|
1. Bondalapati, S.; Jbara, M.; Brik, A., Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins. Nat. Chem. 2016, 8, 407. 2. Merrifield, R. B., Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149-2154. 3. Dawson, P. E.; Kent, S. B. H., Synthesis of Native Proteins by Chemical Ligation. Annu. Rev. Biochem 2000, 69, 923-960. 4. Kent, S. B. H., Total chemical synthesis of proteins. Chem. Soc. Rev. 2009, 38, 338-351. 5. Raibaut, L.; Ollivier, N.; Melnyk, O., Sequential native peptide ligation strategies for total chemical protein synthesis. Chem. Soc. Rev. 2012, 41, 7001-7015. 6. Harmand, T. J. R.; Murar, C. E.; Bode, J. W., New chemistries for chemoselective peptide ligations and the total synthesis of proteins. Curr. Opin. Chem. Biol 2014, 22, 115-121. 7. Hackenberger, C. P.; Schwarzer, D., Chemoselective ligation and modification strategies for peptides and proteins. Angew. Chem. Int. Ed. 2008, 47, 10030-10074. 8. Nilsson, B. L.; Kiessling, L. L.; Raines, R. T., Staudinger ligation: a peptide from a thioester and azide. Org. Lett. 2000, 2, 1939-1941. 9. Saxon, E.; Armstrong, J. I.; Bertozzi, C. R., A “traceless” Staudinger ligation for the chemoselective synthesis of amide bonds. Org. Lett. 2000, 2, 2141-2143. 10. Nilsson, B. L.; Kiessling, L. L.; Raines, R. T., High-yielding Staudinger ligation of a phosphinothioester and azide to form a peptide. Org. Lett. 2001, 3, 9-12. 11. Köhn, M.; Breinbauer, R., The Staudinger ligation—a gift to chemical biology. Angew. Chem. Int. Ed. 2004, 43, 3106-3116. 12. Zhang, Y.; Xu, C.; Lam, H. Y.; Lee, C. L.; Li, X., Protein chemical synthesis by serine and threonine ligation. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 6657-6662. 13. Bode, J. W.; Fox, R. M.; Baucom, K. D., Chemoselective amide ligations by decarboxylative condensations of N‐alkylhydroxylamines and α‐ketoacids. Angew. Chem. Int. Ed. 2006, 45, 1248-1252. 14. Medina, S. I.; Wu, J.; Bode, J. W., Nitrone protecting groups for enantiopure N-hydroxyamino acids: synthesis of N-terminal peptide hydroxylamines for chemoselective ligations. Org. Biomol. Chem. 2010, 8, 3405-3417. 15. Patil, M., A revised mechanism for the α-ketoacid hydroxylamine amide forming ligations. Org. Biomol. Chem. 2017, 15, 416-425. 16. Pattabiraman, V. R.; Ogunkoya, A. O.; Bode, J. W., Chemical protein synthesis by chemoselective α-ketoacid–hydroxylamine (KAHA) ligations with 5‐oxaproline. Angew. Chem. Int. Ed. 2012, 51, 5114-5118. 17. Li, Y. M.; Huang, Y. C.; Liu, L., KAHA Ligation at Serine. ChemBioChem 2016, 17, 28-30. 18. Pusterla, I.; Bode, J. W., An oxazetidine amino acid for chemical protein synthesis by rapid, serine-forming ligations. Nat. Chem. 2015, 7, 668. 19. Conibear, A. C.; Watson, E. E.; Payne, R. J.; Becker, C. F. W., Native chemical ligation in protein synthesis and semi-synthesis. Chem. Soc. Rev. 2018, 47, 9046-9068. 20. Wieland, T.; Bokelmann, E.; Bauer, L.; Lang, H. U.; Lau, H., Über Peptidsynthesen. 8. Mitteilung Bildung von S‐haltigen Peptiden durch intramolekulare Wanderung von Aminoacylresten. Justus Liebigs Ann. Chem. 1953, 583, 129-149. 21. Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S., Synthesis of proteins by native chemical ligation. Science 1994, 266, 776-779. 22. Johnson, E. C.; Kent, S. B., Insights into the mechanism and catalysis of the native chemical ligation reaction. J. Am. Chem. Soc. 2006, 128, 6640-6646. 23. Bang, D.; Kent, S. B., A one‐pot total synthesis of crambin. Angew. Chem. Int. Ed. 2004, 43, 2534-2538. 24. Johnson, E. C.; Durek, T.; Kent, S. B., Total chemical synthesis, folding, and assay of a small protein on a water‐compatible solid support. Angew. Chem. Int. Ed. 2006, 45, 3283-3287. 25. Torbeev, V. Y.; Kent, S. B., Convergent chemical synthesis and crystal structure of a 203 amino acid “covalent dimer” HIV‐1 protease enzyme molecule. Angew. Chem. Int. Ed. 2007, 46, 1667-1670. 26. McCaldon, P.; Argos, P., Oligopeptide biases in protein sequences and their use in predicting protein coding regions in nucleotide sequences. Proteins: Struct., Funct., Bioinf. 1988, 4, 99-122. 27. Yan, L. Z.; Dawson, P. E., Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J. Am. Chem. Soc. 2001, 123, 526-533. 28. Wan, Q.; Danishefsky, S. J., Free‐radical‐based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew. Chem. Int. Ed. 2007, 46, 9248-9252. 29. Rohde, H.; Seitz, O., Invited reviewligation—Desulfurization: A powerful combination in the synthesis of peptides and glycopeptides. J. Pept. Sci. 2010, 94, 551-559. 30. Wong, C. T.; Tung, C. L.; Li, X., Synthetic cysteine surrogates used in native chemical ligation. Mol. BioSyst. 2013, 9, 826-833. 31. Malins, L. R.; Payne, R. J., Synthetic amino acids for applications in peptide ligation–desulfurization chemistry. Aust. J. Chem. 2015, 68, 521-537. 32. Crich, D.; Banerjee, A., Native chemical ligation at phenylalanine. J. Am. Chem. Soc. 2007, 129, 10064-10065. 33. Chen, J.; Wan, Q.; Yuan, Y.; Zhu, J.; Danishefsky, S. J., Native chemical ligation at valine: a contribution to peptide and glycopeptide synthesis. Angew. Chem. Int. Ed. 2008, 47, 8521-8524. 34. Haase, C.; Rohde, H.; Seitz, O., Native chemical ligation at valine. Angew. Chem. Int. Ed. 2008, 47, 6807-6810. 35. Tan, Z.; Shang, S.; Danishefsky, S. J., Insights into the finer issues of native chemical ligation: an approach to cascade ligations. Angew. Chem. Int. Ed. 2010, 49, 9500-9503. 36. Siman, P.; Karthikeyan, S. V.; Brik, A., Native chemical ligation at glutamine. Org. Lett. 2012, 14, 1520-1523. 37. Chen, J.; Wang, P.; Zhu, J.; Wan, Q.; Danishefsky, S. J., A program for ligation at threonine sites: application to the controlled total synthesis of glycopeptides. Tetrahedron 2010, 66, 2277-2283. 38. Shang, S.; Tan, Z.; Dong, S.; Danishefsky, S. J., An advance in proline ligation. J. Am. Chem. Soc. 2011, 133, 10784-10786. 39. Yang, R.; Pasunooti, K. K.; Li, F.; Liu, X.-W.; Liu, C.-F., Dual native chemical ligation at lysine. J. Am. Chem. Soc. 2009, 131, 13592-13593. 40. Ajish Kumar, K.; Haj‐Yahya, M.; Olschewski, D.; Lashuel, H. A.; Brik, A., Highly efficient and chemoselective peptide ubiquitylation. Angew. Chem. Int. Ed. 2009, 48, 8090-8094. 41. Marinzi, C.; Offer, J.; Longhi, R.; Dawson, P. E., An o-nitrobenzyl scaffold for peptide ligation: synthesis and applications. Bioorg. Med. Chem. 2004, 12, 2749-2757. 42. Botti, P.; Carrasco, M. R.; Kent, S. B., Native chemical ligation using removable Nα-(1-phenyl-2-mercaptoethyl) auxiliaries. Tetrahedron Lett. 2001, 42, 1831-1833. 43. Offer, J.; Boddy, C.; Dawson, P. E., Extending synthetic access to proteins with a removable acyl transfer auxiliary. J. Am. Chem. Soc. 2002, 124, 4642-4646. 44. Loibl, S. F.; Harpaz, Z.; Seitz, O., A type of auxiliary for native chemical peptide ligation beyond cysteine and glycine junctions. Angew. Chem. Int. Ed. 2015, 54, 15055-15059. 45. Kawakami, T.; Aimoto, S., A photoremovable ligation auxiliary for use in polypeptide synthesis. Tetrahedron Lett. 2003, 44, 6059-6061. 46. Johnson, T.; Quibell, M.; Sheppard, R. C., N, O‐bisFmoc derivatives of N‐(2‐hydroxy‐4‐methoxybenzyl)‐amino acids: useful intermediates in peptide synthesis. J. Pept. Sci. 1995, 1, 11-25. 47. Nadler, C.; Nadler, A.; Hansen, C.; Diederichsen, U., A photocleavable auxiliary for extended native chemical ligation. Eur. J. Org. Chem. 2015, 2015, 3095-3102. 48. Brik, A.; Ficht, S.; Yang, Y.-Y.; Wong, C.-H., Sugar-Assisted Ligation of N-Linked Glycopeptides with Broad Sequence Tolerance at the Ligation Junction. J. Am. Chem. Soc. 2006, 128, 15026-15033. 49. Lutsky, M.-Y.; Nepomniaschiy, N.; Brik, A., Peptide ligation via side-chain auxiliary. Chem. Commun. 2008, 1229-1231. 50. Kumar, K. A.; Harpaz, Z.; Haj-Yahya, M.; Brik, A., Side-chain assisted ligation in protein synthesis. Bioorg. Med. Chem. Lett. 2009, 19, 3870-3874. 51. Spasser, L.; Ajish Kumar, K.; Brik, A., Scope and limitation of side‐chain assisted ligation. J. Pept. Sci. 2011, 17, 252-255. 52. Li, X.; Kawakami, T.; Aimoto, S., Direct preparation of peptide thioesters using an Fmoc solid-phase method. Tetrahedron Lett. 1998, 39, 8669-8672. 53. Clippingdale, A. B.; Barrow, C. J.; Wade, J. D., Peptide thioester preparation by Fmoc solid phase peptide synthesis for use in native chemical ligation. J. Pept. Sci. 2000, 6, 225-234. 54. Raz, R.; Rademann, J. r., Fmoc-based synthesis of peptide thioesters for native chemical ligation employing a tert-butyl thiol linker. Org. Lett. 2011, 13, 1606-1609. 55. Kenner, G.; McDermott, J.; Sheppard, R., The safety catch principle in solid phase peptide synthesis. J. Chem. Soc. D 1971, 636-637. 56. von Eggelkraut-Gottanka, R.; Klose, A.; Beck-Sickinger, A. G.; Beyermann, M., Peptide αthioester formation using standard Fmoc-chemistry. Tetrahedron Lett. 2003, 44, 3551-3554. 57. Flemer Jr, S., Efficient method of circumventing insolubility problems with fully protected peptide carboxylates via in situ direct thioesterification reactions. J. Pept. Sci. 2009, 15, 693-696. 58. Nagalingam, A. C.; Radford, S. E.; Warriner, S. L., Avoidance of epimerization in the synthesis of peptide thioesters using Fmoc protection. Synlett 2007, 2007, 2517-2520. 59. Botti, P.; Villain, M.; Manganiello, S.; Gaertner, H., Native chemical ligation through in situ O to S acyl shift. Org. Lett. 2004, 6, 4861-4864. 60. Kawakami, T.; Sumida, M.; Vorherr, T.; Aimoto, S., Peptide thioester preparation based on an NS acyl shift reaction mediated by a thiol ligation auxiliary. Tetrahedron Lett. 2005, 46, 8805-8807. 61. Ollivier, N.; Dheur, J.; Mhidia, R.; Blanpain, A.; Melnyk, O., Bis (2-sulfanylethyl) amino native peptide ligation. Org. Lett. 2010, 12, 5238-5241. 62. Hou, W.; Zhang, X.; Li, F.; Liu, C.-F., Peptidyl N, N-bis (2-mercaptoethyl)-amides as thioester precursors for native chemical ligation. Org. Lett. 2010, 13, 386-389. 63. Blanco‐Canosa, J. B.; Dawson, P. E., An efficient Fmoc‐SPPS approach for the generation of thioester peptide precursors for use in native chemical ligation. Angew. Chem. Int. Ed. 2008, 47, 6851-6855. 64. Mahto, S. K.; Howard, C. J.; Shimko, J. C.; Ottesen, J. J., A reversible protection strategy to improve Fmoc‐SPPS of peptide thioesters by the N‐acylurea approach. ChemBioChem 2011, 12, 2488-2494. 65. Blanco-Canosa, J. B.; Nardone, B.; Albericio, F.; Dawson, P. E., Chemical protein synthesis using a second-generation N-acylurea linker for the preparation of peptide-thioester precursors. J. Am. Chem. Soc. 2015, 137, 7197-7209. 66. Fang, G. M.; Li, Y. M.; Shen, F.; Huang, Y. C.; Li, J. B.; Lin, Y.; Cui, H. K.; Liu, L., Protein chemical synthesis by ligation of peptide hydrazides. Angew. Chem. Int. Ed. 2011, 50, 7645-7649. 67. Selvaraj, A.; Chen, H.-T.; Ya-Ting Huang, A.; Kao, C.-L., Expedient on-resin modification of a peptide C-terminus through a benzotriazole linker. Chem. Sci. 2018, 9, 345-349. 68. Wang, J. X.; Fang, G. M.; He, Y.; Qu, D. L.; Yu, M.; Hong, Z. Y.; Liu, L., Peptide o‐aminoanilides as crypto‐thioesters for protein chemical synthesis. Angew. Chem. Int. Ed. 2015, 54, 2194-2198. 69. Bang, D.; Pentelute, B. L.; Kent, S. B., Kinetically controlled ligation for the convergent chemical synthesis of proteins. Angew. Chem. Int. Ed. 2006, 45, 3985-3988. 70. Dheur, J.; Ollivier, N.; Vallin, A.; Melnyk, O., Synthesis of peptide alkylthioesters using the intramolecular N, S-acyl shift properties of bis (2-sulfanylethyl) amido peptides. J. Org. Chem. 2011, 76, 3194-3202. 71. Zheng, J.-S.; Tang, S.; Qi, Y.-K.; Wang, Z.-P.; Liu, L., Chemical synthesis of proteins using peptide hydrazides as thioester surrogates. Nat. Protoc. 2013, 8, 2483. 72. Pedersen, S. L.; Tofteng, A. P.; Malik, L.; Jensen, K. J., Microwave heating in solid-phase peptide synthesis. Chem. Soc. Rev. 2012, 41, 1826-1844. 73. Bacsa, B.; Horváti, K.; Bõsze, S.; Andreae, F.; Kappe, C. O., Solid-phase synthesis of difficult peptide sequences at elevated temperatures: a critical comparison of microwave and conventional heating technologies. J. Org. Chem. 2008, 73, 7532-7542. 74. 林芝蘭. 光解基團修飾之天門冬胺酸進行側鏈輔助天然化學連接法. 國立清華大學, 新竹市, 2017. 75. 王瑋皜. 以天然化學連接法合成不具有半胱胺酸單元之胜肽. 國立清華大學, 新竹市, 2015. 76. Bergman, P.; Termén, S.; Johansson, L.; Nyström, L.; Arenas, E.; Jonsson, A.-B.; Hökfelt, T.; Gudmundsson, G. H.; Agerberth, B., The antimicrobial peptide rCRAMP is present in the central nervous system of the rat. J. Neurochem. 2005, 93, 1132-1140. 77. Bizet, V.; Bolm, C., Sulfur Imidations by Light-Induced Ruthenium-Catalyzed Nitrene Transfer Reactions. Eur. J. Org. Chem. 2015, 2015, 2854-2860. 78. Szychowski, J.; Mahdavi, A.; Hodas, J. J.; Bagert, J. D.; Ngo, J. T.; Landgraf, P.; Dieterich, D. C.; Schuman, E. M.; Tirrell, D. A., Cleavable biotin probes for labeling of biomolecules via azide− alkyne cycloaddition. J. Am. Chem. Soc. 2010, 132, 18351-18360. 79. Taylor, C. M.; Weir, C. A., Synthesis of the Repeating Decapeptide Unit of Mefp1 in Orthogonally Protected Form. J. Org. Chem. 2000, 65, 1414-1421. 80. Zhang, Q.; Kulczynska, A.; Webb, D. J.; Megson, I. L.; Botting, N. P., A new class of NO-donor pro-drugs triggered by γ-glutamyl transpeptidase with potential for reno-selective vasodilatation. Chem. Commun. 2013, 49, 1389-1391. 81. Yokokawa, F.; Inaizumi, A.; Shioiri, T., Synthetic studies of the cyclic depsipeptides bearing the 3-amino-6-hydroxy-2-piperidone (Ahp) unit. Total synthesis of the proposed structure of micropeptin T-20. Tetrahedron 2005, 61, 1459-1480.
|