帳號:guest(3.15.14.33)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林聖國
作者(外文):Lin, Sheng-Kuo
論文名稱(中文):環張力對雙環[2.2.2]辛烯酮系統上醯基自由基環化反應的影響之研究
論文名稱(外文):Effect of Ring Strain on Acyl Radical Cyclization of Bicyclo[2.2.2]octenone System
指導教授(中文):謝興邦
林俊成
指導教授(外文):Hsieh, Hsing-Pang
Lin, Chun-Cheng
口試委員(中文):廖俊臣
汪炳鈞
口試委員(外文):Liao, Chun-Chen
Uang, Biing-Jiun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:106023528
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:278
中文關鍵詞:異扭曲烷雙環[2.2.2]辛烯酮化合物駢環掩飾鄰苯醌硫醇輔助醯基自由基反應自由基重排
外文關鍵詞:isotwistanebicyclo[2.2.2]octenonefused ringortho-benzoquinonethiol-mediated acyl radical reactionradical rearrangement
相關次數:
  • 推薦推薦:0
  • 點閱點閱:553
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在palhinine生物鹼的全合成研究中,本實驗室先前曾在運用硫醇輔助醯基自由基環化反應以建構仿生中間體的異扭曲烷(isotwistane,5/6/6三環結構)之骨架時,意外發現重排產物138的生成。為了解此自由基反應的機構以及環張力對反應的影響,我們設計一系列不同大小的駢環(五環、六環、七環和八環)位於雙環[2.2.2]辛烯酮化合物136的R1/R2或R2/R3取代位置上。一開始,我們利用分子內的Friedel-Crafts醯化反應或環合置換反應(ring-closing metathesis),將五到八員駢環分別安裝於2-甲氧基苯酚上。此2-甲氧基苯酚經氧化去芳香化反應可得掩飾鄰苯醌,再與丙烯醛進行Diels-Alder反應並接續進行同系化反應,最終可獲得雙環[2.2.2]辛烯酮化合物136。此系列化合物136在經由硫醇輔助自由基反應後,依據不同之反應途徑可得到未重排之產物137或重排之產物138。本研究結果顯示,當起始物的駢環(五環,七環和八環)位於R1/R2位置時,反應選擇路徑b而得到重排產物138;而當起始物的駢環位於R2/R3位置,反應則會選擇路徑a而得到未重排產物137。特別的是,只有當起始物的六員環駢環位於R2/R3位置時,反應中間體是經由路徑b最終得到重排之產物138。歸納上述之實驗結果發現,除了駢環為六員環的例子外,無論起始物中駢環的所在位置,所得之主產物的結構皆為駢環位於異扭曲烷之R2/R3位置上。我們從可能的中間體(plaussible intermedeiate)分析並推測其合理的反應機構,認為這是由於駢環位於異扭曲烷結構中的R1/R2位置時所產生之張力較大,使得反應中間體選擇進行產生張力較小之駢環位於R2/R3位置之途徑。而從起始物的R2/R3位置為六員駢環時得到之不一致的結果,推測是受到反應中間體的立體構形所產生之影響。總結來說,於本研究中我們合成了七個分別含有不同大小駢環(五環,六環,七環和八環)之雙環[2.2.2]辛烯酮化合物,其中除了含有六員駢環外,無論駢環位於R1/R2或R2/R3位置時,經由硫醇輔助自由基反應後,皆會因為環張力的影響而得到駢環位於異扭曲烷結構中的R2/R3位置為主產物。只有當六員駢環位於R2/R3位置時,進行別於其他駢環位於R2/R3位置時之重排反應,此特殊之結果未來將值得我們進行更深入之探討。
Previously, our lab utilize a thiol-mediated acyl radical cyclization to construct isotwistane skeleton (5/6/6 tricyclic structure) of the bioinspired intermediate for the total synthesis of palhinine alkaloids, and an unexpected rearrangement product 138 was found during the study. To understand the mechanism and the ring strain effect of this radical reaction, we designed a series of compounds with different fused ring sizes (five- to eight-membered ring) at R1/R2 or R2/R3 substitution positions of the bicyclo[2.2.2]octenone 136. Initially, the five- to eight-membered fused rings were individually installed on a specific 2-methoxyphenol through intramolecular Friedel-Crafts acylation or ring closing metathesis. The 2-methoxyphenols were then converted to masked ortho-benzoquinones through oxidation-dearomatization, followed by Diels-Alder reaction with acrolein and homologation to furnish bicyclo[2.2.2]octenones 136. After thiol-mediated acyl radical reaction, bicyclo[2.2.2]octenones 136 could be converted to nonrearranged products 137 or rearranged products 138 through defferent reaction pathways. The results showed that while the position of fused rings (five-, seven- and eight-membered ring) were at R1/R2, the reactions would choose path b to generate rearranged products 138 and while the position of fused rings were at R2/R3, the reactions would choose path a to generate nonrearranged products 137. However, while the position of six-membered fused ring were at R2/R3, the reaction would choose path b. According to these results, we found that whether the position of fused rings in bicyclo[2.2.2]octenones 136 were at R1/R2 or R2/R3, the reactions would prefer to generate isotwistane compounds with fused ring at R2/R3 position as the major product except for six-membered ring case. After analyzing the plassible intermediate and the reaction mechanism, we assumed that strains were larger while fused rings were at isotwistane’s R1/R2 position, making the reactions to choose the pathway that could generate less ring strain products, namely fused ring at R2/R3 position. Besides, while six-membered fuse ring was at R2/R3 position, the acyl radical reaction would give oppsite result and we speculated that the conformations of the intermediates could also affect the reaction. In conclusion, we have synthesized seven bicyclo[2.2.2]octenones with different fused ring sizes (five- to eight-membered ring), and whether the position of fused rings were at R1/R2 or R2/R3, the reactions would all be affected by ring strains to generate isotwistane compounds with fused ring at R2/R3 position except for six-membered ring case. Only when six-membered fused ring were at R2/R3 position, the reaction would undergo rearrangement differing from other fused rings at R2/R3 position, and we would have more study on this special result in the futue.
中文摘要 I
英文摘要 II
謝誌 IV
目錄 V
圖目錄 X
表目錄 XI
流程目錄 XII
縮寫對照表 XIV
第一章、緒論 1
第一節 構形對反應的影響 1
1-1-1 張力對構形的影響 1
1-1-2 取代基對反應的影響 2
1-1-3 駢環對反應的影響 5
1-1-4 構形對反應立體選擇性的影響 7
第二節 Palhinine 生物鹼的合成研究 8
1-2-1 厙學功教授利用分子內Diels-Alder反應建構6/6/9三環骨架 10
1-2-2 樊春安教授的輔助環建構/解構合成策略 11
1-2-3陳致銘博士之合環順序的變更與硫醇輔助醯基自由基環化反應 16
第三節 醯基自由基 (Acyl Radical) 介紹與相關研究工作 22
1-3-1 醯基自由基的生成 22
1-3-2雙環[2.2.2]辛烯酮上的取代基對醯基自由基環化反應的影響 28
第四節 掩飾鄰苯醌相關反應研究 31
第五節 研究動機 34
第二章、結果與討論 36
第一節 2-甲氧基苯酚前驅物之製備 36
2.1.1 帶有五員環駢環的2-甲氧基苯酚之製備 37
2.1.2 帶有六員環駢環的2-甲氧基苯酚之製備 39
2.1.3 帶有七員環駢環的2-甲氧基苯酚之製備 43
2.1.4 帶有八員環駢環的2-甲氧基苯酚之製備 46
第二節 醯基自由基環化反應的醛類前驅物之製備 50
2.2.1 雙環[2.2.2]辛烯酮類化合物的製備 50
2.2.2 同系化反應 52
第三節 醯基自由基環化反應 60
2.3.1 駢環位在R1/R2對醯基自由基環化反應的影響 60
2.3.2 駢環位在R2/R3對醯基自由基環化反應的影響 67
第四節 立體結構之鑑定 76
2.4.1 重排產物138a的立體結構之鑑定 76
2.4.2 重排產物138c的立體結構之鑑定 77
2.4.3 重排產物138d的立體結構之鑑定 78
2.4.4 未重排產物137e的立體結構之鑑定 80
2.4.4 未重排產物137h的立體結構之鑑定 82
第三章、結論與未來展望 84
第四章、實驗部分 88
第一節 一般實驗方法 88
第二節 五員環駢環苯酚化合物之實驗步驟與光譜資料 90
4.2.1 苯酚135a的合成路徑 90
4.2.2 羧酸化合物143a的合成 90
4.2.3 Friedel-Crafts反應產物146a的合成 91
4.2.4 苯酚147a的合成 91
4.2.5 苯酚135a的合成 93
4.2.6 苯酚135e的合成路徑 93
4.2.7 苯酚135e的合成 94
第三節 六員環駢環苯酚化合物之實驗步驟與光譜資料 94
4.3.1 苯酚135b的合成路徑 94
4.3.2 Friedel-Crafts反應產物146b的合成 95
4.3.3 苯酚147b的合成 96
4.3.4 苯酚135b的合成 96
4.3.5 苯酚135f的合成路徑 97
4.3.6 Friedel-Crafts反應產物146f的合成 97
4.3.7 苯酚135f的合成 98
第四節 七員環駢環苯酚化合物之實驗步驟與光譜資料 99
4.4.1 苯酚135c的合成路徑 99
4.4.2烯丙基醚化合物152的合成 99
4.4.3 2-烯丙基苯酚化合物153的合成 100
4.4.4 二烯化合物141c的合成 100
4.4.5 環合置換反應產物155c的合成 101
4.4.6 苯酚135c的合成 102
4.4.7 苯酚135c的合成路徑 103
4.4.8 醛化合物163的合成 103
4.4.9 溴化物164的合成 104
4.4.10 2-丙烯基苯甲醛化合物166的合成 104
4.4.11 二烯化合物141g的合成 105
4.4.12 環合置換反應產物155g的合成 106
第五節 八員環駢環苯酚化合物之實驗步驟與光譜資料 107
4.5.1 苯酚135d的合成路徑 107
4.5.2 羧酸化合物143d的合成 108
4.5.3 Friedel-Crafts反應產物146d的合成 109
4.5.4 苯酚147d的合成 109
4.5.5 苯酚135d的合成 110
4.5.6 苯酚135f的合成路徑 111
4.5.7 羧酸化合物143h的合成 111
4.5.8 Friedel-Crafts反應產物146h的合成 112
4.5.9 苯酚135h的合成 113
第六節 Diels-Alder產物之實驗步驟與光譜資料 113
4.6.1 化合物140a的合成 113
4.6.2 化合物140b的合成 114
4.6.3 化合物140c的合成 115
4.6.4 化合物140d的合成 116
4.6.5 化合物140e的合成 116
4.6.6 化合物140f的合成 117
4.6.7 化合物140g的合成 118
4.6.8 化合物140h的合成 118
第七節 Wittig產物之實驗步驟與光譜資料 119
4.7.1 化合物168a的合成 119
4.7.2 化合物168b的合成 120
4.7.3 化合物168c的合成 121
4.7.4 化合物168d的合成 122
4.7.5 化合物168e的合成 123
4.7.6 化合物168f的合成 124
4.7.7 化合物168g的合成 125
4.7.8 化合物168h的合成 126
第八節 醛類前驅物之實驗步驟與光譜資料 127
4.7.1 化合物136a的合成 127
4.7.2 化合物136c的合成 127
4.7.3 化合物136d的合成 128
4.7.4 化合物136e的合成 129
4.7.5 化合物136f的合成 129
4.7.6 化合物136g的合成 130
4.7.7 化合物136h的合成 131
第九節 醯基自由基環化反應產物之實驗步驟與光譜資料 132
4.7.1 化合物137a與138a的合成 132
4.7.2 化合物138c的合成 133
4.7.3 化合物138d的合成 134
4.7.4 化合物137e的合成 135
4.7.5 化合物138f的合成 136
4.7.6 化合物137g、137i與138g的合成 137
4.7.7 化合物137h的合成 138
第五章、參考資料 140
附錄ㄧ、化合物之核磁共振光譜 147
附錄二、口試投影片 252

1. Barton, D. H. R. The Conformation of the Steroid Nucleus. Experientia 1950, 6, 316-320.
2. Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry Part A: Structure and Mechanisms, 5th ed.; Springer: New York, 2007, 63, 119-252.
3. Chen, R.; Shen, Y.; Yang, S. and Zhang, Y. Conformational Design Principles in Total Synthesis. Angew. Chem. Int. Ed. 2020, 59, 2-15.
4. Todoroki, H.; Iwatsu, M.; Urabe, D.; Inoue, M. Total Synthesis of (−)-4-Hydroxyzinowol. J. Org. Chem. 2014, 79, 8835-8849.
5. Gong, J.; Chen, H.; Liu X.-Y.; Wang Z.-X.; Nie, W.; Qin, Y. Total Synthesis of Atropurpuran. Nat. Commun. 2016, 7, 12183.
6. Stork, G.; Rychnovsky S. D.; Concise Total Synthesis of (+)-(9S)-Dihydroerythronolide A. J. Am. Chem. Soc. 1987, 109, 1565-1567.
7. Woodward, R. B.; Logusch, E.; Nambiar, K. P.; Sakan, K.; Ward, D. E.; Auyeung, B. W.; Balaram, P.; Browne, L. J.; Card, P. J.; Chen, C. H.; Chenevert, R. B.; Fliri, A.; Frobel, K.; Gais, H. J.; Garratt, D. G.; Hayakawa, K.; Heggie, W.; Hesson, D. P.; Hoppe, D.; Hoppe, I.; Hyatt, J. A.; Ikeda, D.; Jacobi, P. A.; Kim, K. S.; Kobuke, Y.; Kojima, K.; Krowicki, K.; Lee, V. J.; Leutert, T.; Malchenko, S.; Martens, J.; Matthews, R. S.; Ong, B. S.; Press J. B.; Rajanbabu, T. V.; Rousseau, G.; Sauter, H. M.; Suzuki, M.; Tatsuta, K.; Tolbert, L. M., Truesdale, E. A.; Uchida, I.; Ueda, Y.; Uyehara, T.; Vasella, A. T.; Vladuchick, W. C.; Wade, P. A.; Williams, R. M.; Wong, H. N. C. Asymmetric Total Synthesis of Erythromycin. 2. Synthesis of an Erythronolide A Lactone System. J. Am. Chem. Soc. 1981, 103, 3213-3215.
8. Toya, H.; Okano, K.; Takasu, K.; Ihara, M.; Takahashi, A.; Tanaka, H.; Tokuyama, H. Enantioselective Total Synthesis of (-)- and (+)-Petrosin. Org. Lett. 2010, 12, 5196-5199.
9. Trost, B. M.; Stivala, C. E.; Fandrick, D. R.; Hull, K. L.; Huang, A.; Poock, C.; Kalkofen, R. Total Synthesis of (−)-Lasonolide A. J. Am. Chem. Soc. 2016, 138, 11690-11701.
10. Yamashita, S.; Ishihara, Y.; Morita, H.; Uchiyama, J.; Takeuchi, K.; Inoue, M.; Hirama, M. Stereoselective 6-exo Radical Cyclization Using cis-Vinyl Sulfoxide: Practical Total Synthesis of CTX3C. J. Nat. Prod. 2011, 74, 357-364.
11. Hashimoto, S.; Katoh, S.; Kato, T.; Urabe, D.; Inoue, M. Total Synthesis of Resiniferatoxin Enabled by Radical-Mediated Three-Component Coupling and 7-endo Cyclization.. J. Am. Chem. Soc. 2017, 139, 16420-16429.
12. Discovery of palhinine alkaloids: (a) Zhao, F.-W.; Sun, Q.-Y.; Yang, F.-M.; Hu, G.-W.; Luo, J.-F.; Tang, G.-H.; Wang, Y.-H.; Long, C.-L. Palhinine A, a Novel Alkaloid from Palhinhaea cernua. Org. Lett. 2010, 12, 3922-3925. (b) Dong, L.-B.; Gao, X.; Liu, F.; He, J.; Wu, X.-D.; Li, Y.; Zhao, Q.-S. Isopalhinine A, a Unique Pentacyclic Lycopodium Alkaloid from Palhinhaea cernua. Org. Lett. 2013, 15, 3570-3573. (c) Wang, X.-J.; Li, L.; Yu, S.-S.; Ma. S.-G.; Qu, J.; Liu, Y.-B.; Li, Y.; Wang, Y.; Tang, W. Five New Fawcettimine-Related Alkaloids From Lycopodium japonicum Thunb. Fitoterapia 2013, 91, 74-81. (d) Wang, X.-J.; Li, L.; Yu, S.-S.; Ma, S.-G.; Qu, J.; Liu, Y.-B.; Li, Y.; Wang, Y.; Tang, W. Corrigendum to “Five New Fawcettimine-Related Alkaloids from Lycopodium japoniucm Thunb.” [Fitoterapia (2013) 74 -81]. Fitoterapia 2016, 114, 194.
13. Mitsunobu reaction for nine-membered azonane ring construction in fawcettimine alkaloid synthesis: (a) Nakayama, A.; Kogure, N.; Kitajima, M.; Takayama, H. First Asymmetric Total Syntheses of Fawcettimine-Type Lycopodium Alkaloids, Lycoposerramine-C and Phlegmariurine-A. Org. Lett. 2009, 11, 5554-5557. (b) Otsuka, Y.; Inagaki, F.; Mukai, C. Total Syntheses of (+)-Fawcettimine and (+)-Lycoposerramine-B. J. Org. Chem. 2010, 75, 3420-3426. (c) Nakayama, A.; Kogure, N.; Kitajima, M.; Takayama, H. Asymmetric Total Synthesis of a Pentacyclic Lycopodium Alkaloid: Huperzine‐Q. Angew. Chem. Int. Ed. 2011, 50, 8025-8028. (d) Nakayama, A.; Kitajima, M.; Takayama, H. Syntheses of Fawcettimine-Type Lycopodium Alkaloids Utilizing the Pauson–Khand Reaction. Synlett. 2012, 23, 2014-2024. (e) Pan, G.; Williams, R. M. Unified Total Syntheses of Fawcettimine Class Alkaloids: Fawcettimine, Fawcettidine, Lycoflexine, and Lycoposerramine B. J. Org. Chem. 2012, 77, 4801-4811. (f) Zaimoku, H.; Nishide, H.; Nishibata, A.; Goto, N.; Taniguchi, T.; Ishibashi, H. Syntheses of (±)-Serratine, (±)-Lycoposerramine T, and (±)-Lycopoclavamine B. Org. Lett. 2013, 15, 2140-2143. (g) Zaimoku, H.; Taniguchi, T. Redox Divergent Synthesis of Fawcettimine‐Type Lycopodium Alkaloids. Chem. Eur. J. 2014, 20, 9613-9619. (h) Kaneko, H.; Takahashi, S.; Kogure, N.; Kitajima, M.; Takayama, H. Asymmetric Total Synthesis of Fawcettimine-Type Lycopodium Alkaloid, Lycopoclavamine-A. J. Org. Chem. 2019, 84, 5645-5654.
14. SN2 cyclization for nine-membered azonane ring construction in fawcettimine alkaloid synthesis: (a) Heathcock, C. H.; Smith, K. M.; Blumenkopf, T. A. Total Synthesis of (±)-Fawcettimine (Burnell's Base A). J. Am. Chem. Soc. 1986, 108, 5022-5024. (b) Heathcock, C. H.; Blumenkopf, T. A.; Smith, K. M. Total Synthesis of (±)-Fawcettimine. J. Org. Chem. 1989, 54, 1548-1562. (c) Linghu, X.; Kennedy-Smith, J. J.; Toste, F. D. Total Synthesis of (+)‐Fawcettimine. Angew. Chem. Int. Ed. 2007, 46, 7671-7673. (d) Yang, Y.-R.; Lai, Z.-W.; Shen, L.; Huang, J.-Z.; Wu, X.-D.; Yin, J.-L.; Wei, K. Total Synthesis of (−)-8-Deoxyserratinine via an Efficient Helquist Annulation and Double N-Alkylation Reaction. Org. Lett. 2010, 12, 3430-3433. (e) Yang, Y.-R.; Shen, L.; Huang, J.-Z.; Xu, T.; Wei, K. Application of the Helquist Annulation in Lycopodium Alkaloid Synthesis: Unified Total Syntheses of (−)-8-Deoxyserratinine, (+)-Fawcettimine, and (+)-Lycoflexine. J. Org. Chem. 2011, 76, 3684-3690. (f) Shimada, N.; Abe, Y.; Yokoshima, S.; Fukuyama, T. Total Synthesis of (−)‐Lycoposerramine‐S. Angew. Chem. Int. Ed. 2012, 51, 11824-11826. (g) Itoh, N.; Iwata, T.; Sugihara, H.; Inagaki, F.; Mukai, C. Total Syntheses of (±)‐Fawcettimine, (±)‐Fawcettidine, (±)‐Lycoflexine, and (±)‐Lycoposerramine‐Q. Chem. Eur. J. 2013, 19, 8665-8672. (h) Zeng, C.; Zheng, C.; Zhao, J.; Zhao, G. Divergent Total Syntheses of (−)-Lycopladine D, (+)-Fawcettidine, and (+)-Lycoposerramine Q. Org. Lett. 2013, 15, 5846-5849.
15. Synthetic study of palhinine alkaloids: (a) Zhao, C.; Zheng, H.; Jing, P.; Fang, B.; Xie, X.; She, X. Tandem Oxidative Dearomatization/Intramolecular Diels–Alder Reaction for Construction of the Tricyclic Core of Palhinine A. Org. Lett. 2012, 14, 2293-2295. (b) Zhang, G.-B.; Wang, F.-X.; Du, J.-Y.; Qu, H.; Ma, X.-Y.; Wei, M.-X.; Wang, C.-T. ; Li, Q.; Fan, C.-A. Toward the Total Synthesis of Palhinine A: Expedient Assembly of Multifunctionalized Isotwistane Ring System with Contiguous Quaternary Stereocenters. Org. Lett. 2012, 14, 3696-3699. (c) Sizemore, N.; Rychnovsky, S. D. Studies toward the Synthesis of Palhinine Lycopodium Alkaloids: A Morita–Baylis–Hillman/Intramolecular Diels–Alder Approach. Org. Lett. 2014, 16, 688-691. (d) Gaugele, D.; Maier, M. E. Approach to the Core Structure of the Polycyclic Alkaloid Palhinine A. Synlett. 2013, 24, 955-958. (e) Duan, S.; Long, D.; Zhao, C.; Zhao, G.; Yuan, Z.; Xie, X.; Fang, J.; She, X. Efficient Construction of the A/C/D Tricyclic Skeleton of Palhinine A. Org. Chem. Front. 2016, 3, 1137-1143. (f) Wang, F.-X.; Zhang, P.-L.; Wang, H.-B.; Zhang, G.-B.; Fan, C.-A. A Strategic Study Towards Constructing the Nine-Membered Azonane Ring System of Palhinine A via an Azidoketol Fragmentation Reaction. Sci. China: Chem. 2016, 59, 1188-1196. (g) Wang, F.-X.; Du, J.-Y.; Wang, H.-B.; Zhang, P.-L.; Zhang, G.-B.; Yu, K.-Y.; Zhang, X.-Z.; An, X.-T.; Cao, Y.-X.; Fan, C.-A. Total Synthesis of Lycopodium Alkaloids Palhinine A and Palhinine D. J. Am. Chem. Soc. 2017, 139, 4282-4285. (h) Chen, C.-M.; Shiao, H.-Y.; Uang, B.-J.; Hsieh, H.-P. Biomimetic Syntheses of (±)-Isopalhinine A, (±)-Palhinine A, and (±)-Palhinine D. Angew. Chem., Int. Ed., 2018, 57, 15572-15576. (i) 陳致銘,天然物 (±)-Isopalhinine A、(±)-Palhinine A 與 (±)-Palhinine D 的仿生合成,博士論文,國立清華大學,2019年。
16. (a) 陳致銘,尚未發表結果,2018年 (b) Reddy, J. S. N. unpublished results, 2019.
17. Chatgilialoglu, C.; Crich, D.; Komatsu, M.; Ryu, I. Chemistry of Acyl Radicals. Chem. Rev. 1999, 99, 1991-2070.
18. Faltings, K. Photochemical Investigations in the Schumann Ultraviolet. VIII. the Photochemical Decomposition of Ethane. Ber. Dtsch. Chem. Ges. 1939, 72B, 1207-1215.
19. Ryu, I.; Kusano, K.; Ogawa, N.; Kambe, N.; Sonoda, N. Free-Radical Carbonylation. Efficient Trapping of Carbon Monoxide by Carbon Radicals. J. Am. Chem. Soc. 1990, 112, 1295-1297.
20. Tsunoi, S.; Ryu, I.; Muraoka, H.; Tanaka, M.; Komatsu, M.; Sonoda, N. Stannylformylation Of Vinylcyclopropane Accompanied By Radical Ring-Opening. Tetrahedron Lett. 1996, 37, 6729-6732.
21. Dang, H.-S.; Roberts, B. P. Radical-Chain Addition of Aldehydes to Alkenes Catalysed by Thiols. J. Chem. Soc., Perkin Trans. 1 1998, 67-75.
22. Kharasch, M. S.; Urry, W. H.; Kuderna, B. M.; Reactions of Atoms and Free Radicals in Solution. XX. The Addition of Aldehydes to Olefins. J. Org. Chem., 1949, 14, 248-253.
23. Harris, E. F. P.; Waters, W. A. Thiol Catalysis of the Homolytic Decomposition of Aldehydes. Nature 1952, 170, 212-213.
24. Yoshikai, K.; Hayama, T.; Nishimura, K.; Yamada, K.; Tomioka, K. Thiol-Catalyzed Acyl Radical Cyclization of Alkenals. J. Org. Chem. 2005, 70, 681-683.
25. 張一寧,醯基自由基環化反應應用於異扭曲烷骨架之合成,碩士論文,國立清華大學,2019年。
26. (a) Liao, C.-C.; Peddinti, R. K. Masked o-Benzoquinones in Organic Synthesis. Acc. Chem. Res. 2002, 35, 856-866. (b) Harry, N. A.; Saranya, S.; Krishnan, K. K.; Anilkumar, G. Recent Advances in the Chemistry of Masked Ortho‐Benzoquinones and Their Applications in Organic Synthesis. Asian J. Org. Chem. 2017, 6, 945-966.
27. (a) Liao, C.-C.; Wei, C.-P. Synthetic Applications of Masked o-benzoquinones. A Novel Total Synthesis of (±)-Forsythide Aglucone Dimethyl Ester. Tetrahedron Lett. 1989, 30, 2255-2256. (b) Chu, C.-S.; Liao, C.-C.; Rao, P. D. A Formal Synthesis of (±)-Reserpine from Methyl Vanillate. Chem. Commun. 1996, 1537-1538. (c) Lee, T.-H.; Liao, C.-C. Stereoselective Synthesis of (±)-(13E)-2-oxo-5α-cis-17α,20α-cleroda-3,13-dien-15-oic Acid, and Alleged Cis-clerodane diterpenic acid. Tetrahedorn Lett. 1996, 37, 6869-6872. (d) Liu, W.-C.; Liao, C.-C. A New and Highly Stereoselective Approach to cis-Clerodanes. Synlett. 1998, 912-914. (e) Liu, W.-C.; Liao, C.-C. The First Total Synthesis of (±)-Pallescensin B. Chem. Commun. 1999, 117-118. (f) Hsu, D.-S.; Hsu, P.-Y.; Liao, C.-C. The First Total Synthesis of (±)-Eremopetasidione. Org. Lett. 2001, 3, 263-265. (g) Yen, C.-F.; Liao, C.-C. Concise and Efficient Total Synthesis of Lycopodium Alkaloid Magellanine. Angew. Chem. Int. Ed. 2002, 41, 4090-4093. (h) Hsu, D.-S.; Liao, C.-C. Total Syntheses of Sesterpenic Acids:  Refuted (±)-Bilosespenes A and B. Org. Lett. 2003, 5, 4741-4743. (i) Liao, C.-C. Masked o-Benzoquinone Strategy in Organic Synthesis: Short and Efficient Construction of Cis-decalins and Linear Triquinanes from 2‑Methoxyphenols. Pure Appl. Chem. 2005, 77, 1221-1234.
28. Shiao, H.-Y.; Hsieh, H.-P.; Liao, C.-C. First Total Syntheses of (±)-Annuionone B and (±)-Tanarifuranonol. Org. Lett. 2008, 10, 449-452.
29. 林文斌、陳小珍、王秋華、肖貽崧、鄭吉富、賀海鷹、陳曙輝(2010)。中華人民共和國專利號CN101747171A。中華人民共和國國家知識產權局。
30. Kemperman, G. J.; Roeters T. A.; Hilberink P. W. Cleavage of Aromatic Methyl Ethers by Chloroaluminate Ionic Liquid Reagents. Eur. J. Org. Chem., 2003, 9, 1681-1686.
31. Leysen, Dirk; Wieringa, Johannes, Hubertus; Broekkamp, Christophorus, Louis, Eduard (1999). WO1999043647. World Intellectual Property Organization.
32. (a) Rao, D.; Stuber, F. A. An Efficient Synthesis of 3,4,5-trimethoxybenz-aldehyde from Vanillin. Synthesis, 1983, 308. (b) Michel, F.; Thomas, F.; Hamman, S.; Saint‐Aman, E.; Bucher, C.; Pierre, J.‐L. Galactose Oxidase Models : Solution Chemistry, and Phenoxyl Radical Generation Mediated by the Copper Status. Chem. Eur. J. 2004, 10, 4115-4125.
33. Barnes, David; Bebernitz, Gregory Raymond; Coppola, Gary Mark; Stams, Travis; Topiol, Sidney Wolf; VEDANANDA, Thalaththani Ralalage; WAREING, James Richard (2007). WO2007067613. World Intellectual Property Organization.
34. Adam, J.-M.; de Fays, L.; Laguerre, M.; Ghosez, L. Asymmetric Synthesis of Cyclic β-Hydroxyallylsilanes via Sequential Allyltitanation-Ring Closing Metathesis. Tetrahedron, 2004, 60, 7325-7344.
35. Herdman, C. A.; Strecker, T. E.; Tanpure, R. P.; Chen, Z.; Winters, A.; Gerberich, J.; Liu, L.; Hamel, E.; Mason, R. P.; Chaplin, D. J.; Trawick, M. L.; Pinney, K. G. Synthesis and Biological Evaluation of Benzocyclooctene-based and Indene-based Anticancer Agents that Function as Inhibitors of Tubulin Polymerization. Med. Chem. Comm. 2016, 7, 2418-2427.
36. (a) D’Armas, H. T.; Mootoo, B. S.; Reynolds, W. F. Steroidal Compounds from the Caribbean Octocoral Eunicea laciniate. J. Nat. Prod. 2000, 63, 1669– 1671. (b) Burns, D. C.; Reynolds, W. F. Optimizing NMR Methods for Structure Elucidation: Characterizing Natural Products and Other Organic Compounds, 1st ed.; Royal Society of Chemistry: London; Chapt. 12 pp 213-215. (c) Silverstein, R. M.; Webster, F. X.; Kiemle, D. J. Spectrometric Identification of Organic Compounds, 7th ed.; Wiley: Hoboken, New Jersey Chapt. 3 pp 159.
37. (a) Adams, D. R.; Duncton, M. A. J. Efficient Synthesis of the 5-HT2C Receptor Agonist, ORG 37684. Synth. Commun. 2001, 31, 2029-2036. (b) Day, J. P.; Lindsay, B.; Riddell, T.; Jiang, Z.; Allcock, R. W.; Abraham, A.; Sookup, S.; Christian, F.; Bogum, J.; Martin, E. K.; Rae, R.L.; Anthony, D.; Rosair, G. M.; Houslay, D. M.; Huston, E.; Baillie, G. S.; Klussmann, E.; Houslay, M. D.; Adams, D. R. Elucidation of a Structural Basis for the Inhibitor-Driven, p62 (SQSTM1)-Dependent Intracellularredistribution of cAMP Phosphodiesterase-4A4 (PDE4A4). J. Med.Chem. 2011, 54, 3331-3347.
38. (a) Kim, H.; Ralph, J.; Lu, F.; Pilate, G.; Leplé, J.-C.; Pollet, B.;Lapierre, C. Identification of the Structure and Origin of Thioacidolysis Marker Compounds for Cinnamyl Alcohol Dehydrogenasedeficiency in Angiosperms. J. Biol. Chem. 2002, 277, 47412-47419. (b) Ozaki, Y.; Oshio I.; Ohsuga Y.; Kaburagi S.; Sung Z.-Z.; Kim S.-W. A New Entry to the Synthesis of 1,2-Benzenediol Congeners Chem. Pharm. Bull., 1991, 39, 1132-1136.
39. Bonner, L. A.; Laban, U.; Chemel, B. R.; Juncosa, J. I.; Lill, M. A.;Watts, V. J.; Nichols, D. E. Mapping the Catechol Binding Site Indopamine D1 Receptors: Synthesis and Evaluation of Two Parallel Series of Bicyclic Dopamine Analogues. ChemMedChem 2011, 6, 1024-1040.
40. Ghatak, A.; Dorsey, J. M.; Garner, C. M.; Pinney, K.G. Synthesis of Methoxy and Hydroxy Containing Tetralones: Versatile Intermediates for the Preparation of Biologically Relevant Molecules. Tetrahedron Lett. 2003, 44, 4145-4148.
41. Lian, Y.; Wulff, W. D. Iron in the Service of Chromium:  The ortho-Benzannulation of trans,trans-Dienyl Fischer Carbene Complexes J. Am. Chem. Soc. 2005,127, 17162-17163.
42. Chorghade, R.; Battilocchio, C.; Hawkins, J. M.; Ley, S. V. Sustainable Flow Oppenauer Oxidation of Secondary Benzylic Alcohols with a Heterogeneous Zirconia Catalyst. Org. Lett. 2013, 15, 5698-5701.
43. Boger, D. L.; Coleman, R. S. Benzylic Hydroperoxide Rearrangement: Observations on a Viable and Convenient Alternative to the Baeyer-Villiger Rearrangement. J. Org. Chem. 1986, 51, 5436-5439.
44. Okano, K.; Tokuyama, H.; Fukuyama, T. Total Synthesis of (+)-Yatakemycin. J. Am. Chem. Soc. 2006, 128, 7136-7137.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *