Z.; Zhang, Y.; DuanMu, Y.; Xu, L.; Xie, S.; Gu, N., Facile Synthesis of Micrometer-Sized Gold Nanoplates through an Aniline-Assisted Route in Ethylene Glycol Solution. Colloids Surf. A 2006, 278, 33-38. 43. Imaeda, K.; Imura, K., Dye-Assisted Visualization of Plasmon Modes Excited in Single Gold Nanoplates. Chem. Phys. Lett. 2016, 646, 179-184. 44. Lin, H.-H.; Chen, I. C., Study of the Interaction between Gold Nanoparticles and Rose Bengal Fluorophores with Silica Spacers by Time-Resolved Fluorescence Spectroscopy. J. Phys. Chem. C 2015, 119, 26663-26671. 45. Sarkar, P. K.; Polley, N.; Chakrabarti, S.; Lemmens, P.; Pal, S. K., Nanosurface Energy Transfer Based Highly Selective and Ultrasensitive “Turn on” Fluorescence Mercury Sensor. ACS Sensors 2016, 1, 789-797.
|