|
References 1. Huang, M. H.; Rej, S.; Hsu S.-H. Facet-dependent properties of polyhedral nanocrystals. Chem. Commun. 2014, 50, 1634–1644. 2. Kuo, C.-H.; Huang, M. H. Morphologically controlled synthesis of Cu2O nanocrystals and their properties. Nano Today 2010, 5, 106–116. 3. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Facet-dependent electrical conductivity properties of Cu2O crystals. Nano Lett. 2015, 15, 2155−2160. 4. Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 1261–1267. 5. Ke, W.-H.; Hsia, C.-F.; Chen, Y.-J.; Huang, M. H. Synthesis of ultrasmall Cu2O nanocubes and octahedra with tunable sizes for facet-dependent optical property examination. Small 2016, 12, 3530–3534. 6. Huang, M. H.; Gollapally N.; Chen, H.-S. Facet-dependent electrical, photocatalytic, and optical properties of semiconductor crystals and their implications for applications. ACS Appl. Mater. Interfaces 2018, 10, 4−15. 7. Chen, Y.-J.; Chiang, Y.-W.; Huang, M. H. Synthesis of diverse Ag2O crystals and their facet-dependent photocatalytic activity examination. ACS Appl. Mater. Interfaces 2016, 8, 19672−19679. 8. Lyu, L.-M.; Huang, M. H. Investigation of relative stability of different facets of Ag2O nanocrystals through face-selective etching. J. Phys. Chem. C 2011, 115, 17768–17773. 9. Hsieh, M.-S.; Su, H. -J.; Hsieh, P. -L.; Chiang, Y, -W.; Huang, M. H. Synthesis of Ag3PO4 crystals with tunable shapes for facet-dependent optical property, photocatalytic activity, and electrical conductivity examinations. ACS Appl. Mater. Interfaces 2017, 9, 39086−39093. 10. Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y. Wu, S.-C.; Chen, L.-J.; Huang, M. H. Facet-dependent electrical conductivity properties of PbS nanocrystals. Chem. Mater. 2016, 28, 1574−1580. 11. Tan, C.-S.; Chen, Y.-J.; Hsia, C.-F. Huang, M. H. Aqueous phase synthesis of size-tunable copper nanocubes for efficient aryl alkyne hydroboration. Chem. Asian J. 2017, 12, 293–297. 12. Lu, G.; Yu, J. C.; Lu, G. Q.; Cheng, H.-M. Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem. Commun. 2011, 47, 6763–6783. 13. Li, J.; Bai, H.; Yi, W.; Liu, J.; Li, Y.; Zhang, Q.; Yang, H.; Xi, G. Synthesis and facet-dependent photocatalytic activity of strontium titanate polyhedron nanocrystals. Nano Res. 2016, 9, 1523–1531. 14. Zheng, B.; Wang, X.; Liu, C.; Tan, K.; Xie, Z.; Zheng, L. High-efficiently visible light-responsive photocatalysts: Ag3PO4 tetrahedral microcrystals with exposed {111} facets of high surface energy. J. Mater. Chem. A 2013, 1, 12635–12640. 15. Liu, G.; Sun, C.; Yang, H. G.; Smith, S. C.; Wang, L.; Lu, G. Q.; Cheng, H.-M. Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. Chem. Commun. 2010, 46, 755–757. 16. Lei, W.; Zhang, T.; Gu, L.; Liu, P.; Rodriguez, J. A.; Liu, G.; Liu, M. Surface-structure sensitivity of CeO2 nanocrystals in photocatalysis and enhancing the reactivity with nanogold. ACS Catal. 2015, 5, 4385–4393. 17. Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357. 18. Jin, T.; Fujii, F.; Komai Y.; Seki J.; Seiyama A.; Yoshioka Y. Preparation and characterization of highly fluorescent, glutathione-coated near infrared quantum dots for in vivo fluorescence imaging. Int. J. Mol. Sci. 2008, 9, 2044–2061. 19. Klein, D. L.; Roth, R.; Lim, A. K. L.; McEuen, P. L. A single-electron transistor made from a cadmium selenide nanocrystal. Nature 1997, 389, 699–701. 20. Li, F.; Nie, C.; You, L.; Jin, X.; Zhang, Q.; Qin, Y.; Zhao, F.; Song, Y.; Chen, Z.; Li, Q. White light emitting device based on single-phase CdS quantum dots. Nanotechnology 2018, 29, 205701. 21. Wang, X.; Liu, M.; Zhou, Z.; Guo, L. Toward facet engineering of CdS nanocrystals and their shape-dependent photocatalytic activities. J. Phys. Chem. C 2015, 119, 20555−20560. 22. Wang, L.-Y.; Zhou, Y.-Y.; Wang, L.; Zhu, C.-Q.; Li, Y.-X.; Gao, F. Synchronous fluorescence determination of protein with functionalized CdS nanoparticles as a fluorescence probe. Analytica Chimica Acta 2002, 466, 87–92. 23. Mo, Y.-M.; Tang, Y.; Gao, F.; Yang, J.; Zhang, Y.-M. Synthesis of fluorescent CdS quantum dots of tunable light emission with a new in situ produced capping agent. Ind. Eng. Chem. Res. 2012, 51, 5995−6000. 24. Ghosh, A.; Paul, S.; Raj, S. Structural phase transformation from wurtzite to zinc-blende in uncapped CdS nanoparticles. Solid State Commun. 2013, 154, 25–29. 25. Warner, J. H.; Tilley, R. D. Synthesis and self-assembly of triangular and hexagonal CdS nanocrystals. Adv. Mater. 2005, 17, 2997–3001 26. Saunders, A. E.; Ghezelbash, A.; Sood, P.; Korgel, B. A. Synthesis of high aspect ratio quantum-size CdS nanorods and their surface-dependent photoluminescence. Langmuir 2008, 24, 9043–9049. 27. Voitekhovich, S. V.; Talapin, D. V.; Klinke, C.; Kornowski, A.; Weller, H. T. CdS nanoparticles capped with 1-substituted 5-thiotetrazoles: synthesis, characterization, and thermolysis of the surfactant. Chem. Mater. 2008, 20, 4545–4547. 28. Wang, C.; Zhang, H.; Lin, Z.; Yao, X.; Lv, N.; Li, M.; Sun, H.; Zhang, J.; Yang, B. Cationic ligand protection: a novel strategy for one-pot preparation of narrow-dispersed aqueous CdS spheres. Langmuir 2009, 25, 10237–10242. 29. Vaneski, A.; Schneider, J.; Susha, A. S.; Rogach, A. L. Aqueous synthesis of CdS and CdSe/CdS tetrapods for photocatalytic hydrogen generation. APL Mater. 2014, 2, 012104. 30. Polte, J. Fundamental growth principles of colloidal metal nanoparticles – a new perspective. CrystEngComm, 2015, 17, 6809–6830. 31. Newton, J. C.; Ramasamy, K.; Mandal, M.; Joshi, G. K.; Kumbhar, A.; Sardar, R. Through-space charge transfer in rod-like molecules: lessons from theory. J. Phys. Chem. C 2012, 116, 4380–4386. 32. Ji, X. H.; Song, X. N.; Li, J.; Bai, Y.; Yang, W. S.; Peng, X. G. Size control of gold nanocrystals in citrate reduction: the third role of citrate. J. Am. Chem. Soc. 2007, 129, 13939–13948. 33. Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I. G.; Diesner, K.; Chemseddine, A.; Eychmiuler, A.; Weller, H. CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J. Phys. Chem. 1994, 98, 7665–7673. 34. Thambidurai, M.; Muthukumarasamy, N.; Agilan, S.; Murugan, N.; Vasantha, S.; Balasundaraprabhu, R.; Senthil, T. S. Semiconductor nanocrystals: structure, properties, and band gap engineering. J. Mater. Sci. 2010, 45, 3254–3258. 35. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–935. 36. Zoraya, L. C.; Sotomayor, C. M.; González, G. Reduced chemically modified graphene oxide for supercapacitor electrode. Nanoscale Res. Lett. 2011, 6, 523–535. 37. Fujimori, A.; Minami, F. Valence-band photoemission and optical absorption in nickel compounds. Physical Review B 1984, 30, 957–960. 38. Vogel, Y. B.; Zhang, J.; Darwish, N.; Ciampi, S. Switching of current rectification ratios within a single nanocrystal by facet-resolved electrical wiring. ACS Nano 2018, 12, 8071−8080. 39. Smith, A. M.; Nie, S. Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 2010, 43, 190–200. 40. Chiu, M.-S.; Lin, C.-C.; Lee, A.-T.; Huang, M. H. Aqueous-phase synthesis of size-tunable PbSe nanocubes at room temperature for optical property characterization. Chem. Eur. J. 2019, 25, 367–372. 41. Wu, J.-K.; Lyu, L.-M.; Liao, C.-W.; Wang, Y.-N.; Huang, M. H. Fast synthesis of PbS nanocrystals in aqueous solution with shape evolution from cubic to octahedral structures and their assembled structures. Chem.–Eur. J. 2012, 18, 14473−14478. 42. Chen, H.-S.; Wu, S.-C.; Huang, M. H. Direct synthesis of size-tunable PbS nanocubes and octahedra and the pH effect on crystal shape control. Dalton Trans. 2015, 44, 15088−15094. 43. Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55. 44. Takiyama, K. Formation and aging of precipitates. Bull. Chem. Soc. Jpn. 1958, 31, 944–950. 45. Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610−7630. 46. LaMer, V. K. Nucleation in phase transitions. Ind. Eng. Chem. 1952, 44, 1270–1277. 47. Chávez, M.; Juárez, H.; Pacio, M.; Mathew, X.; Gutiérrez, R.; Chaltel, L.; Zamora, M.; Portillo, O. Optical band gap energy and urbach tail of CdS:Pb2+ thin films. Rev. Mex. Fis. 2016, 62, 124–128. 48. Huang, M. H. Facet-dependent optical properties of semiconductor nanocrystals. Small 2019, 15, 1804726.
|