帳號:guest(13.59.8.231)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝潔欣
作者(外文):Hsieh, Chieh-Hsin
論文名稱(中文):電子定域化{Fe(NO)2}9-{Fe(NO)2}10 雙核雙亞硝基鐵錯合物之合成及其與一氧化氮的反應性探討
論文名稱(外文):Electronically Localized {Fe(NO)2}9-{Fe(NO)2}10 Dinuclear Dinitrosyl Iron Complex and its Reaction with NO
指導教授(中文):廖文峯
指導教授(外文):Liaw, Wen-Feng
口試委員(中文):魯才德
許益瑞
口試委員(外文):Lu, Tsai-Te
Hsu, I-Jui
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:106023520
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:70
中文關鍵詞:雙亞硝基鐵錯合物一氧化氮還原酶
外文關鍵詞:DNICHyponitriteNORNO
相關次數:
  • 推薦推薦:0
  • 點閱點閱:76
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  在生物體中,將NO轉換為N2O可以透過含有heme的Nitric oxide reductases (NORs) 以及non−heme Flavo−diiron NO reductases (FNORs)。對於其反應機構仍有許多爭論,但在許多推測的路徑中,兩個NO經由耦合後會形成hyponitrite intermediate。
  本研究以1,3−bis(dimethylamino)propan−2−olate (Bdmap) 為配位基,合成出雙核結構雙亞硝基鐵錯合物 (dinuclear Dinitrosyl Iron Complexes, dDNICs),使用IR、UV、EPR、SQUID、XAS及X−ray等儀器鑑定結構,並且探討其反應性以及應用性。
  一開始先合成化合物 [Fe(NO)2(μ−bdmap)Fe(NO)¬2(THF)] (2),其電子結構為localized {Fe(NO)2}9−{Fe(NO)2}10,在室溫下打入等當量的NO(g) 攪拌反應,會生成以trans−hyponitrite橋接的化合物 {[Fe(NO)2]2(bdmap)}2(κ4−N2O2) (3)。接著進一步進行質子化反應,在嘗試過數種酸後,最合適的是Hbdmap,除了能當量反應釋放出N2O,其共軛鹼也能配位產生化合物 [Fe(NO)2(bdmap)]2 (1)。
  過去發表metal−hyponitrite晶體結構的文獻非常稀少,由上述的結果說明DNIC可以做為模板,誘使NO還原產生N2O,過程中產生trans−hyponitrite橋接的化合物,對於探討NOR的催化機制有很大的幫助。
  In biological systems, nitric oxide reduction is carried out by non−heme/heme NO reductases (NORs) and non−heme flavo diiron NO reductases (FNORs). However, there is still much dispute about the catalytic routes. Hyponitrite moiety is proposed as a common intermediate among these mechanisms.
  In this study, a series of dinuclear Dinitrosyl Iron Complexes (dDNICs) using 1,3−bis(dimethylamino)propan−2−olate (Bdmap) as ligand were synthesized and characterized by spectroscopic references. Their reactivity and applicability were also investigated.
  The electronic structure of [Fe(NO)2(μ−bdmap)Fe(NO)¬2(THF)] (2) is localized {Fe(NO)2}9−{Fe(NO)2}10. Complex 2 react with NO(g) at room temperature to yield tetranuclear quadridentate {[Fe(NO)2]2(bdmap)}2(κ4−N2O2) (3) that the trans−hyponitrite ligand bridges the four Fe metal centers. Subsequently, adding Hbdmap could transfer complex 3 into [Fe(NO)¬2(μ−bdmap)]2 and release N2O.
  There were only few crystal structures of metal−hyponitrite complexes reported. Utilizing dDNIC as a model to reduce NO is beneficial to provide a distinct insight into the mechanism of NO reduction.
第一章 緒論 1
1−1. 一氧化氮 (Nitric oxide) 1
1−2. 一氧化氮 (NO) 與過渡金屬 (M) 之鍵結 2
1−3. 雙亞硝基鐵錯合物 (Dinitrosyl Iron Complexes, DNICs) 4
1−4. 一氧化氮還原酶 (Nitric oxide reductase, NOR) 8
1−5. 連二次硝酸鹽與金屬之錯合物 (Hyponitrite complex) 14
1−6. 研究方向 21
第二章 實驗部分 22
2−1. 一般實驗 22
2−2. 儀器 22
2−2−1. 紅外線光譜儀 (Infrared spectrometer, IR) 22
2−2−2. 紫外光−可見光吸收光譜儀 (UV−Visible electronic absorption spectrometer) 22
2−2−3. X−ray 單晶繞射解析 23
2−2−4. 電子順磁共振光譜儀 (Electron paramagnetic resonance, EPR) 23
2−2−5. 超導量子干涉儀 (Superconducting Quantum Interference Device Magenetometer, SQUID) 23
2−2−6. X−ray 吸收光譜儀 (X−ray absorption spectroscopy, XAS) 23
2−3. 溶劑與藥品 24
2−3−1. 溶劑 24
2−3−2. 藥品 24
2−4. 化合物的合成與鑑定 25
2−4−1. 化合物 [Fe(NO)2(bdmap)]2 (1) 的合成 25
2−4−2. 化合物 [Fe(NO)2(μ−bdmap)Fe(NO)2(THF)] (2)的合成 26
2−4−3. 化合物 {[Fe(NO)2]2(bdmap)}2(κ4−N2O2) (3) 的合成 26
2−4−4. 化合物 [(μ−Bdmap)(μ−NO2)(Fe(NO)2)2] (4) 的合成 27
2−5. 化合物之反應性 27
2−5−1. 化合物 {[Fe(NO)2]2(bdmap)}2(κ4−N2O2) (3) 與Methanol (MeOH) 反應 27
2−5−2. 化合物 {[Fe(NO)2]2(bdmap)}2(κ4−N2O2) (3) 與Ethanol (EtOH) 反應 28
2−5−3. 化合物 {[Fe(NO)2]2(bdmap)}2(κ4−N2O2) (3) 與tert−Butyl alcohol (TBA) 反應 28
2−5−4. 化合物 {[Fe(NO)2]2(bdmap)}2(κ4−N2O2) (3) 與Phenol反應 29
2−5−5. 化合物 {[Fe(NO)2]2(bdmap)}2(κ4−N2O2) (3) 與Acetic acid (HOAc) 反應 29
2−5−6. 化合物 {[Fe(NO)2]2(bdmap)}2(κ4−N2O2) (3) 與2,4−Pentanedione (Hacac)反應 30
2−5−7. 化合物 {[Fe(NO)2]2(bdmap)}2(κ4−N2O2) (3) 與Hbdmap反應 30
2−6. 晶體結構解析 31
第三章 結果與討論 35
3−1. [Fe(NO)2(bdmap)]2 (1) 之合成與光譜分析 35
3−2. [Fe(NO)2(μ−bdmap)Fe(NO)2(THF)] (2) 之合成與光譜分析 37
3−3. {[Fe(NO)2]2(bdmap)}2(κ4−N2O2) (3) 之合成與光譜分析 40
3−4. [(μ−Bdmap)(μ−NO2)(Fe(NO)2)2] (4) 之合成與光譜分析 47
3−5. 化合物1−3之X−ray吸收光譜分析 49
3−6. {[Fe(NO)2]2(bdmap)}2(κ4−N2O2) (3) 之質子化反應 51
3−6−1. Complex 3 與Methanol (MeOH) 反應 51
3−6−2. Complex 3 與Ethanol (EtOH) 反應 54
3−6−3. Complex 3 與tert−Butyl alcohol (TBA) 反應 56
3−6−4. Complex 3 與Phenol反應 57
3−6−5. Complex 3 與Acetic acid (HOAc) 反應 58
3−6−6. Complex 3 與2,4−Pentanedione (Hacac) 反應 59
3−6−7. Complex 3 與Hbdmap反應 61
第四章 結論 64
Reference 66
1.Furchgott, R.F.; Zawadzki, J.V. Nature 1980, 288, 373.
2.(a) Ignarro, L. J.; Adams, J. B.; Horwitz, P. M.; Wood, K. S. J. Bioinorg. Chem. 1986, 261, 4997. (b) Ignarro, L. J.; Buga, G. M.; Wood, K. S.; Byrns, R. E.; Chaudhuri, G. Proc. Natl. Acad. Sci. 1987, 84, 9265.
3.Koshland, D. E. Science 1992, 258, 1861.
4.Gary, L. M.; Donald, A. T., Inorganic Chemistry, 2nd ed., Upper Saddle River, New Jersey: Prentice Hall International, Inc., 1999, 44.
5.Pierri, A. E.; Muizzi, D. A.; Ostrowski, A. D., Photo-Controlled Release of NO and CO with Inorganic and Organometallic Complexes, Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, 1-45.
6.Enemark, J. H.; Feltham, T. D. Coord. Chem. Rev. 1974, 13, 339.
7.(a) Butler, A. R.; Megson, I. L. Chem. Rev. 2002, 102, 1155. (b) Ueno, T.; Susuki, Y.; Fujii, S.; Vanin, A. F.; Yoshimura, T. Biochem. Pharmacol. 2002, 63, 485. (c) Frederik., A. C.; Wiegant, I. Y.; Malyshev, I. Y.; Kleschyov, A. L.; van Faassen, E.; Vanin, A. F. FEBS Lett. 1999, 455, 179. (d) McCleverty, J. A. Chem. Rev. 2004, 104, 403. (e) Hayton, T. W.; Legzdins, P.; Sharp, W. B. Chem. Rev. 2002, 102, 935.
8.(a) Kharitonov, V. G.; Sundquist, A. R.; Sharma, V. S. J. Biol. Chem. 1995, 270, 2815. (b) Goldstein, S.; Czapski, G. J. Am. Chem. Soc. 1996, 118, 3419.
9.McDonald, C. C.; Phillips, W. D.; Mower, H. F. J. Am. Chem. Soc. 1965, 87, 3319.
10.Cesareo, E.; Parker, L. J.; Pedersen, J. Z.; Nuccetelli, M.; Mazzetti, A. P.; Pastore, A.; Federici, G.; Caccuri, A. M.; Ricci, G.; Adams, J. J.; Parker, M. W.; Bello, M. L. J. Biol. Chem. 2005, 280, 42172.
11.Gwost, D.; Caulton, K. D. Inorg. Chem. 1973, 12, 2095.
12.(a) Baltusis, L. M.; Karlin, K. D.; Rabinowitz, H. N.; Dewan, J. C.; Lippard, S. J. Inorg. Chem. 1980, 19, 2627. (b) Strasdeit, H.; Krebs, B.; Henkel, G. Z. Naturforsch. 1986, 41b, 1357. (c) Bryar, T. R.; Eaton, D. R. Can. J. Chem. 1992, 70, 1917. (d) Osterloh, F.; Saak, W.; Haase, D.; Pohl, S. Chem. Commun. 1997, 979. (e) Liaw, W.-F.; Chiang, C.-Y.; Lee, G.-H.; Peng, S.-M.; Lai, C.-H. Inorg. Chem. 2000, 39, 480. (f) Davies, S. C.; Evans, D. J.; Hughes, D. L.; Konkol, M.; Richards, R. L.; Sanders, J. R.; Sobota, P. J. Chem. Soc., Dalton Trans. 2002, 2473. (g) Chiang, C.-Y.; Miller, M. L.; Reibenspies, J. H.; Darensbourg, M. Y. J. Am. Chem. Soc. 2004, 126, 10867. (h) Tsai, M.-L.; Chen, C.-C.; Hsu, I.-J.; Ke, S.-C.; Hsieh, C.-H.; Chiang, K.-A.; Lee, G.-H.; Wang, Y.; Liaw, W.-F. Inorg. Chem. 2004, 43, 5159. (i) Tsai, F.-T.; Chiou, S.-J.; Tsai, M.-C.; Tsai, M.-L.; Huang, H.-W.; Chiang, M.-H.; Liaw, W.-F. Inorg. Chem. 2005, 44, 5872. (j) Lu, T.-T.; Chiou, S.-J.; Chen, C.-Y.; Liaw, W.-F. Inorg. Chem. 2006, 45, 8799. (k) Tsai, M.-L.; Hsieh, C.-H.; Liaw, W.-F. Inorg. Chem. 2007, 46, 5110. (l) Huang, H.-W.; Tsou, C.-C.; Kuo, T.-S.; Liaw, W.-F. Inorg. Chem. 2008, 47, 2196.
13.Wang, X.; Sundberg, E. B.; Li, L.; Kantardjieff, K. A.; Herron, S. R.; Lim, M.; Ford, P. C. Chem. Commum. 2005, 477.
14.(a) Albano, V. G.; Areneo, A.; Bellon, P. L.; Ciani, G.; Manassero, M. J. Organomet. Chem. 1974, 67, 413. (b) Chau, C.-N.; Wojcicki, A.; Calligaris, M.; Nardin, G. Inorg. Chim. Acta. 1990, 168, 105. (c) Reginato, N.; McCrory, C. T. C.; Pervitsky, D.; Li, L. J. Am. Chem. Soc. 1999, 168, 105. (d) Hung, M.-C.; Tsai, M.-C.; Lee, G.-H.; Liaw, W.-F. Inorg. Chem. 2006, 45, 6041.
15.Shih, W. C.; Lu, T.-T., Yang,L.-B.; Tsai, F.-T.; Chiang, M.-H.; Lee, J.-F.; Chiang,Y.-W.; Liaw, W.-F. J. Inorg. Biochem. 2012, 113, 83.
16.Tsai, F.-T.; Kuo T.-S.; Liaw, W.-F. J. Am. Chem. Soc. 2009, 131,1.
17.Tsai, M.-L., Tsou, C.-C., Liaw, W.-F. Acc. Chem. Res. 2015, 48, 1184.
18.(a) Tsou, C.-C.; Lu, T.-T.; Liaw, W.-F. J. Am. Chem. Soc. 2007, 129, 12626. (b) Chen, Y.-J.; Ku, W.-C.; Feng, L.-T.; Tsai, M.-L.; Hsieh, C.-H.; Hsu, W.-H.; Liaw, W.-F.; Hung, C.-H.; Chen, Y.-J. J. Am. Chem. Soc. 2008, 130, 10929. (c) Tsai, F.-T.; Kuo, T.-S.; Liaw, W.-F. J. Am. Chem. Soc. 2009, 131, 3426. (d) Tsai, M.-C.; Tsai, F.-T.; Lu, T.-T.; Tsai, M.-L.; Wei, Y.-C.; Hsu, I. J.; Lee, J.-F.; Liaw, W.-F. Inorg. Chem. 2009, 48, 9579. (e) Lu, T.-T.; Chen, C.-H.; Liaw, W.-F. Chem. Eur. J. 2010, 16, 8088. (f) Tsai, F.-T.; Chen, P.-L.; Liaw, W.-F. J. Am. Chem. Soc. 2010, 132, 5290. (g) Tsou, C.-C.; Liaw, W.-F. Chem. Eur. J. 2011, 17, 13358. (h) Shih, W. C.; Lu, T. T.; Yang, L. B.; Tsai, F. T.; Chiang, M. H.; Lee, J. F.; Chiang, Y. W.; Liaw, W. F. J. Inorg. Biochem. 2012, 113, 83. (i) Tsai, F.-T.; Lee, Y.-C.; Chiang, M.-H.; Liaw, W.-F. Inorg. Chem. 2013, 52, 464. (j) Yeh, S.-W.; Lin, C.-W.; Li, Y.-W.; Hsu, I. J.; Chen, C.-H.; Jang, L.-Y.; Lee, J.-F.; Liaw, W.-F. Inorg. Chem. 2012, 51, 4076. (k) Tsou, C.-C.; Chiu, W.-C.; Ke, C.-H.; Tsai, J.-C.; Wang, Y.-M.; Chiang, M.-H.; Liaw, W.-F. J. Am. Chem. Soc. 2014, 136, 9424. (l) Yeh, S.-W.; Tsou, C.-C.; Liaw, W.-F. Dalton Trans. 2014, 43, 9022. (m) Reginato, N.; McCrory, C. T. C.; Pervitsky, D.; Li, L. J. Am. Chem. Soc. 1999, 121, 10217.
19.Tsou, C.-C.; Tsai, F.-T.; Chen, H.-Y.; Hsu, I. J.; Liaw, W.-F. Inorg. Chem. 2013, 52, 1631.
20.(a) Lin, Z.-S.; Lo, F.-C.; Li, C.-H.; Chen, C.-H.; Huang, W.-N.; Hsu, I. J.; Lee, J.-F.; Horng, J.-C.; Liaw, W.-F. Inorg. Chem. 2011, 50, 10417. (b) Lu, T.-T.; Lai, S.-H.; Li, Y.-W.; Hsu, I. J.; Jang, L.-Y.; Lee, J.-F.; Chen, I. C.; Liaw, W.-F. Inorg. Chem. 2011, 50, 5396.
21.Ravishankara, A. R. ; Daniel, J. S. ; Portmann, R.W. Science 2009, 326, 123.
22.Pierre, M.-L. Nat. Prod. Rep., 2007, 24, 610.
23.Hino, T.; Matsumoto, Y.; Nagano, S.; Sugimoto, H.; Fukumori, Y.; Murata, T.; Iwata, S.; Shiro, Y. Science, 2010, 330, 1666.
24.Matsumoto, Y.; Tosha, T.; Pisliakov, A. V.; Hino, T.; Sugimoto, H.; Nagano, S.; Sugita, Y.; Shiro, Y. Nat. Struct. Mol. Biol., 2012, 19, 238.
25.Schopfer, M. P.; Wang, J.; Karlin, K. D. Inorg. Chem. 2010, 49, 6267.
26.Kumita, H.; Matsuura, K.; Hino, T.; Takahashi, S.; Hori, H.; Fukumori, Y.; Morishima, I.; Shiro, Y. J. Biol. Chem., 2004, 279, 55247.
27.(a) Ye, R. W.; Averil, B. A.; Tiedje, J. M. Appl. Environ. Microbiol., 1994, 60, 1053. (b) Bryar, T. R.; Eaton, D. R. Can. J. Chem., 1992, 70, 1917. (c) Wang, X.; Sundberg, E. B.; Li, L.; Kantardjieff, K. A.; Herron, S. R.; Lim, M.; Ford, P. C. Chem. Commun., 2005, 477.
28.(a) Frazao, C.; Silva, G.; Gomes, C. M.; Matias, P.; Coelho, R.; Sieker, L.; Macedo, S.; Liu, M. Y.; Oliveira, S.; Teixeira, M.; Xavier, A. V.; Rodrigues-Pousada, C.; Carrondo, M. A.; Le, G. J. Nat. Struct. Mol. Biol., 2000, 7, 1041. (b) Silaghi-Dumitrescu, R.; Kurtz, D. M.; Ljungdahl, L. G.; Lanzilotta, W. N. Biochemistry, 2005, 44, 6492. (c) Hayashi, T.; Caranto, J. D.; Wampler, D. A.; Kurtz, D. M.; Moenne-Loccoz, P. Biochemistry, 2010, 49, 7040. (d) Arkenberg, A.; Runkel, S.; Richardson, D. J.; Rowley, G. Biochem. Soc. Trans., 2011, 39, 1876.
29.Kurtz, D. M. Dalton Trans., 2007, 4115.
30.Blomberg, L. M.; Blomberg, M. R. A.; Siegbahn, P. E. M. J. Biol. Inorg. Chem., 2007, 12, 79.
31.Caranto, J. D.; Weitz, A.; Hendrich, M. P.; Kurtz, D. M. J. Am. Chem. Soc. 2014, 136, 7981.
32.Van Stappen, C.; Lehnert, N. Inorg. Chem. 2018, 57, 4252.
33.Wijeratne, G. B.; Hematian, S.; Siegler, M. A.; Karlin, K. D. J. Am. Chem. Soc. 2017, 139, 13276.
34.Arikawa, Y.; Asayama, T.; Moriguchi, Y.; Agari, S.; Onishi, M. J. Am. Chem. Soc. 2007, 129, 14160.
35.Arikawa, Y.; Matsumoto, N.; Asayama, T.; Umakoshi, K.; Onishi, M. Dalton Trans. 2011, 40, 2148.
36.Xu, N.; Campbell, A. L. O.; Powell, D. R.; Khandogin, J.; Richter-Addo, G. B. J. Am. Chem. Soc. 2009, 131, 2460.
37.Berto, T. C.; Xu, N.; Lee, S. R.; McNeil, A. J.; Alp, E. E.; Zhao, J. Y.; Richter-Addo, G. B.; Lehnert, N. Inorg. Chem. 2014, 53, 6398.
38.Wright, A. M.; Wu, G.; Hayton, T. W. J. Am. Chem. Soc. 2012, 134, 9930.
39.Wijeratne, G. B.; Hematian, S.; Siegler, M. A.; Karlin, K. D. J. Am. Chem. Soc. 2017, 139, 13276.
40.Kundu, S.; Phu, P. N.; Ghosh, P.; Kozimor, S. A.; Bertke, J. A.; Stieber, S. C. E.; Warren, T. H. J. Am. Chem. Soc. 2019, 141, 1415.
41.Ferretti, E.; Dechert, S.; Demeshko, S.; Holthausen, M. C.; Meyer, F. Angew. Chem. Int. Ed. Engl. 2019, 58, 1705.
42.Bau, R.; Sabherwa, I. H.; Burg, A. B. J. Am. Chem. Soc. 1971, 93, 4926.
43.Lu, T.-T.; Tsou, C.-C.; Huang, H.-W.; Hsu, I.-J.; Chen, J.-M.; Kuo, T.-S.; Wang, Y.; Liaw, W.-F. Inorg. Chem. 2008, 47, 6040-6050.
44.Tsai, F.-T.; Chen, P.-L.; Liaw, W.-F. J. Am. Chem. Soc. 2010, 132, 5290.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *