|
1. Shin, I.; Kim, K. S., Carbohydrate chemistry. Chem. Soc. Rev. 2013, 42, 4267-4269. 2. Wen, L.; Edmunds, G.; Gibbons, C.; Zhang, J.; Gadi, M. R.; Zhu, H.; Fang, J.; Liu, X.; Kong, Y.; Wang, P. G., Toward Automated Enzymatic Synthesis of Oligosaccharides. Chem. Rev. 2018, 118, 8151-8187. 3. Muthana, S.; Cao, H.; Chen, X., Recent Progress in Chemical and Chemoenzymatic Synthesis of Carbohydrates. Curr Opin Chem Biol 2009, 13, 573-581. 4. Liang, D.-M.; Liu, J.-H.; Wu, H.; Wang, B.-B.; Zhu, H.-J.; Qiao, J.-J., Glycosyltransferases: Mechanisms and Applications in Natural Product Development. Chem. Soc. Rev. 2015, 44, 8350-8374. 5. Blix, F. G.; Gottschalk, A.; Klenk, E., Proposed Nomenclature in the Field of Neuraminic and Sialic Acids. Nature 1957, 179, 1088-1088. 6. Varki, A., Diversity in the sialic acids. Glycobiology 1992, 2, 25-40. 7. Severi, E.; Hood, D. W.; Thomas, G. H., Sialic Acid Utilization by Bacterial Pathogens. Microbiology 2007, 153, 2817-2822. 8. Varki, A., Sialic Acids in Human Health and Disease. Trends Mol Med 2008, 14, 351-360. 9. Chen, X.; Varki, A., Advances in the Biology and Chemistry of Sialic Acids. ACS Chem. Biol. 2010, 5, 163-176. 10. Hemeon, I.; Bennet, A. J., Sialic Acid and Structural Analogues: Stereoselective Syntheses. Synthesis 2007, 2007, 1899-1926. 11. Liang, C.-F.; Kuan, T.-C.; Chang, T.-C.; Lin, C.-C., Stereoselective Synthesis of S-Linked α(2→8) andα(2→8)/ α(2→9) Hexasialic Acids. J. Am. Chem. Soc. 2012, 134, 16074-16079. 12. Tamai, H.; Ando, H.; Tanaka, H.-N.; Hosoda-Yabe, R.; Yabe, T.; Ishida, H.; Kiso, M., The Total Synthesis of the Neurogenic Ganglioside LLG-3 Isolated from the Starfish Linckia laevigata. Angew. Chem. 2011, 50, 2330-2333. 13. Rich, J. R.; Withers, S. G., A Chemoenzymatic Total Synthesis of the Neurogenic Starfish Ganglioside LLG-3 Using an Engineered and Evolved Synthase. Angew. Chem. 2012, 51, 8640-8643. 14. Yu, R. K.; Tsai, Y.-T.; Ariga, T.; Yanagisawa, M., Structures, Biosynthesis, and Functions of Gangliosides-an Overview. J. Oleo Sci. 2011, 60, 537-544. 15. Wang, B.; Brand-Miller, J., The Role and Potential of Sialic Acid in Human Nutrition. Eur. J. Clin. Nutr. 2003, 57, 1351-1369. 16. Geisler, F. H.; Dorsey, F. C.; Coleman, W. P., Recovery of Motor Function after Spinal-Cord Injury — A Randomized, Placebo-Controlled Trial with GM-1 Ganglioside. N. Engl. J. Med. 1991, 324, 1829-1838. 17. Svennerholm, L., Gangliosides ─ A New Therapeutic Agent Against Stroke and Alzheimer's Disease. Life Sci. 1994, 55, 2125-2134. 18. Schneider, J. S.; Gollomp, S. M.; Sendek, S.; Colcher, A.; Cambi, F.; Du, W., A randomized, Controlled, Delayed Start Trial of GM1 Ganglioside in Treated Parkinson's Disease Patients. J. Neurol. Sci. 2013, 324, 140-148. 19. Greene, L. A.; Tischler, A. S., Establishment of a Noradrenergic Clonal Line of Rat Adrenal Pheochromocytoma Cells which Respond to Nerve Growth Factor. Proc. Natl. Acad. Sci. U.S.A. 1976, 73, 2424-2428. 20. Mutoh, T.; Tokuda, A.; Miyadai, T.; Hamaguchi, M.; Fujiki, N., Ganglioside GM1 Binds to the Trk Protein and Regulates Receptor Function. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 5087-5091. 21. Higuchi, R.; Inagaki, M.; Yamada, K.; Miyamoto, T., Biologically Active Gangliosides from Echinoderms. J Nat Med 2007, 61, 367-370. 22. Higuchi, R.; Inukai, K.; Jhou, J. X.; Honda, M.; Komori, T.; Tsuji, S.; Nagai, Y., Biologically Active Glycosides from Asteroidea, XXXI. Glycosphingolipids from the Starfish Asterias amurensis versicolor sladen, 2. Structure and Biological Activity of Ganglioside Molecular Species. Liebigs Ann. 1993, 1993, 359-366. 23. Kawano, Y.; Higuchi, R.; Komori, T., Biologically Active Glycosides from Asteroidea, XIX. Glycosphingolipids from the Starfish Acanthaster Planci 4. Isolation and Structure of Five New Gangliosides. Liebigs Ann. 1990, 1990, 43-50. 24. Tamai, H.; Ando, H.; Ishida, H.; Kiso, M., First Synthesis of a Pentasaccharide Moiety of Ganglioside GAA-7 Containing Unusually Modified Sialic Acids through the Use of N-Troc-sialic Acid Derivative as a Key Unit. Org. Lett. 2012, 14, 6342-6345. 25. Tamai, H.; Imamura, A.; Ogawa, J.; Ando, H.; Ishida, H.; Kiso, M., First Total Synthesis of Ganglioside GAA-7 from Starfish Asterias amurensis versicolor. Eur. J. Org. Chem. 2015, 2015, 5199-5211. 26. Lairson, L. L.; Henrissat, B.; Davies, G. J.; Withers, S. G., Glycosyltransferases: Structures, Functions, and Mechanisms. Annu. Rev. Biochem. 2008, 77, 521-555. 27. Bülter, T.; Elling, L., Enzymatic Synthesis of Nucleotide Sugars. Glycoconj. J. 1999, 16, 147-159. 28. Nishimoto, M.; Kitaoka, M., Identification of N-Acetylhexosamine 1-Kinase in the Complete Lacto-N-Biose I/Galacto-N-Biose Metabolic Pathway in Bifidobacterium longum. Appl. Environ. Microbiol. 2007, 73, 6444-6449. 29. Cai, L.; Guan, W.; Kitaoka, M.; Shen, J.; Xia, C.; Chen, W.; Wang, P. G., A Chemoenzymatic Route to N-acetylglucosamine-1-phosphate Analogues: Substrate Specificity Investigations of N-acetylhexosamine 1-kinase. ChemComm 2009, 2944-2946. 30. Cai, L.; Guan, W.; Wang, W.; Zhao, W.; Kitaoka, M.; Shen, J.; O’Neil, C.; Wang, P. G., Substrate Specificity of N-acetylhexosamine Kinase Towards N-acetylgalactosamine Derivatives. Bioorg. Med. Chem. Lett. 2009, 19, 5433-5435. 31. Mengin-Lecreulx, D.; van Heijenoort, J., Identification of the GlmU Gene Encoding N-acetylglucosamine-1-phosphate Uridyltransferase in Escherichia coli. J. Bacteriol. 1993, 175, 6150-6157. 32. Mengin-Lecreulx, D.; van Heijenoort, J., Copurification of Glucosamine-1-phosphate Acetyltransferase and N-acetylglucosamine-1-phosphate Uridyltransferase Activities of Escherichia coli: Characterization of the GlmU Gene Product as a Bifunctional Enzyme Catalyzing Two Subsequent Steps in the Pathway for UDP-N-acetylglucosamine Synthesis. J. Bacteriol. 1994, 176, 5788-5795. 33. Guan, W.; Cai, L.; Fang, J.; Wu, B.; George Wang, P., Enzymatic Synthesis of UDP-GlcNAc/UDP-GalNAc Analogs Using N-acetylglucosamine 1-phosphate Uridyltransferase (GlmU). ChemComm 2009, 6976-6978. 34. Yu, H.; Yu, H.; Karpel, R.; Chen, X., Chemoenzymatic Synthesis of CMP–Sialic Acid Derivatives by a One-pot Two-enzyme System: Comparison of Substrate Flexibility of Three Microbial CMP–Sialic Acid Synthetases. Bioorg. Med. Chem. 2004, 12, 6427-6435. 35. Knorst, M.; Fessner, W.-D., CMP-Sialate Synthetase from Neisseria meningitidis − Overexpression and Application to the Synthesis of Oligosaccharides Containing Modified Sialic Acids. Adv. Synth. Catal. 2001, 343, 698-710. 36. Morley, T. J.; Withers, S. G., Chemoenzymatic Synthesis and Enzymatic Analysis of 8-Modified Cytidine Monophosphate-Sialic Acid and Sialyl Lactose Derivatives. J. Am. Chem. Soc. 2010, 132, 9430-9437. 37. Blixt, O.; van Die, I.; Norberg, T.; van den Eijnden, D. H., High-level Expression of the Neisseria Meningitidis LgtA Gene in Escherichia coli and Characterization of the Encoded N-acetylglucosaminyltransferase as a Useful Catalyst in the Synthesis of GlcNAcβ1→3Gal and GalNAcβ1→3Gal Linkages. Glycobiology 1999, 9, 1061-1071. 38. Yu, C.-C.; Withers, S. G., Recent Developments in Enzymatic Synthesis of Modified Sialic Acid Derivatives. Adv. Synth. Catal. 2015, 357, 1633-1654. 39. Gilbert, M.; Brisson, J.-R.; Karwaski, M.-F.; Michniewicz, J.; Cunningham, A.-M.; Wu, Y.; Young, N. M.; Wakarchuk, W. W., Biosynthesis of Ganglioside Mimics in Campylobacter jejuni OH4384: Identification of the Glycosyltransferase Genes, Enzymatic Synthesis of Model Compounds, and Characterization of Nanomole Amounts by 600-MHz 1H and 13C NMR analysis. J. Biol. Chem. 2000, 275, 3896-3906. 40. Tsukamoto, H.; Takakura, Y.; Mine, T.; Yamamoto, T., Photobacterium sp. JT-ISH-224 Produces Two Sialyltransferases, α-/β-Galactoside α-2,3-Sialyltransferase and β-Galactoside α-2,6-Sialyltransferase. J. Biochem. 2007, 143, 187-197. 41. Ding, L.; Yu, H.; Lau, K.; Li, Y.; Muthana, S.; Wang, J.; Chen, X., Efficient Chemoenzymatic Synthesis of Sialyl Tn-antigens and Derivatives. ChemComm 2011, 47, 8691-8693. 42. Yu, H.; Chen, X., Aldolase-Catalyzed Synthesis of β-d-Galp-(1→9)-d-KDN: A Novel Acceptor for Sialyltransferases. Org. Lett. 2006, 8, 2393-2396. 43. 張婷崴. 合成八號位置修飾的唾液酸衍生物及神經節苷脂 LLG-5. 碩士論文, 國立清華大學, 2016. 44. Roy, R.; Laferrière, C. A., Synthesis of Protein Conjugates and Analogues of N-acetylneuraminic Acid. Can. J. Chem. 1990, 68, 2045-2054. 45. Shelke, S. V.; Gao, G.-P.; Mesch, S.; Gäthje, H.; Kelm, S.; Schwardt, O.; Ernst, B., Synthesis of Sialic Acid Derivatives as Ligands for the Myelin-associated Glycoprotein (MAG). Bioorg. Med. Chem. 2007, 15, 4951-4965. 46. (a) Wang, J.; Cheng, B.; Li, J.; Zhang, Z.; Hong, W.; Chen, X.; Chen, P. R., Chemical Remodeling of Cell-Surface Sialic Acids through a Palladium-Triggered Bioorthogonal Elimination Reaction. Angew. Chem. 2015, 54, 5364-5368; (b) Augé, C.; David, S.; Malleron, A., An Inexpensive Route to 2-azido-2-deoxy-D-mannose and Its Conversion into an Azido Analog of N-acetylneuraminic Acid. Carbohydr. Res. 1989, 188, 201-205. 47. 梁晉瑜. 酵素合成 α-2,6-唾液酸化人類母乳寡醣類似物. 碩士論文, 國立中正大學, 2018. 48. (a) van Leeuwen, S. S.; Kuipers, B. J. H.; Dijkhuizen, L.; Kamerling, J. P., Development of a 1H NMR structural-reporter-group concept for the analysis of prebiotic galacto-oligosaccharides of the [β-D-Galp-(1→x)]n-D-Glcp type. Carbohydr. Res. 2014, 400, 54-58; (b) Bubb, W. A., NMR Spectroscopy in the Study of Carbohydrates: Characterizing the Structural Complexity. Concepts in Magnetic Resonance Part A: An Educational Journal 2003, 19, 1-19. 49. Vliegenthart, J. F. G.; Dorland, L.; van Halbeek, H.; Haverkamp, J., NMR Spectroscopy of Sialic Acids. In Sialic Acids: Chemistry, Metabolism, and Function, Schauer, R., Ed. Springer Vienna: Vienna, 1982; pp 127-172.
|